RU2140016C1 - Компрессорная станция - Google Patents

Компрессорная станция Download PDF

Info

Publication number
RU2140016C1
RU2140016C1 RU98111225A RU98111225A RU2140016C1 RU 2140016 C1 RU2140016 C1 RU 2140016C1 RU 98111225 A RU98111225 A RU 98111225A RU 98111225 A RU98111225 A RU 98111225A RU 2140016 C1 RU2140016 C1 RU 2140016C1
Authority
RU
Russia
Prior art keywords
suction pipe
compressor station
cooling agent
gas
oil
Prior art date
Application number
RU98111225A
Other languages
English (en)
Inventor
А.В. Наумейко
С.М. Круподеров
В.И. Дейнеженко
Г.В. Шамрук
А.В. Ловцов
Original Assignee
Наумейко Анатолий Васильевич
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Наумейко Анатолий Васильевич filed Critical Наумейко Анатолий Васильевич
Priority to RU98111225A priority Critical patent/RU2140016C1/ru
Application granted granted Critical
Publication of RU2140016C1 publication Critical patent/RU2140016C1/ru

Links

Landscapes

  • Compressor (AREA)

Abstract

Станция может быть использована для повышения давления природного газа в ходе его транспортирования. Магистральный газопровод соединен всасывающим и нагнетательным трубопроводами с газоперекачивающим аппаратом компрессорной станции, включающей установку принудительного маслоснабжения. Маслоохладитель установки разделен теплопередающей поверхностью на пространства для охлаждающего агента и охлаждаемого масла. Всасывающий трубопровод магистрального газопровода соединяют с входным и выходным штуцерами пространства для охлаждающего агента маслоотделителя. Всасывающий трубопровод в месте соединения с маслоохладителем снабжают байпасной линией с запорным органом. Кроме того, соединение всасывающего трубопровода с штуцерами выполнено посредством отводов, между которыми устанавливают элемент, создающий местное гидравлическое сопротивление. Элемент выполняют в виде конфузора, а после конфузора устанавливают диффузор. Такое выполнение станции обеспечивает возможность исключения регенерации охлаждающего агента маслоохладителя за счет применения в качестве охлаждающего агента природного газа магистрального газопровода. 4 з.п. ф-лы, 1 ил.

Description

Изобретение относится к газовой промышленности, а именно к транспорту природного газа на значительные расстояния, и может быть использовано на компрессорных станциях, повышающих давление природного газа в ходе его транспортирования.
Известна компрессорная станция (см. "Общесоюзные нормы технологического проектирования. Магистральные трубопроводы ч. 1 Газопроводы. ОНТП 51-1-85 Мингазпром" М. 1985, стр. 42-43). Известная компрессорная станция содержит газоперекачивающий аппарат, систему принудительного маслоснабжения трущихся частей газоперекачивающих аппаратов и теплообменный аппарат охлаждения масла, в котором охлаждающим агентом является воздух.
Недостатком известной компрессорной станции является зависимость применяемых аппаратов воздушного охлаждения масла от климатических условий района размещения станции, требующая использования аппаратов с повышенным коэффициентом запаса для учета неблагоприятных условий работы в жаркое летнее время. Недостаточный отвод тепла от масла, подаваемого в газоперекачивающий аппарат, может привести к аварийной ситуации.
Наиболее близкой к заявляемой является компрессорная станция транспортного газопровода, включающая соединенный с газопроводом всасывающим и нагретательным трубопроводами газоперекачивающий аппарат и установку принудительного маслоснабжения, оснащенную маслоохладителем с разделенными теплопередающей поверхностью пространствами для охлаждаемого масла и охлаждающего агента, которым является вода, и снабженным входным и выходным штуцерами для подачи масла в межтрубное пространство. (см. "Эксплуатационнику магистральных газопроводов. Справочное пособие". М., изд. "Недра", 1987, стр. 100-106).
Недостатком известной компрессорной станции является необходимость размещения на территории станции дополнительных громоздких систем регенерации и охлаждения воды, применяемой в качестве охлаждающего агента, и проведение мероприятий по очистке теплопередающих поверхностей теплообменных аппаратов от отложений солей жесткости, снижающих коэффициент теплопередачи.
Технической задачей, решаемой заявляемым изобретением, является исключение регенерации охлаждающего агента маслоохладителя за счет применения в качестве охлаждающего агента природного газа магистрального газопровода.
Поставленная техническая задача решается за счет того, что известная компрессорная станция транспортного газопровода природного газа, включающая соединенный с газопроводом всасывающим и нагнетательным трубопроводами газоперекачивающий аппарат и установку принудительного маслоснабжения, имеющую маслоохладитель с разделенными теплопередающей поверхностью простанствами для охлаждающего агента и охлаждаемого масла, снабженными входными и выходными штуцерами, согласно изобретению всасывающий трубопровод соединен со входным и выходным штуцерами пространства для охлаждающего агента маслоохладителя. Причем всасывающий трубопровод в месте соединения с маслоохладителем снабжен байпасной линией с запорным органом, соединение всасывающего трубопровода со штуцерами маслоохладителя выполнено посредством отводов, между которыми на всасывающем трубопроводе установлен создающий местное гидравлическое сопротивление элемент, выполненный в виде конфузора, после которого на всасывающем трубопроводе установлен диффузор. При этом конфузор и диффузор соединены между собой имеющей отверстия горловиной, размещены внутри всасывающего трубопровода и соединены с его стенками по периметрам входа конфузора и выхода диффузора.
Использование природного газа, забираемого из всасывающего трубопровода и возвращаемого в тот же трубопровод с температурой, которая сохраняется в течение года в пределах 7-12oC, делает работу компрессорной станции независимой от климатических условий. Стабильность параметров охлаждающего агента позволяет рассчитать и применять маслоохладители без значительного запаса теплопередающей поверхности, что снижает габариты маслоохладительной системы и эксплуатационные расходы.
Для регулирования величины потока газа, проходящего через маслоохладитель, и величины гидравлического сопротивления на всасывающем трубопроводе в месте соединения с маслоохладителем устанавливается байпасная линия с запором.
Размещение внутри всасывающего трубопровода создающего гидравлическое сопротивление элемента в виде конфузора и соединенных с ним горловины с отверстиями и диффузора позволяет иметь минимальную потерю давления газового потока. Кроме того, увеличение скорости газа на выходе из конфузора определяет нарастание скоростного напора и падения статического напора, разность между статическим напором всасывающего трубопровода до гидравлического элемента сопротивления и после него и является движущей силой для формирования потока, направляемого в маслоохладитель.
Установка элемента, создающего местное гидравлическое сопротивление внутри всасывающего трубопровода с оснащением горловины отверстиями, позволяет выполнить его из тонколистового металла.
На чертеже изображена схема компрессорной станции транспортного газопровода с маслоохладителем.
Заявляемая компрессорная станция содержит газоперекачивающий аппарат 1, соединенный с транспортным магистральным газопроводом 2 посредством всасывающего трубопровода 3 (данная связь не обозначена) и нагнетающего трубопровода 4. Всасывающий трубопровод 3 снабжен создающим местное гидравлическое сопротивление элементом 5, выполненным в виде конфузора. После элемента 5 внутри всасывающего трубопровода установлен диффузор 6, соединенный с конфузором посредством горловины 7, имеющей на поверхности отверстия 8. Маслоохладитель 9 имеет трубное пространство 10 для охлаждающего газа и межтрубное пространство 11 для охлаждаемого масла. Трубное пространство 10 снабжено входным штуцером 12 и выходным штуцером 13. Межтрубное пространство 11 снабжено входным штуцером 14 и выходным штуцером 15. Всасывающий трубопровод 3 соединен со входным штуцером 12 трубного пространства 10 до места установки элемента 5 посредством отвода 16 и с выходным штуцером 13 пространства 10 после места установки элемента 5 посредством отвода 17.
Компрессорная станция работает следующим образом. Транспортируемый природный газ для повышения давления поступает из транспортного магистрального газопровода 2 по всасывающему трубопроводу 3 к газоперекачивающему аппарату 1, трущиеся поверхности которого требуют принудительной подачи масла, нагревающегося в ходе его работы. Установка внутри всасывающего трубопровода 3 элемента 5, создающего местное гидравлическое сопротивление, приводит к перепаду давления и к отбору части газа из всасывающего трубопровода 3 и его прохождение через отвод 16 и входной штуцер 12 в трубное пространство 10 маслоохладителя 9, выходной штуцер 13 и отвод 17, отверстия 8 горловины 7 и диффузор 6 во всасывающий трубопровод 3 и газоперекачиваюший аппарат 1. После компремирования газ вновь направляется по нагнетательному трубопроводу 4 в магистральный газопровод 2. Горячее масло после газоперекачивающего аппарата 1 поступает через входной штуцер 14 в межтрубное пространство 11 маслоохладителя 9, а охлажденное вновь подается в газоперекачивающий аппарат 1 через выходной штуцер 15.
Использование заявляемого технического решения обеспечивает следующие технико-экономические преимущества:
- снижение габаритов системы маслоохлаждения;
- исключение операций и оборудования для регенерации охлаждающего агента:
- стабильность работы станции в любых климатических условиях;
- охрану водных ресурсов и улучшение экологической обстановки станции;
- снижение эксплуатационных расходов;
- упрощение системы автоматического управления.

Claims (5)

1. Компрессорная станция транспортного газопровода природного газа, включающая соединенный с газопроводом всасывающим и нагнетательным трубопроводами газоперекачивающий аппарат и установку принудительного маслоснабжения, имеющую маслоохладитель с разделенными теплопередающей поверхностью пространствами для охлаждающего агента и охлаждающего масла, снабженными входными и выходными штуцерами, отличающаяся тем, что всасывающий трубопровод соединен с входным и выходным штуцерами пространства для охлаждающего агента маслоохладителя.
2. Компрессорная станция по п.1, отличающаяся тем, что всасывающий трубопровод в месте соединения с маслоохладителем снабжен байпасной линией с запорным органом.
3. Компрессорная станция по п.1, отличающаяся тем, что соединение всасывающего трубопровода с штуцерами маслоохладителя выполнено посредством отводов, между которыми на всасывающем трубопроводе установлен создающий местное гидравлическое сопротивление элемент.
4. Компрессорная станция по пп.1 и 3, отличающаяся тем, что создающий местное гидравлическое сопротивление элемент выполнен в виде конфузора.
5. Компрессорная станция по пп.1, 3 и 4, отличающаяся тем, что после конфузора на всасывающем трубопроводе установлен диффузор.
RU98111225A 1998-06-10 1998-06-10 Компрессорная станция RU2140016C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU98111225A RU2140016C1 (ru) 1998-06-10 1998-06-10 Компрессорная станция

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU98111225A RU2140016C1 (ru) 1998-06-10 1998-06-10 Компрессорная станция

Publications (1)

Publication Number Publication Date
RU2140016C1 true RU2140016C1 (ru) 1999-10-20

Family

ID=20207175

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98111225A RU2140016C1 (ru) 1998-06-10 1998-06-10 Компрессорная станция

Country Status (1)

Country Link
RU (1) RU2140016C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2600212C1 (ru) * 2015-05-05 2016-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Ступень поршневой гибридной машины

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Эксплуатационнику магистральных газопроводов. Справочное пособие. - М.: недра, 1987, с.100-106. 2. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2600212C1 (ru) * 2015-05-05 2016-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Ступень поршневой гибридной машины

Similar Documents

Publication Publication Date Title
US20040108096A1 (en) Geothermal loopless exchanger
JP4263997B2 (ja) 受動逆流熱エネルギー・システム
FR2831253B1 (fr) Echangeur de chaleur de gaz d'echappement
US5950575A (en) Hydronic manifold
US4666531A (en) Device and method for cleaning fin-type heat exchangers in air ducts
RU2140016C1 (ru) Компрессорная станция
WO2004070279A2 (en) A re-circulating hot water system adapted for supply and space heating applications
US20120298226A1 (en) Modular Heating and/or Cooling System with a Vertical Manifold and Method of Making Same
KR101129917B1 (ko) 열교환기 자동세정장치
CN206472759U (zh) 一种原奶冷排系统
US5329783A (en) Air conditioning apparatus
US2255956A (en) Dual service heating system
WO2011117712A2 (en) Conditioning apparatus
CN214792131U (zh) 一种用于制冷系统排气显热回收的热水换热装置
CN108930670A (zh) 一种热水泵的轴承自冷却结构
CN217520128U (zh) 一种新型冷却系统
FR3080444B1 (fr) Echangeur thermique comprenant des tubulures de raccordement pour l'alimentation et l'evacuation d'un fluide caloporteur
SU1562651A2 (ru) Теплоутилизатор
CN207797839U (zh) 一种换热系统
US1781358A (en) Installation for supplying and circulating heated
RU17722U1 (ru) Автоматизированный тепловой пункт
CN108827034B (zh) 一种城市原生污水旁通渠换热系统
JPS57175896A (en) Heat transmission pipe
FR2451006A1 (fr) Procede de recuperation de chaleur et dispositif pour la mise en oeuvre du procede
CN113153408A (zh) 一种利用矿井水对矿井工作面降温的方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150611