RU2146069C1 - Усилитель на оптическом волокне, легированном эрбием, для автоматического отслеживания и фильтрации длины волны передаваемого оптического сигнала и реализованный в нем способ - Google Patents

Усилитель на оптическом волокне, легированном эрбием, для автоматического отслеживания и фильтрации длины волны передаваемого оптического сигнала и реализованный в нем способ Download PDF

Info

Publication number
RU2146069C1
RU2146069C1 RU97113525A RU97113525A RU2146069C1 RU 2146069 C1 RU2146069 C1 RU 2146069C1 RU 97113525 A RU97113525 A RU 97113525A RU 97113525 A RU97113525 A RU 97113525A RU 2146069 C1 RU2146069 C1 RU 2146069C1
Authority
RU
Russia
Prior art keywords
optical
signal
wavelength
transmitted
output
Prior art date
Application number
RU97113525A
Other languages
English (en)
Other versions
RU97113525A (ru
Inventor
Ли До-Хьюнг
Original Assignee
Самсунг Электроникс Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Самсунг Электроникс Ко., Лтд. filed Critical Самсунг Электроникс Ко., Лтд.
Publication of RU97113525A publication Critical patent/RU97113525A/ru
Application granted granted Critical
Publication of RU2146069C1 publication Critical patent/RU2146069C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/2912Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0204Broadcast and select arrangements, e.g. with an optical splitter at the input before adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0205Select and combine arrangements, e.g. with an optical combiner at the output after adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0213Groups of channels or wave bands arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0215Architecture aspects
    • H04J14/0217Multi-degree architectures, e.g. having a connection degree greater than two
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0018Construction using tunable transmitters or receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0024Construction using space switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0045Synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0049Crosstalk reduction; Noise; Power budget

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

Усилитель на легированном эрбием оптическом волокне снабжен оптическим фильтром на его выходном выводе для исключения шумов, обусловленных свойствами усилителя, и выполнен с возможностью автоматического отслеживания и фильтрации длин волн передаваемого оптического сигнала с использованием блока управления длиной волны для настройки центральной длины волны оптического фильтра в соответствии с длиной волны передаваемого оптического сигнала после определения длины волны передаваемого оптического сигнала. Техническим результатом является повышение надежности оптических усилителей, осуществляющих усиление передаваемых оптических сигналов и селективное выделение сигналов требуемых длин волн. 2 с. и 9 з.п. ф-лы, 6 ил.

Description

Изобретение относится к оптическому усилителю. Более конкретно, настоящее изобретение относится к усилителю на оптическом волокне, легированном эрбием, и к способу его работы. Усилитель на оптическом волокне, соответствующий изобретению, автоматически отслеживает и отфильтровывает длины волн передаваемого света для настройки его на длины волн световых сигналов, подлежащие передаче, путем подстройки центральных длин волн оптического фильтра, установленного в выходном выводе, для устранения шумов, обусловленных свойствами оптического усилителя.
Когда на передающем выводе осуществляется преобразование электрического сигнала в оптический сигнал и передача его в требуемое место назначения с использованием оптического волокна, для усиления ослабленных оптических сигналов обычно используются усилители на оптическом волокне, легированном эрбием, устанавливаемые на определенном расстоянии, для обеспечения передачи стабильных сигналов. Усилитель устанавливается в приемном и передающем выводах для усиления электрической мощности и выполнения предварительного усиления.
На фиг. 1 представлена блок-схема усилителя с одномодовой накачкой, известного из предшествующего уровня техники. Входной соединитель обеспечивает подсоединение оптического волокна, подводимого извне, к внутреннему оптическому волокну, содержащемуся в усилителе на легированном эрбием оптическом волокне (ЛЭОВ). Элемент разветвления 2 разделяет оптический сигнал с подсоединенного оптического волокна в соответствии с предварительно определенным соотношением и передает разделенные сигналы на фотодиод 12 и на элемент оптической развязки 4. Фотодиод 12 измеряет интенсивность оптических сигналов. Элемент оптической развязки 4 имеет входной вывод и выходной вывод; он обеспечивает снижение потерь оптических сигналов, распространяющихся от входного вывода к выходному выводу, и предотвращает прохождение оптических сигналов назад от выходного вывода к входному выводу. Элемент оптической развязки 4 препятствует искажению входных оптических сигналов за счет прерывания обратной связи усиленного спонтанного излучения, генерируемого легированным эрбием волокном 16. Оптические сигналы от элемента оптической развязки 4 передаются на мультиплексор разделения длин волн (МРДВ) 6. МРДВ 6 принимает два различных оптических сигнала разных длин волн на своих соответствующих входных выводах и передает их через один оптико-волоконный вывод вместе. Длина волны входного сигнала равна 1550 нм, а источник возбуждения оптического сигнала использует длину волны 980 нм или 1480 нм. МРДВ 6 передает оптический сигнал возбуждения с длиной волны 980 нм и входной оптический сигнал с длиной волны 1550 нм в ЛЭОВ 16 через свой выходной вывод. ЛЭОВ 16 выполнено с добавкой редкоземельного металла эрбия (элемент с номером 68) к оптическому волокну, оно имеет повышенную степень поглощения на определенных длинах волн, например на 800 нм, 980 нм и 1480 нм. Оно усиливает входной оптический сигнал, имеющий спектр, сосредоточенный в полосе шириной 60 нм на определенной длине волны (1550 нм). Выходной конец ЛЭОВ 16 соединен с элементом оптической развязки 8, который затем соединен с элементом разветвления 10. Элемент разветвления 10 соединен с волокном выходного каскада посредством выходного соединителя. Элемент оптической развязки 8 прерывает прохождение назад оптических сигналов, отраженных от элемента разветвления или от выходного соединителя. Элемент разветвления 10 получает оптический сигнал от оптического элемента развязки 8 и расщепляет его на оптический сигнал, выводимый в оптическое волокно, подсоединенное посредством выходного соединителя, и на оптический сигнал, используемый для контроля выходного оптического сигнала. Используемый для контроля оптический сигнал принимается выходным фотодиодом 14. Входной оптический сигнал, который передается через входной фотодиод 12, и выходной усиленный оптический сигнал, который передается через выходной фотодиод 14, усиливаются соответствующими аналоговыми усилителями 20 и 22 перед подачей их на электронный блок управления 24. Электронный блок управления 24 принимает сигнал контроля и осуществляет управление выходным сигналом лазерного диода накачки 18. Фильтр изменения длины волны 26 (=фильтр фиксации длины волны) отфильтровывает шум в усиленном оптическом сигнале, передаваемом элементом разветвления 10. Если центральная длина волны фильтра 26 установлена на длину волны 28 передаваемого света (1550 нм), как показано на фиг. 2, то соответствующая шумовая составляющая 29 может быть эффективным образом подавлена в усилителе. График, иллюстрирующий подавление шумовой составляющей 29, обозначен на фиг. 2 позицией 30.
Однако передаваемые оптические сигналы не всегда постоянны, а изменяются в соответствии с конкретными элементами, используемыми в составе оптического усилителя. Поэтому длины волн передаваемого оптического сигнала могут изменяться по мере функционирования оптического усилителя на протяжении длительного времени. Кроме того, на него могут оказывать влияние внешние температуры. Для учета этой проблемы используется постоянный или перестраиваемый фильтр, однако это приводит к потерям в уровне сигнала, когда имеют место мгновенные изменения в длине волны. Кроме того, имеет место проблема снижения интенсивности передаваемых оптических сигналов.
Задачей изобретения является создание усилителя на легированном эрбием оптическом волокне и способа его функционирования для обеспечения автоматического отслеживания и фильтрации длин волн передаваемого оптического сигнала для настройки центральной длины волны оптического фильтра, установленного в его выходном каскаде, на длину волны передаваемого оптического сигнала, при этом усилитель снабжен микропроцессором.
Для достижения указанного результата усилитель на легированном эрбием оптическом волокне, снабженный оптическим фильтром на своем выходном выводе для подавления шумов, обусловленных характеристиками усилителя, обеспечивает автоматическое отслеживание и фильтрацию длин волн передаваемого оптического сигнала с использованием блока управления длиной волны для настройки центральной длины волны оптического сигнала в соответствии с длиной волны передаваемого оптического сигнала после определения длины волны передаваемого оптического сигнала.
На фиг. 1 показана блок-схема известного оптического усилителя с накачкой.
На фиг. 2 представлен график, иллюстрирующий подавление шумов в усилителе, использующем обычный оптический фильтр.
На фиг. 3 показана блок-схема усилителя на ЛЭОВ, который обеспечивает автоматическое отслеживание и фильтрацию длин волн передаваемого оптического сигнала, в соответствии с настоящим изобретением.
На фиг. 4 показан график, показывающий, каким образом в соответствии с изобретением изменяется интенсивность выходного оптического сигнала в соответствии с центральной длиной волны оптического фильтра, которая в свою очередь соответствует интенсивности передаваемого оптического сигнала.
На фиг. 5a и 5b показаны блок-схемы последовательностей операций, иллюстрирующие, каким образом в настоящем изобретении обеспечивается автоматическое отслеживание и фильтрация длин волн передаваемого оптического сигнала.
Со ссылками на чертежи настоящее изобретение будет описано ниже более детально.
Конструкция и способ функционирования таких элементов, как показанные на фиг. 3 элементы разветвления 202, 214, элементы оптической развязки 204 и 208, МРДВ 206, ЛЭОВ 210, оптический фильтр 212, фотодиоды 216 и 220 и лазерный диод накачки 218, те же самые, что и для описанного выше известного оптического усилителя, поэтому детальное описание этих элементов опущено. В настоящем изобретении микропроцессор 224 заменяет электронный блок управления 24 для реализации функций приема сигнала, используемого для контроля, и управления выходным сигналом лазерного диода накачки 18, предусмотренных в известном оптическом усилителе. Аналого-цифровые преобразователи (АЦП) 222 и 228 установлены между микропроцессором 224 и фотодиодами 216 и 220 и обеспечивают преобразование аналоговых сигналов в цифровые сигналы. Микропроцессор 224 получает результаты измерений интенсивностей передаваемого оптического сигнала, продетектированных фотодиодами 216 и 220, и управляет выходной мощностью лазера накачки. Микропроцессор 224 также измеряет длину волны передаваемого оптического сигнала и формирует управляющие сигналы для настройки центральной длины волны оптического фильтра 212 в соответствии с длиной волны передаваемого оптического сигнала. Оптический фильтр 212 установлен между выходным элементом оптической развязки 208 и элементом разветвления 214. Цифроаналоговый преобразователь (ЦАП) 226 установлен между оптическим фильтром 212 и микропроцессором 224 и предназначен для преобразования цифровых сигналов с микропроцессора 224 в аналоговые сигналы.
Как показано на фиг. 4, максимальное значение интенсивности света выдается на выход, когда центральная длина волны оптического фильтра настраивается на 1550 нм в соответствии с передаваемым оптическим сигналом. Если центральная длина волны фильтра увеличивается или уменьшается на 0,5 нм, то выходное значение уменьшается.
Фиг. 5a и 5b описаны более детально ниже со ссылками на фиг. 3. На этапе 502 микропроцессор 224 инициализирует систему. Микропроцессор 224 устанавливает значение уровня управления (Vhex) оптического фильтра 212, основываясь на длине волны передаваемого оптического сигнала (этап 504). Диапазон значений уровня управления (Vhex) обычно составляет от 1540 нм до 1560 нм. Микропроцессор 224 управляет центральной длиной волны оптического фильтра 212 путем установки значения уровня управления для каждого уровня, начиная от первого уровня (Vhex + 1) и запоминает значение интенсивности выходного уровня (этапы 506 и 508). Интенсивность выходного оптического сигнала измеряется выходным фотодиодом 216 и передается на микропроцессор 224. Микропроцессор 224 определяет, согласуется ли значение уровня, полученное на этапе 506, с последним значением уровня, которое было установлено ранее (этап 510). Если они не согласуются, то процедура обработки возвращается к этапу 506 для настройки центральной длины волны оптического фильтра 212 на следующее значение уровня и для измерения интенсивности выходного оптического сигнала. Если конкретное значение уровня и последнее значение согласуются (что устанавливается на этапе 510), микропроцессор 224 определяет, находится ли максимальное значение интенсивности выходного оптического сигнала в пределах уровней управления центральной длиной волны оптического фильтра (этап 512), причем тех уровней управления, которые уже были установлены. Если измеренное значение не является максимальным значением интенсивности выходного оптического сигнала, измеренным при ранее установленных уровнях управления, то процедура обработки возвращается к этапу 504 для повторной установки значения уровня управления оптическим фильтром 212 в соответствии с длиной волны передаваемого оптического сигнала. Если максимальное значение интенсивности выходного оптического сигнала находится в пределах ранее установленных уровней управления (этап 512), то микропроцессор 224 выполняет режим детального отслеживания для центральной длины волны оптического фильтра 212 (этап 514). В режиме детального отслеживания микропроцессор 224 настраивает центральную длину волны оптического фильтра 212 на значение уровня, при котором значение интенсивности формируемого выходного оптического сигнала меньше, чем максимальное ранее запомненное значение интенсивности выходного оптического сигнала, затем измеряется интенсивность выходного оптического сигнала (этап 516). Микропроцессор 224 увеличивает уровень управления для центральной длины волны оптического фильтра 212 на один шаг и измеряет интенсивность выходного оптического сигнала (этап 518). Микропроцессор 224 сравнивает интенсивность выходного оптического сигнала, продетектированную после увеличения центральной длины волны оптического фильтра 212 на один шаг, с интенсивностью выходного оптического сигнала перед увеличением длины волны оптического фильтра. Таким образом, интенсивность определяется, когда центральная длина волны настроена на значение уровня для этапа 512 (этап 520). Если интенсивность выходного оптического сигнала после увеличения уровня больше, чем интенсивность до увеличения значения уровня для длины волны фильтра на этапе 520, то процедура обработки возвращается к этапу 518, увеличивается уровень управления и измеряется интенсивность выходного оптического сигнала. Если интенсивность выходного оптического сигнала после увеличения уровня меньше, чем интенсивность до увеличения значения уровня, то микропроцессор снижает значение уровня управления центральной длины волны оптического фильтра 212 на один шаг и измеряет интенсивность выходного оптического сигнала (этап 522). Микропроцессор 224 определяет, является ли интенсивность выходного оптического сигнала, после снижения значения уровня на один шаг, меньшей, чем интенсивность до снижения значения уровня (этап 524). Если интенсивность выходного оптического сигнала до снижения значения уровня меньше, чем интенсивность после снижения значения уровня, то процедура обработки возвращается к этапу 524 для снижения значения уровня управления центральной длиной волны оптического фильтра 212 более чем на один шаг, и измеряется интенсивность выходного оптического сигнала. Если интенсивность выходного оптического сигнала до снижения значения уровня больше, чем интенсивность после снижения значения уровня, то микропроцессор 224 определяет, является ли значение, полученное путем вычитания текущей интенсивности выходного оптического сигнала из максимальной интенсивности выходного оптического сигнала, запомненной ранее, превышающим эффективный диапазон (обычно около 5 дБ) (этап 526). Если полученное значение превышает эффективный диапазон, то процедура обработки возвращается к этапу 504 для повторной установки значения уровня управления оптического фильтра 212 в соответствии с длиной волны передаваемого оптического сигнала и выполнения следующей процедуры. Если полученное значение меньше, чем эффективный диапазон, то центральная длина волны оптического фильтра 212 настраивается на текущий уровень. Затем процедура обработки переходит к этапу 518 для осуществления точного управления центральной длиной волны оптического фильтра 212 в соответствии с длинами волн последовательно передаваемого оптического сигнала.
Как описано выше, настоящее изобретение предусматривает устройство и способ для отслеживания центральной длины волны передаваемого оптического сигнала для обеспечения настройки центральной длины волны оптического фильтра, установленного в выходном выводе, на длину волны передаваемого оптического сигнала. Тем самым настоящее изобретение на основе использования микропроцессора, установленного в оптическом усилителе, обеспечивает повышение надежности оптических усилителей, осуществляющих усиление передаваемых оптических сигналов и селективное выделение передаваемых оптических сигналов требуемых длин волн.
Таким образом, следует иметь в виду, что настоящее изобретение не ограничено конкретным вариантом осуществления, раскрытым в качестве наилучшего варианта осуществления изобретения, и не ограничено конкретными вариантами, представленными в описании, а должно определяться в соответствии с тем, как оно охарактеризовано в формуле изобретения.

Claims (11)

1. Усилитель на легированном эрбием оптическом волокне, содержащий оптический фильтр на его выходном выводе для исключения шумов, обусловленных свойствами усилителя, отличающийся тем, что усилитель содержит блок управления длиной волны для настройки центральной длины волны оптического фильтра в соответствии с длиной волны передаваемого оптического сигнала после определения длины волны передаваемого оптического сигнала, обеспечивающий автоматическое отслеживание и фильтрацию длин волн передаваемого оптического сигнала.
2. Усилитель по п. 1, отличающийся тем, что содержит входной элемент разветвления для разделения передаваемого оптического сигнала в предварительно определенном соотношении для обеспечения контроля его интенсивности, входной фотодиод для приема сигнала, предназначенного для контроля оптического сигнала от входного элемента разветвления и передачи его на блок управления длиной волны, блок оптического усиления для усиления оптического сигнала, передаваемого от входного элемента разветвления, блок оптической фильтрации для приема передаваемого оптического сигнала, усиленного блоком оптического усиления, и подавления шумов, обусловленных характеристиками блока оптического усиления, выходной элемент разветвления для приема передаваемого оптического сигнала от блока оптической фильтрации и разделения его в предварительно определенном соотношении для контроля его интенсивности и выходной фотодиод для приема сигнала контроля оптического сигнала от выходного элемента разветвления и передачи сигнала контроля оптического сигнала на блок управления длиной волны.
3. Усилитель по п.1, отличающийся тем, что содержит входной аналого-цифровой преобразователь, включенный между входным фотодиодом и блоком управления длиной волны, предназначенный для преобразования аналогового сигнала, переданного входным фотодиодом, в цифровой сигнал.
4. Усилитель по п.2, отличающийся тем, что содержит входной аналого-цифровой преобразователь, включенный между входным фотодиодом и блоком управления длиной волны, предназначенный для преобразования аналогового сигнала, переданного входным фотодиодом, в цифровой сигнал.
5. Усилитель по п.1, отличающийся тем, что содержит выходной аналого-цифровой преобразователь, включенный между выходным фотодиодом и блоком управления длиной волны, предназначенный для преобразования аналогового сигнала, переданного выходным фотодиодом, в цифровой сигнал.
6. Усилитель по п.2, отличающийся тем, что содержит выходной аналого-цифровой преобразователь, включенный между выходным фотодиодом и блоком управления длиной волны, предназначенный для преобразования аналогового сигнала, переданного выходным фотодиодом, в цифровой сигнал.
7. Усилитель по п.1, отличающийся тем, что содержит цифроаналоговый преобразователь, включенный между блоком управления длиной волны и оптическим фильтром, для преобразования цифровых сигналов, переданных блоком управления длиной волны, в аналоговые сигналы.
8. Усилитель по п.2, отличающийся тем, что содержит цифроаналоговый преобразователь, включенный между блоком управления длиной волны и оптическим фильтром, для преобразования цифровых сигналов, переданных блоком управления длиной волны, в аналоговые сигналы.
9. Усилитель по п. 2, отличающийся тем, что блок оптического усиления содержит лазерный диод накачки для генерирования оптического сигнала возбуждения при управлении от блока управления длиной волны, мультиплексор разделения длин волн для приема оптического сигнала возбуждения от лазерного диода накачки и передаваемого оптического сигнала, введенных через два входных вывода, и передачи их через выходной вывод, легированное эрбием оптическое волокно для приема оптического сигнала возбуждения от лазерного диода накачки и усиления передаваемого оптического сигнала и оптические элементы развязки, установленные до и после мультиплексора разделения длин волн для прерывания отраженных сигналов.
10. Способ автоматического отслеживания и фильтрации длин волн передаваемого оптического сигнала, при котором осуществляют фильтрацию длин волн, отличающийся тем, что устанавливают значения уровня управления центральной длиной волны оптического фильтра в соответствии с длинами волн передаваемых оптических сигналов и измеряют и запоминают значения интенсивности оптического выходного сигнала после управления центральной длиной волны оптического фильтра в соответствии со значениями уровня управления и осуществляют автоматическое управление центральной длиной волны оптического фильтра для обеспечения согласования ее с длиной волны передаваемого оптического сигнала в режиме точного отслеживания.
11. Способ по п.10, отличающийся тем, что в режиме точного отслеживания осуществляют настройку центральной длины волны оптического фильтра на значение уровня управления ниже максимального уровня выходного оптического сигнала на предварительно определенную величину после считывания значения уровня управления, при котором интенсивность выходного оптического сигнала максимальна, путем управления центральной длиной волны оптического фильтра в соответствии с ранее запомненной центральной длиной волны передаваемого оптического сигнала, и детектируют максимальное значение выходного оптического сигнала при увеличении или уменьшении значения уровня управления и осуществляют автоматическую настройку центральной длины волны оптического фильтра согласно значению уровня управления, обеспечивающего формирование максимального выходного оптического сигнала.
RU97113525A 1996-08-01 1997-07-31 Усилитель на оптическом волокне, легированном эрбием, для автоматического отслеживания и фильтрации длины волны передаваемого оптического сигнала и реализованный в нем способ RU2146069C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019960032235A KR100210913B1 (ko) 1996-08-01 1996-08-01 전송광의 파장을 자동 추적하여 필터링하는 광섬유증폭기 및 그 운용방법
KR32235/1996 1996-08-01

Publications (2)

Publication Number Publication Date
RU97113525A RU97113525A (ru) 1999-06-10
RU2146069C1 true RU2146069C1 (ru) 2000-02-27

Family

ID=19468595

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97113525A RU2146069C1 (ru) 1996-08-01 1997-07-31 Усилитель на оптическом волокне, легированном эрбием, для автоматического отслеживания и фильтрации длины волны передаваемого оптического сигнала и реализованный в нем способ

Country Status (9)

Country Link
US (1) US6028697A (ru)
JP (1) JP3178661B2 (ru)
KR (1) KR100210913B1 (ru)
CN (1) CN1090414C (ru)
DE (1) DE19733365A1 (ru)
FR (1) FR2752067B1 (ru)
GB (1) GB2315939B (ru)
IN (1) IN191995B (ru)
RU (1) RU2146069C1 (ru)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11284263A (ja) * 1998-01-30 1999-10-15 Hitachi Cable Ltd 超広帯域波長分散補償デバイス,およびそれを用いた光通信システム
JP3468097B2 (ja) * 1998-03-17 2003-11-17 日立電線株式会社 超広帯域波長分散補償・増幅デバイス
US6275328B1 (en) * 1999-07-27 2001-08-14 Nortel Networks Limited Amplifier control
US20020159051A1 (en) * 2001-04-30 2002-10-31 Mingxian Guo Method for optical wavelength position searching and tracking
US20030113058A1 (en) * 2001-12-14 2003-06-19 Stayt John William Control system for dynamic gain equalization filter
US7574142B2 (en) * 2003-06-04 2009-08-11 Ericsson Ab Communications system
JP2004361818A (ja) * 2003-06-06 2004-12-24 Fujitsu Ltd 信号光送出部
TW200827798A (en) * 2006-12-20 2008-07-01 Inventec Multimedia & Telecom Switching device of light-beam channel of optical fiber network
CN101211087B (zh) * 2006-12-31 2011-08-10 华为技术有限公司 一种光纤放大器及制作方法及光纤通信系统
WO2009004720A1 (ja) * 2007-07-03 2009-01-08 Fujitsu Limited レベル低下検出装置、光増幅装置、およびレベル低下検出方法
KR101811383B1 (ko) * 2015-12-23 2017-12-22 금오공과대학교 산학협력단 어댑터
KR200492116Y1 (ko) 2019-05-02 2020-08-10 송성빈 이중칫솔

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4671604A (en) * 1985-02-06 1987-06-09 The United States Of America As Represented By The Secretary Of The Air Force Wavelength dependent, tunable, optical time delay system for electrical signals
JPH0681119B2 (ja) * 1986-04-17 1994-10-12 日本電気株式会社 波長多重光伝送方式
US5260823A (en) * 1990-05-21 1993-11-09 University Of Southampton Erbium-doped fibre amplifier with shaped spectral gain
JPH04264532A (ja) * 1991-02-20 1992-09-21 Fujitsu Ltd 光増幅器
GB2260046B (en) * 1991-09-26 1995-02-15 Northern Telecom Ltd Optical communications systems
JPH05224158A (ja) * 1992-02-14 1993-09-03 Matsushita Electric Ind Co Ltd 光フィルター及びその光フィルターを用いた光増幅装置
JPH05257186A (ja) * 1992-03-16 1993-10-08 Fujitsu Ltd 光増幅器
JP3256713B2 (ja) * 1992-06-27 2002-02-12 キヤノン株式会社 波長可変フィルタ制御方式、制御装置及びそれを用いた光通信システム
JP3396270B2 (ja) * 1993-08-10 2003-04-14 富士通株式会社 光分散補償方式
JP2715883B2 (ja) * 1993-12-28 1998-02-18 日本電気株式会社 光増幅装置
CA2139957C (en) * 1994-02-18 1999-02-09 Andrew R. Chraplyvy Multi-channel optical fiber communication system
JPH07240551A (ja) * 1994-03-02 1995-09-12 Fujitsu Ltd 光増幅伝送装置におけるサージ光発生防止方式
JPH088835A (ja) * 1994-06-21 1996-01-12 Fujitsu Ltd 光伝送方式
JP2723067B2 (ja) * 1995-03-14 1998-03-09 日本電気株式会社 光増幅装置
JPH08331048A (ja) * 1995-06-05 1996-12-13 Fujitsu Ltd 光信号受信装置
US5600467A (en) * 1995-06-14 1997-02-04 Mci Communications Corp. Method and apparatus for reducing harmonic interference on multiplexed optical communication lines
US5633743A (en) * 1995-11-07 1997-05-27 Lucent Technologies Inc. Optical communications system using tunable tandem Fabry-Perot etalon
KR100194421B1 (ko) * 1996-01-29 1999-06-15 윤종용 광섬유증폭기
JP3512050B2 (ja) * 1996-06-11 2004-03-29 住友電気工業株式会社 光フィルタおよび光伝送システム

Also Published As

Publication number Publication date
DE19733365A1 (de) 1998-02-12
CN1181647A (zh) 1998-05-13
IN191995B (ru) 2004-02-07
FR2752067A1 (fr) 1998-02-06
US6028697A (en) 2000-02-22
JPH1075002A (ja) 1998-03-17
KR100210913B1 (ko) 1999-07-15
FR2752067B1 (fr) 2001-12-07
JP3178661B2 (ja) 2001-06-25
GB9716218D0 (en) 1997-10-08
GB2315939A (en) 1998-02-11
CN1090414C (zh) 2002-09-04
KR19980013662A (ko) 1998-05-15
GB2315939B (en) 1998-10-14

Similar Documents

Publication Publication Date Title
US6535330B1 (en) Dynamic controller for a multi-channel optical amplifier
US5703711A (en) In-line optical amplifier
US6429966B1 (en) Multistage optical amplifier with Raman and EDFA stages
KR100416975B1 (ko) 광섬유 증폭기의 자동 이득 제어 장치
RU2146069C1 (ru) Усилитель на оптическом волокне, легированном эрбием, для автоматического отслеживания и фильтрации длины волны передаваемого оптического сигнала и реализованный в нем способ
RU2209517C2 (ru) Усилитель волоконно-оптической линии передачи для регулировки равномерности усиления
US6292291B1 (en) Optical fiber amplifier having constant output power for each channel and amplifying method thereof
RU2001114214A (ru) Усилитель волоконно-оптической линии передачи для регулировки равномерности усиления
US7612936B2 (en) Optical amplifying apparatus for wavelength division multiplexed signals
RU97113525A (ru) Усилитель на оптическом волокне, легированном эрбием, для автоматического отслеживания и фильтрации длины волны передаваемого оптического сигнала и реализованный в нем способ
US7400444B2 (en) Optical amplifier and control method for optical amplifier
JP2004095857A (ja) 光増幅器、光増幅器の利得制御方法、及び光増幅器の利得制御回路
US20050052731A1 (en) Optical amplifier control in wdm communications systems
US6553159B1 (en) Method and system for controlling the output of an optical pump energy source
JP2004193604A (ja) 自動パワー調節機能を有する光ファイバ増幅器及びその自動パワー調節方法
EP1137129A2 (en) Optical gain equalizer and optical gain equalizing method
EP0866573A2 (en) Optical transmission apparatus having automatic wavelength control function
US6907157B2 (en) Method and system for optical fiber transmission using raman amplification
US7197210B2 (en) Method and device for determining and compensating for the tilting of the spectrum in an optical fiber of a data transmission path
JP2003046169A (ja) 利得等化器
KR100291220B1 (ko) 광신호추출기
JPH09185092A (ja) 光ファイバ増幅器
JPH05268160A (ja) 光受信器
JP2000312047A (ja) 光増幅装置
JP2000312041A (ja) 光増幅装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20070801