RU2134408C1 - Преобразователь давления - Google Patents

Преобразователь давления Download PDF

Info

Publication number
RU2134408C1
RU2134408C1 RU98112034A RU98112034A RU2134408C1 RU 2134408 C1 RU2134408 C1 RU 2134408C1 RU 98112034 A RU98112034 A RU 98112034A RU 98112034 A RU98112034 A RU 98112034A RU 2134408 C1 RU2134408 C1 RU 2134408C1
Authority
RU
Russia
Prior art keywords
layer
polymer
pressure
pfe
pressure transducer
Prior art date
Application number
RU98112034A
Other languages
English (en)
Other versions
RU98112034A (ru
Inventor
Г.Д. Тимофеев
М.Р. Меркин
Ю.А. Трухин
П.В. Востоков
Original Assignee
Акционерное общество закрытого типа "ТИМОС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество закрытого типа "ТИМОС" filed Critical Акционерное общество закрытого типа "ТИМОС"
Priority to RU98112034A priority Critical patent/RU2134408C1/ru
Application granted granted Critical
Publication of RU2134408C1 publication Critical patent/RU2134408C1/ru
Publication of RU98112034A publication Critical patent/RU98112034A/ru

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

Изобретение относится к измерительной технике и может быть использовано при измерении давления агрессивных жидких и газообразных сред. Сущность изобретения: в полупроводниковом тензорезисторном преобразователе давления разделительная мембрана выполнена из двух слоев полимера перфторированного жидкого ПФЭ, причем второй слой полимера ПФЭ нанесен на первый слой после его полимеризации. Такое техническое решение позволяет повысить стабильность и надежность в работе преобразователя давления при работе в агрессивных жидких и газообразных средах, содержащих абразивные примеси, в широком диапазоне давлений, воздействующих на чувствительный элемент, за счет создания более стойкой разделительной мембраны. 1 ил.

Description

Изобретение относится к измерительной технике и может быть использовано при измерении давления агрессивных жидких и газообразных сред.
Из известных датчиков давления, применяемых для измерения давления и агрессивных жидких и газообразных средах, наиболее широко используются конструкции датчиков давления как правило выполненных по единой классической схеме. Эта схема основана на преобразовании изменения сопротивления тензорезисторов чувствительного элемента в аналоговый выходной пропорциональный электрический сигнал. Изменение сопротивления тензорезисторов вызвано прогибом упругой кремниевой мембраны из монокристаллического кремния под воздействием приложенного давления.
К одной из таких известных конструкций относится "Датчик давления" (см. описание изобретения к авт.св. N 1760411, кл. G 01 L 9/04, опубл. в 1992 г. ), содержащий металлическую мембрану, закрепленную между корпусом и опорным кольцом, штуцер с элементами натяжения защитной металлической мембраны, измерительный модуль, полупроводниковую мембрану и тензорезисторами, элементы балансировки и термокомпенсации, разъем. С внутренней стороны металлической мембраны нанесен слой полиорганического силоксана, который покрывает торец измерительного модуля и полупроводниковой мембраны.
Известная конструкция датчика давления обладает рядом недостатков, к которым относится:
- замкнутый объем полиорганического силоксана между двумя мембранами и корпусом датчика, который вызывает резкое увеличение дополнительной погрешности датчика за счет изменения объема силоксана в диапазоне рабочих температур;
- технологический разброс толщины наносимого слоя силоксана между мембранами в различных образцах датчиков, вызывающий в свою очередь существенные колебания значений дополнительной погрешности в соответствующих образцах датчиков, что весьма затрудняет достижение требуемых значений дополнительной погрешности датчиков в условиях серийного производства.
Известно также семейство МРХ5000 датчиков давления фирмы "МОТОРОЛА" (см. журнал Chip NEWS. Новости о микросхемах. N 11-12, 1997 г., с. 32 - 35.). Эти датчики давления созданы на основе монолитного кремниевого пьезорезистора, генерирующего выходное напряжение, меняющееся в зависимости от прилагаемого давления. Поверхность кристалла изолируется слоем кремниевого геля, образующего разделительную защитную мембрану.
Однако, в силу своих свойств, кремниевый гель обладает высокой адгезией, в результате его на его поверхность оседают и прочно удерживаются пыль и всевозможные абразивные микрочастицы, встречающиеся в жидких и газообразных средах. Такое наращивание на слое геля нежелательных элементов приводит к изменению и разбросу параметров датчика давления.
Для устранения этого недостатка в известных датчиках МРХ5000 была применена металлическая разделительная мембрана с отверстием в центре.
Такая двухуровневая защита позволяет несколько ослабить воздействие внешней среды, но не обеспечивает надежную работу датчиков давления в широком спектре рабочих сред, так как основным условием надежной работы датчиков давления этого семейства является использование в качестве передающей давление среды сухого воздуха. Другие среды могут оказать неблагоприятное воздействие на характеристики датчика и его долговременную стабильность.
Из известных конструкций датчиков давления в качестве прототипа выбран "Преобразователь давления" по патенту РФ N 2097721, кл. G 01 L 9/04, опубл. в 1997 г.
Известный "Преобразователь давления" содержит, расположение в корпусе, чувствительный элемент, представляющий собой кремниевый кристалл, на поверхности которого сформированы полупроводниковые тензорезисторы, соединенные в измерительный мост. На другой стороне кристалла, обращенной к стеклянной (развязывающей) шайбе, на которой установлен чувствительный элемент, сформирована упругая (кремниевая) мембрана. Стеклянная (развязывающая) шайба закреплена на втулке, а чувствительный элемент (электрически) соединен с контактной платой. Причем на чувствительном элементе со стороны тензорезисторов сформирована разделительная мембрана, выполненная в виде двойной полимерной эластичной пленки, состоящей из слоя силиконового геля и слоя поли-параксилилена, нанесенного непосредственно на гель.
К недостаткам известного преобразователя давления следует отнести то, что в результате воздействия абразивных микрочастиц, имеющихся практически во всех реальных жидких и газообразных средах, пробивается слой поли-параксилилена, в результате чего в нем образуются микропробоины, приводящие к нарушению защитных свойств пленки из поли-параксилилена. Нарушение защитных свойств пленки поли-параксилилена приводит к тому, что гель начинает непосредственно контактировать через микродефекты поли-праксилилена с рабочей средой, в которой может содержаться ряд агрессивных примесей, вызывающих набухание геля. Такая реакция в слое геля нарушает его структуру, что в свою очередь приводит к изменению параметров чувствительного элемента и, как следствие, самого преобразователя давления.
Задача предлагаемого технического решения направлена на повышение стабильности и надежности работы преобразователя давления при работе в агрессивных жидких и газообразных средах, содержащих абразивные примеси, в широком диапазоне давлений, воздействующих на чувствительный элемент, за счет создания более стойкой разделительной мембраны.
Поставленная задача достигается тем, что в преобразователе давления, содержащем расположенные в корпусе чувствительный элемент, представляющий собой кремниевый кристалл, на поверхности которого сформированы полупроводниковые тензорезисторы, соединенные в измерительный мост, на обратной стороне кристалла, обращенной к развязывающей шайбе, на которой установлен чувствительный элемент, сформирована методом анизотропного травления упругая кремниевая мембрана, при этом развязывающая шайба закреплена на элементах корпуса, а над чувствительным элементом, электрически соединенном с контактной платой, сформирована разделительная мембрана, выполненная из двух слоев полимера перфторированного жидкого ПФЭ, причем второй слой полимера ПФЭ нанесен на первый слой после его полимеризации.
Новым является использование разделительной мембраны, выполненной из двух слоев полимера перфторированного жидкого ПФЭ, второй слой которого нанесен на первый слой после его полимеризации.
Полимер перфторированный жидкий ПФЭ (ТУ 2412-001-39495549-98) представляет собой прозрачную бесцветную тяжелую маслянистую жидкость, нерастворимую в обычных растворителях. Отвержденный полимер ПФЭ работоспособен в интервале температуре от -55o до 200oC, а также в контакте с растворами кислот, щелочей, морской водой, сточными водами, водяным паром, топливом и маслами.
Таким образом, после полимеризации полимер ПФЭ превращается в эластичную коррозионно- и абразивностойкую пленку с практически постоянными свойствами в диапазоне рабочих температур и в течении всего срока службы, т.е. практически является универсальным защитным средством.
В настоящее время современная промышленность решает вопрос об измерении давления самых различных агрессивных сред, таких как сточные воды, химическое производство, морская вода, кислото- или щелочесодержащие среды, или маслобензосреды.
Однако на сегодняшний день для решения данной задачи промышленностью проектируются и выпускаются датчики давления под каждую конкретную измеряемую среду, обеспечивающие коррозионную стойкость для каждого отдельного применения.
Применение полимера ПФЭ в качестве разделительной мембраны позволяет данную конструкцию преобразователя давления использовать в самых различных средах.
Уникальность применения полимера ПФЭ заключается в том, что он позволили решить сразу три проблемы в тонком слое:
- обеспечивает возможность создания универсального преобразователя давления, который может работать практически во всех агрессивных рабочих средах, содержащих абразивные примеси;
- практически исключить элементы пластической деформации;
- обеспечить вакуумплотность слоя при длительном воздействии давления газа от 0 до 100 атм и выше.
Применение одного слоя полимера ПФЭ решает практически все проблемы, кроме вакуумплотности первого слоя.
Хотя для отмывки и очистки элементов конструкции используются современные эффективные средства, однако они не могут обеспечить идеальной отмывки элементов в конструкции и на них всегда будут присутствовать микрочастицы различных загрязнений.
При нанесении первого слоя ПФЭ не успевает прореагировать отвердитель. Он вступает в реакцию с указанными микрочастицами с образованием газовых выделений, которые внедряются в слой полимера ПФЭ и образуют в нем микропористую структуру.
При длительном воздействии давления газа на указанный первый слой, происходит проникновение рабочей среды в микропоры первого слоя, что при снятии давления вызывает образование воздушных пузырей, искажающих работу преобразователя давления.
Вакуумплотность разделительной мембраны достигается нанесением на первый полимеризованный слой ПФЭ второго слоя, причем нанесение второго слоя осуществляется после специальной отмывки и вакуумной сушки первого слоя. Таким образом исключается контакт отвердителя второго слоя с микрозагрязнениями. После полимеризации второго слоя обеспечивается вакуумплотность разделительной мембраны, так как в процессе полимеризации второго слоя исключена возможность появления микропористой структуры. Причем между слоями обеспечивается хорошая адгезия.
Таким образом, предложенный вариант формирования разделительной мембраны с использованием двухслойного полимера перфторированного жидкого ПФЭ (впервые разработанного в Россию около 5-ти лет назад и запатентованного совместно с фирмой Дюпон де Немур) позволил решить все три указанных проблемы в тонком слое разделительной мембраны, а именно:
- универсальность применения;
- практическое отсутствие элементов пластической деформации;
- и вакуумплотность разделительной мембраны.
Изобретение поясняется чертежом.
Преобразователь давления содержит корпус 1, чувствительный элемент 2, развязывающую шайбу 3, контактную плату 4, разделительную мембрану, выполненную из двух слоев 5 и 6 полимера перфторированного жидкого ПФЭ (ТУ 2412 - 001 - 39495549 - 98).
Чувствительный элемент 2 представляет собой кремниевый кристалл, на поверхности которого сформированы полупроводниковые тензорезисторы, соединенные в измерительный мост Уитстона. На обратной стороне кристалла, обращенной к развязывающей шайбе 3, сформирована методом анизотропного травления упругая кремниевая мембрана. Чувствительный элемент 2 установлен на развязывающей шайбе 3, закрепленной на элементах корпуса 1, и электрически соединен с контактной платой 4. Над чувствительным элементом 2 сформирована разделительная мембрана, состоящая из двух слоев 5 и 6 полимера ПФЭ.
Слой полимера перфторированного жидкого ПФЭ наносится на поверхность контактной платы 4 с чувствительным элементом 2, обеспечивая покрытие всей поверхности контактной платы 4 с последующей его полимеризацией при определенной последовательности температурных режимов.
Для устранения элементов пластической деформации полимера проведена исследовательская работа по подбору количественного соотношения между полимером, отвердителем и ингибитором. При этом применена вакуумная технология перемешивания компонентов.
После полимеризации первого слоя 5, его тщательной отмывки и вакуумной сушки наносится второй слой 6 полимера ПФЭ.
Преобразователь давления работает следующим образом.
Измеряемое избыточное относительное давление Pизм, в том числе абразивосодержащих агрессивных жидких или газообразных сред, подается на преобразователь давления со стороны разделительной мембраны, образованной двумя слоями 5 и 6 полимера ПФЭ и через оба этих слоя давление Pизм передается практически без искажений и потерь на упругую кремниевую мембрану чувствительного элемента 2, вызывая прогиб кремниевой мембраны и, как следствие, изменение сопротивления тензорезисторов, которое преобразовывается в аналоговый электрических сигнал, пропорциональный приложенному давления Pизм, а относительное атмосферное давление Pатм при этом подается через отверстие в корпусе 1 на чувствительный элемент 2 снизу со стороны упругой кремниевой мембраны.
Таким образом, предлагаемый преобразователь давления обладает стабильностью и надежностью при работе в различных агрессивных средах, в том числе содержащих абразивные примеси, в широком диапазоне давлений, воздействующих на чувствительный элемент, за счет создания принципиально новой разделительной мембраны.

Claims (1)

  1. Преобразователь давления, содержащий расположенные в корпусе чувствительный элемент, представляющий собой кремниевый кристалл, на поверхности которого сформированы полупроводниковые тензорезисторы, соединенные в измерительный мост, на обратной стороне кристалла, обращенной к развязывающей шайбе, на которой установлен чувствительный элемент, сформирована методом анизотропного травления упругая кремниевая мембрана, при этом развязывающая шайба закреплена на элементах корпуса, а над чувствительным элементом, электрически соединенным с контактной платой, сформирована разделительная мембрана, отличающийся тем, что разделительная мембрана выполнена из двух слоев полимера перфторированного жидкого ПФЭ, причем второй слой полимера ПФЭ нанесен на первый слой после его полимеризации.
RU98112034A 1998-06-25 1998-06-25 Преобразователь давления RU2134408C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU98112034A RU2134408C1 (ru) 1998-06-25 1998-06-25 Преобразователь давления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU98112034A RU2134408C1 (ru) 1998-06-25 1998-06-25 Преобразователь давления

Publications (2)

Publication Number Publication Date
RU2134408C1 true RU2134408C1 (ru) 1999-08-10
RU98112034A RU98112034A (ru) 1999-08-20

Family

ID=20207624

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98112034A RU2134408C1 (ru) 1998-06-25 1998-06-25 Преобразователь давления

Country Status (1)

Country Link
RU (1) RU2134408C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU197682U1 (ru) * 2019-12-27 2020-05-21 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Полупроводниковый датчик давления
RU2745007C2 (ru) * 2020-03-16 2021-03-18 Общество С Ограниченной Ответственностью "Оптосенс" Мембранный датчик давления

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Chip NEWS". Новости о микросхемах. - 1997, N 11-12, с.32-35. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU197682U1 (ru) * 2019-12-27 2020-05-21 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Полупроводниковый датчик давления
RU2745007C2 (ru) * 2020-03-16 2021-03-18 Общество С Ограниченной Ответственностью "Оптосенс" Мембранный датчик давления

Similar Documents

Publication Publication Date Title
US7456638B2 (en) MEMS based conductivity-temperature-depth sensor for harsh oceanic environment
KR100402875B1 (ko) 매개체에적합한마이크로센서구조물및이의제조방법
Hong et al. Measuring stiffnesses and residual stresses of silicon nitride thin films
US7856885B1 (en) Reinforced piezoresistive pressure sensor
US7963154B2 (en) Sensor unit for the measurment of a variable in a medium
CZ20011930A3 (cs) Tlakový snímač
US6935181B2 (en) Anticorrosive vacuum sensor
RU2134408C1 (ru) Преобразователь давления
CN113720505B (zh) 一种基于弹光效应的压力探测装置
Eriksen et al. Protective coatings in harsh environments
JPH0772029A (ja) 圧力センサ
CN108955995B (zh) 基于金刚石薄膜的快速响应的海水压力传感器及制备方法
CN116793210B (zh) 一种纳米复合薄膜、应变传感器及其应用
Sager et al. A humidity sensor of a new type
RU2293955C1 (ru) Тензопреобразователь давления
RU2100789C1 (ru) Полупроводниковый преобразователь гидростатического давления для коррозионно-активных жидких сред
JPS6239368B2 (ru)
RU2034254C1 (ru) Полупроводниковый преобразователь давления
JPH08193899A (ja) 半導体圧力センサ
RU2745007C2 (ru) Мембранный датчик давления
JPH06323884A (ja) 流量センサー
JPH1151719A (ja) 流量センサー
RU2097721C1 (ru) Преобразователь давления
SU1615579A1 (ru) Датчик давлени
SU1571447A1 (ru) Датчик давлени