RU2149295C1 - Динамический гаситель колебаний - Google Patents

Динамический гаситель колебаний Download PDF

Info

Publication number
RU2149295C1
RU2149295C1 RU99100769A RU99100769A RU2149295C1 RU 2149295 C1 RU2149295 C1 RU 2149295C1 RU 99100769 A RU99100769 A RU 99100769A RU 99100769 A RU99100769 A RU 99100769A RU 2149295 C1 RU2149295 C1 RU 2149295C1
Authority
RU
Russia
Prior art keywords
damper
cylinder
mass
plate
dynamic vibration
Prior art date
Application number
RU99100769A
Other languages
English (en)
Inventor
Д.М. Белый
Г.М. Юдин
Original Assignee
Ульяновский государственный технический университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ульяновский государственный технический университет filed Critical Ульяновский государственный технический университет
Priority to RU99100769A priority Critical patent/RU2149295C1/ru
Application granted granted Critical
Publication of RU2149295C1 publication Critical patent/RU2149295C1/ru

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

Использование: в машиностроении, в частности в устройствах для гашения колебаний исполнительных устройств промышленных роботов. Сущность: гаситель содержит массу, присоединенную к защищаемому объекту посредством упругой балки с прямоугольным поперечным сечением, при этом внутри балки по всей ее длине выполнена прямоугольная полость, масса выполнена в виде упругой изогнутой стальной пластины, изогнутой и представляющей собой часть полого цилиндра, вставленной плотно с натягом в полость балки, при этом образующие цилиндра перпендикулярны продольной оси балки, а на один из торцов изогнутой пластины вдоль всей образующей цилиндра нанесен слой материала с высоким коэффициентом трения скольжения. Технический результат - повышение точности настройки динамического гасителя колебаний, упрощение его конструкции и процесса настройки. 4 ил.

Description

Изобретение относится к машиностроению, в частности к устройствам гашения колебаний исполнительных устройств промышленных роботов.
Известен гаситель колебаний, содержащий массу, присоединенную к демпфируемому объекту посредством упругого элемента /см. Вибрации в технике. Справочник. Под ред. К.В.Фролова. - М.: Машиностроение, 1981, т. 6, с. 337 [1]/.
Недостатком данного устройства является то, что гаситель не обеспечивает возможности гашения колебаний различных частот, а работает лишь в одной частоте.
Известны также динамические гасители колебаний, содержащие массу, присоединенную к защищаемому объекту посредством упругого элемента, выполненного в виде манометрической трубки, систему подачи рабочего тела в полость трубки и контроля давления в ней /см. а.с. N 1293406, кл. F 16 F 15/00, 1987 [2], а.с. СССР N 1716214, кл. F 16 F 15/00, 1992 [3]/.
Однако данные динамические гасители колебаний имеют ряд серьезных недостатков, вследствие чего они не нашли мирового практического применения. Это, во- первых, предельная сложность как конструкции гасителя, системы регулирования его жесткости, так и процесса перестройки собственной частоты гасителя; во-вторых, что самое главное, низкая точность настройки гасителя, объясняемая отсутствием автоматического процесса настройки и необходимостью, вследствие этого, последовательного повторения цикла операций по изменению частоты гасителя изменением давления рабочего тела в полости манометрической трубки и регистрации амплитуды колебаний защищаемого объекта.
Наиболее близким устройством того же назначения к заявленному изобретению по совокупности признаков является динамический гаситель колебаний, включающий массу, присоединенную к защищаемому объекту посредством упругой балки с прямоугольным поперечным сечением и закрепленными на ней пьезокерамическими пластинами, подключенными к блоку питания /см. а. с. СССР N 1467286, кл. F 16 F 15/00, F 16 F 15/03, 1989 [4]/, и принятый за прототип.
Недостатками данного устройства являются значительная сложность конструкции, низкая точность и сложность настройки, объясняемые отсутствием автоматического процесса настройки и необходимостью, вследствие этого, последовательного повторения цикла операций по изменению частоты гасителя коррекцией напряжения на пьезокерамических пластинах и регистрации амплитуды колебаний защищаемого объекта.
Сущность изобретения заключается в обеспечении процесса автоматической настройки гасителя, адаптации его к изменяемой частоте внешних воздействий за счет направленного виброперемещения присоединенной массы.
Технический результат - повышение точности настройки динамического гасителя колебаний, упрощение его конструкции и процесса настройки.
Указанный технический результат при осуществлении изобретения достигается тем, что в известном динамическом гасителе колебаний, содержащем массу, присоединенную к защищаемому объекту посредством упругой балки с прямоугольным поперечным сечением, особенность заключается в том, что внутри указанной балки по всей ее длине выполнена прямоугольная полость, масса выполнена в виде упругой стальной пластины, изогнутой и представляющей собой часть полого цилиндра, вставленной плотно с натягом в полость балки, при этом образующие цилиндра перпендикулярны продольной оси балки, а на один из торцов изогнутой пластины вдоль всей образующей цилиндра нанесен слой материала с высоким коэффициентом трения скольжения.
Сущность изобретения поясняется чертежами, где на фиг. 1 схематично изображен предлагаемый динамический гаситель колебаний, общий вид с местным разрезом; на фиг. 2 - вид справа на фиг. 1; на фиг. 3 и 4 - положения гасителя в различные полупериоды колебаний защищаемого объекта.
Предлагаемый динамический гаситель колебаний содержит массу 1, присоединенную к защищаемому объекту 2 посредством упругой балки 3 с прямоугольным поперечным сечением, при этом внутри указанной балки 3 по всей ее длине выполнена прямоугольная полость 4, масса 1 выполнена в виде стальной упругой пластины, изогнутой и представляющей собой часть полого цилиндра, вставленной плотно с натягом в полость 4 балки 3, причем образующие цилиндра перпендикулярны продольной оси балки 3, а на один из торцов изогнутой пластины 1 вдоль всей образующей цилиндра нанесен слой материала 5 с высоким коэффициентом трения скольжения. Такой слой получен путем охвата пластины 1 вдоль всего торца тонкой полоской резины с последующим приклеиванием, либо напылением тонкого слоя резины на торцевую поверхность пластины 1. В отверстие в верхней части пластины 1 вставлен фиксирующий винт 6 с гайкой 7, размещенный в продольном направляющем пазу 8, выполненном в верхней части упругой балки 3.
Работа устройства осуществляется следующим образом.
При возникновении колебаний защищаемого объекта 2 масса 1 совершает изгибные колебания вместе с упругой балкой 3. Для гашения колебаний объекта 2 необходимо так настроить гаситель, чтобы собственная частота гасителя соответствовала частоте вынужденных колебаний объекта 2. В предлагаемой конструкции такая настройка осуществляется автоматически за счет однонаправленного вибрационного перемещения массы 1 относительно упругой балки 3. При этом изменяется расстояние от массы 1 до объекта 2, то есть его рабочая длина упругой балки 3, а следовательно, и частота настройки гасителя.
В исходном положении до настройки гасителя винт 6 с гайкой 7 ослаблены и пластина 1 смещена относительно упругой балки 3 в крайнее левое положение, то есть максимально близко к защищаемому объекту 2. Пусть, например, в первый полупериод действия внешней вибрации объект 2 движется вверх /см. фиг. 3/, при этом балка 3 совершает изгибное колебание в направлении по часовой стрелке, при котором ее кривизна нарастает синфазно с кривизной пластины 1. В этом случае нормальное давление на пластину 1 со стороны балки 3 невелико, кривизна пластины 3 /части цилиндра/ несколько увеличивается, то есть ее торцы, образующие цилиндра, несколько смещаются внутрь навстречу друг другу. Во второй полупериод действия внешней вибрации /см. фиг. 4/ объект 2 движется вниз, балка 3 совершает изгибное колебание в направлении против часовой стрелки, ее кривизна нарастает в противофазе с кривизной пластины 1. При этом нормальное давление на пластину 1 со стороны балки 3 значительно, кривизна пластины 1 резко уменьшается, то есть она как бы сплющивается. Однако левый торец пластины 1 за счет значительного коэффициента трения скольжения по всему торцу и значительного нормального давления, то есть предельно высокой величины силы трения скольжения, практически остается на месте, а сплющивание /выпрямление/ пластины 1 осуществляется практически только за счет значительного смещения вправо правого торца пластины 1. В следующий полупериод /то есть опять в первый/ кривизна пластины 1 опять увеличивается до исходной величины за счет суммарного смещения ее торцов внутрь на величину, равную смещению одного правого торца вправо в предыдущий полупериод. Таким образом, в результате за каждый период внешних вибрационных воздействий пластина 1 несколько смещается вправо к свободному концу упругой балки 3. Подбирая соответствующим образом жесткость пластины 1, коэффициент трения скольжения материала 5, соотношение размеров и т.д. можно добиться при заданной интенсивности вибрационных колебаний объекта 2 достаточно быстрого однонаправленного смещения пластины 1 относительно балки 3 в сторону ее свободного конца. В момент регистрации минимальной амплитуды паразитных колебаний объекта 2 возмущение снимается и пластина 1 фиксируется относительно балки 3 с помощью винта 6 с гайкой 7.
Очевидно, что в данной конструкции, в отличие от известных, процесс настройки гасителя происходит в автоматическом режиме, здесь нет необходимости последовательно изменять жесткость упругого элемента или величину массы на определенный шаг, фиксировать амплитуду колебаний объекта, опять изменять жесткость или массу, опять фиксировать амплитуду и т.д., что естественно приводит к низкой точности настройки гасителя, обусловленной шаговой погрешностью. В предлагаемой конструкции плавное изменение частоты гасителя осуществляется автоматически, остается только наблюдать за амплитудой колебаний объекта и остановить процесс изменения частоты гасителя в нужный момент. Устройство отличается предельной простотой конструкции и регулировки, абсолютным отсутствием сложных электромеханических элементов и узлов типа пьезокерамических пластин и манометрических трубок, систем регулирования жесткости типа механизмов подачи рабочего тела в полость манометрической трубки и контроля давления в ней.
При необходимости точность настройки гасителя может быть значительно увеличена за счет уменьшения скорости перемещения массы относительно упругого элемента, а с другой стороны, наоборот, за счет снижения точности можно предельно сократить время настройки гасителя на заданную величину.

Claims (1)

  1. Динамический гаситель колебаний, содержащий массу, присоединенную к защищаемому объекту посредством упругой балки с прямоугольным поперечным сечением, отличающийся тем, что внутри указанной балки по всей ее длине выполнена прямоугольная полость, масса выполнена в виде упругой стальной пластины, изогнутой и представляющей собой часть полого цилиндра, вставленной плотно с натягом в полость балки, при этом образующие цилиндра перпендикулярны продольной оси балки, а на один из торцов изогнутой пластины вдоль всей образующей цилиндра нанесен слой материала с высоким коэффициентом трения скольжения.
RU99100769A 1999-01-10 1999-01-10 Динамический гаситель колебаний RU2149295C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99100769A RU2149295C1 (ru) 1999-01-10 1999-01-10 Динамический гаситель колебаний

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99100769A RU2149295C1 (ru) 1999-01-10 1999-01-10 Динамический гаситель колебаний

Publications (1)

Publication Number Publication Date
RU2149295C1 true RU2149295C1 (ru) 2000-05-20

Family

ID=20214671

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99100769A RU2149295C1 (ru) 1999-01-10 1999-01-10 Динамический гаситель колебаний

Country Status (1)

Country Link
RU (1) RU2149295C1 (ru)

Similar Documents

Publication Publication Date Title
US7234379B2 (en) Device and a method for preventing or reducing vibrations in a cutting tool
Nagaya et al. Vibration control of a structure by using a tunable absorber and an optimal vibration absorber under auto-tuning control
EP0968379B1 (en) Pneumatic tuned mass damper
JP4524319B2 (ja) 質量緩衝装置
KR19980033066A (ko) 자기조정형 진동감쇄장치
KR20040071309A (ko) 마찰 댐퍼
JPS62171457A (ja) リニア・アクチユエ−タ
US7341550B2 (en) Roll, in particular middle roll of a calendar, and calendar
RU2149295C1 (ru) Динамический гаситель колебаний
JPH04236835A (ja) 摺動部を有する機械要素及び等速自在継手
Loveday et al. Modification of piezoelectric vibratory gyroscope resonator parameters by feedback control
Mayer et al. Passive, adaptive, active vibration control, and integrated approaches
US5831370A (en) Vibration actuator
Kela Attenuating amplitude of pulsating pressure in a low-pressure hydraulic system by an adaptive Helmholtz resonator
Chatterjee On the principle of impulse damper: A concept derived from impact damper
RU2151930C1 (ru) Динамический гаситель колебаний
Ishii et al. Efficiency improvement of an ultrasonic motor driven with rectangular waveform
JP3733187B2 (ja) 可変式動吸振器
JP7128027B2 (ja) ベローズ式ダンパ
JPH07109228B2 (ja) 制振装置
JP2522741B2 (ja) 直線送り装置の動特性制御システム
JPH0712165A (ja) ダンパ装置
RU2101581C1 (ru) Динамический гаситель
JP4639001B2 (ja) 補強冶具
RU2154758C2 (ru) Устройство для гашения вибраций