RU2134329C1 - Устройство для определения местоположения копающего приспособления (варианты) и способ определения местоположения рабочей машины на рабочей площадке (варианты) - Google Patents

Устройство для определения местоположения копающего приспособления (варианты) и способ определения местоположения рабочей машины на рабочей площадке (варианты) Download PDF

Info

Publication number
RU2134329C1
RU2134329C1 RU96102596A RU96102596A RU2134329C1 RU 2134329 C1 RU2134329 C1 RU 2134329C1 RU 96102596 A RU96102596 A RU 96102596A RU 96102596 A RU96102596 A RU 96102596A RU 2134329 C1 RU2134329 C1 RU 2134329C1
Authority
RU
Russia
Prior art keywords
location
determining
housing
receiving device
rotation
Prior art date
Application number
RU96102596A
Other languages
English (en)
Other versions
RU96102596A (ru
Inventor
Дж.Гудат Адам
И.Хендерсон Дэниэль
С.Сэм Вильям
Original Assignee
Катерпиллар, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Катерпиллар, Инк. filed Critical Катерпиллар, Инк.
Publication of RU96102596A publication Critical patent/RU96102596A/ru
Application granted granted Critical
Publication of RU2134329C1 publication Critical patent/RU2134329C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2045Guiding machines along a predetermined path
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

Изобретение относится к управлению рабочими машинами, используемыми для земляных работ, в частности экскаваторами. Технической задачей изобретения является определение положения рабочей машины и копающего приспособления и получения информации о крене относительно положения координат Х у экскаватора в пределах рабочей площадки. Для этого устройство включает ходовую часть, корпус поворотной платформы, присоединенный с возможностью вращения к ходовой части, приемное устройство, присоединенное к корпусу поворотной платформы, систему местоопределения для определения местоположения приемного устройства в трехмерном пространстве. Причем система местоопределения определяет местоположение приемного устройства на множестве точек по дуге. Устройство содержит также процессор для определения местоположения и ориентации корпуса поворотной платформы на базе местоположения множества точек. 5 с. и 13 з.п. ф-лы, 13 ил.

Description

Изобретение относится в целом к управлению рабочими машинами и в частности к способу и устройству для определения местоположения и ориентации рабочей машины на основании внешнего опорного сигнала.
Предшествующий технический уровень
Рабочие машины, такие как экскаваторы, экскаваторы с обратной лопатой, фронтальные одноковшовые экскаваторы и т.п., используются для земляных работ. Эти землеройные машины имеют рабочие органы, которые состоят их механизмов стрелы, рукояти и ковша. Стрела прикреплена с возможностью поворота к землеройной машине с одного конца, а другой ее конец шарнирно прикреплен к рукояти. Ковш шарнирно прикреплен к свободному концу рукояти. Каждый из механизмов рабочих органов приводится в действие управляемым образом с помощью по меньшей мере одного гидравлического цилиндра для смещения в вертикальной плоскости. Как правило, оператор манипулирует рабочим органом для выполнения последовательности определенных функций, которые образуют полный рабочий цикл экскавации или выемки грунта.
В силу ряда причин в области производства землеройных работ существует все возрастающее стремление автоматизировать рабочий цикл землеройных машин. В отличие от оператора автоматизированная землеройная машина сохраняет постоянную производительность вне зависимости от окружающих условий и продолжительности рабочего времени. Автоматизированная землеройная машина идеально подходит для тех случаев применения, когда условия опасны, не пригодны или не желательны для людей. Автоматизированная машина также обеспечивает возможность выполнения более точной выемки грунта при каком-либо недостатке квалификации оператора.
Было приложено много усилий для разработки алгоритмов автоматической выемки грунта. В этих разработках отрывка грунта и, следовательно, положение ковша описывается относительно корпуса подвижной платформы экскаватора. Пока корпус подвижной платформы расположен горизонтально относительно земли (при отсутствии наклона или отклонения), могут быть выполнения вычисления для определения местоположения ковша при условии, что известно местоположение корпуса подвижной платформы. Когда ориентация экскаватора меняется, добавляют дополнительные датчики для определения отклонения относительно поперечной оси и крена, подлежащих компенсации. Часто для определения наклона корпуса платформы используется лазерная система, а для определения ориентации используется множество датчиков на корпусе подвижной платформы. Тем не менее отсутствует какая-либо доступная информация относительно положения координат x, y экскаватора в пределах рабочей площадки.
Настоящее изобретение направлено на решение одной или более из вышеуказанных проблем.
Описание изобретения
Раскрываемое изобретение обеспечивает определение положения координат x, y, z и информацию о крене относительно продольной оси и отклонении относительно поперечной оси для рабочей машины от одного датчика.
С одной стороны, в соответствии с изобретением разработано устройство для определения местоположения копающего рабочего органа на рабочей площадке. Устройство включает ходовую часть, корпус поворотной платформы, прикрепленный к ходовой части с возможностью поворота, приемное устройство, присоединенное к корпусу поворотной платформы, систему местоопределения для определения положения приемного устройства в трехмерном пространстве, систему местоопределения, определяющую местоположение приемного устройства на множестве точек вдоль дуги, и процессор для определения положения и ориентации корпуса поворотной платформы на основании положения множества точек.
С другой стороны в соответствии с изобретением разработан способ определения положения рабочей машины на рабочей площадке, причем рабочая машина включает ходовую часть и корпус поворотной платформы, присоединенный к ходовой части с возможностью поворота. Способ включает операции поворота корпуса платформы, приема сигналов от внешнего источника опорного сигнала, определения положения приемного устройства в трехмерном пространстве по мере вращения корпуса поворотной платформы, тем самым положение приемного устройства определяется на множестве точек, и определения положения и ориентации корпуса поворотной платформы на основе местоположения множества точек.
Изобретение также содержит другие признаки и преимущества, которые станут очевидными при более детальном изучении графических материалов и описания.
Краткое описание графических материалов
Для лучшего понимания изобретения может быть сделана ссылка на сопровождающие графические материалы, в которых:
фиг. 1 представляет собой схематическое изображение гидравлического экскаватора, функционирующего на рабочей площадке;
фиг. 2 представляет собой схематическое изображение гидравлического экскаватора, функционирующего на рабочей площадке;
фиг. 3 представляет собой схематическое изображение гидравлического экскаватора, при виде сверху;
фиг. 4 представляет собой блок-схему системы управления машиной;
фиг. 5 представляет собой блок-схему, описывающую взаимосвязанную систему;
фиг. 6 представляет собой блок-схему, описывающую взаимосвязанную систему;
фиг. 7 представляет собой блок-схему, описывающую взаимосвязанную систему;
фиг. 8 показывает геометрию, на которой базируются части системы; и
фиг. 9a-9e показывает блок-схему алгоритма, используемого в варианте исполнения изобретения.
Наилучший способ реализации изобретения
Рабочая машина показана на фиг. 1, 2 и 3 и может включать экскаватор, механическую лопату (одноковшовый экскаватор) или т.п. Рабочая машина 102 включает поворотный корпус 104 платформы, присоединенный к ходовой части 106. Рабочая машина 102 также может включать стрелу 110, рукоять 115 и ковш 120. Стрела 110 шарнирно смонтирована на землеройной машине 105 с помощью шарнирного пальца стрелы. Рукоять 115 шарнирно присоединена к свободному концу стрелы 110 с помощью шарнирного пальца рукояти. Ковш 120 шарнирно присоединен к рукояти 115 с помощью шарнирного пальца ковша.
Как показано на фиг. 2 и 3, приемное устройство 125 присоединено к корпусу 104 поворотной платформы. Рационально, если приемное устройство смещено от оси поворота корпуса 104 поворотной платформы и вращается относительно нее, по мере того, как корпус 104 поворачивается относительно ходовой части 106. В предпочтительном варианте исполнения приемное устройство 125 представляет собой часть известной трехмерной системы местоопределения с внешним источником опорного сигнала, например (но не только), трехмерной лазерной системы, глобальной (спутниковой) системы местоопределения (GPS), комбинаций глобальной системы местоопределения и лазерной системы, радиотриангуляции, коротковолновой или радиолокационной системы. Несмотря на то, что приемное устройство 125 показано установленным в задней части корпуса 104 напротив места присоединения рабочего органа, должно быть очевидным, что аналогичным образом возможны и другие места его размещения, например, на верхней поверхности кабины оператора.
На фиг. 4 показана блок-схема электрогидравлической системы 200, связанной с рабочей машиной 102. Устройство 205 генерирует позиционные сигналы в ответ на положение рабочего навесного оборудования 100. Устройство 205 включает датчики 210, 215, 220 смещения, которые отслеживают величину выдвижения цилиндра соответственно в гидравлических цилиндрах стрелы, рукояти и ковша. Может быть использован датчик на базе радиочастот, описанный в патенте США N 4737705, выданном на имя Bitar и др. 12 апреля 1998 г.
Положение ковша также можно получить из угловых измерений шарнира рабочего навесного орудия. Альтернативное устройство для получения сигнала о положении рабочего орудия включают датчики угла поворота, например, такие как вращающиеся потенциометры, которые измеряют углы между стрелой 110, рукоятью 115 и ковшом 120. Положение рабочего органа может быть рассчитано или исходя из измерений выдвижения гидравлических цилиндров, или исходя из измерений углов в шарнирах с помощью тригонометрических методов. Такие способы определения положения ковша хорошо известны в данной области, и их можно найти, например, в патенте США N 3997071, выданном на имя Teach 14 декабря 1976, и в патенте США N 4377043, выданном на имя Inui и др. 22 марта 1983.
Датчик 243 угла поворота, такой как вращающийся потенциометр, размещенный на оси поворота рабочего органа, обеспечивает измерение угла, соответствующего величине поворота рабочего органа вокруг оси поворота.
Позиционные сигналы подаются предварительному формирователю 245 сигнала. Формирователь 245 сигнала обеспечивает обычное возбуждение (накачку) и фильтрацию сигнала. Для таких целей может быть использован, например, формирующий усилитель сигнала (Vishay Signal Conditioning Amplifier 2300 System), производимый фирмой Measurements Group, Inc. of Raleigh, Северная Каролина, США. Предварительно сформированные сигналы о положении подаются на логическое устройство 250. Логическое устройство 250 предоставляет собой систему на базе микропроцессора, которая использует арифметические блоки для управления процессами в соответствии с программами математического обеспечения. Как правило, программы хранятся в постоянной памяти, оперативной памяти или т.п. Программы рассматриваются в соответствии с различными блок-схемами, описываемыми ниже.
Логическое устройство 250 имеет входы от двух других источников: с многочисленных рычагов 255 управления координатами и интерфейса 260 оператора. Рычаг 255 управления обеспечивает возможность ручного управления рабочим органом. Выходной сигнал от рычага 255 управления определяет направление и скорость перемещения ковша.
Интерфейс 260 может включать экран дисплея на жидких кристаллах с буквенно-цифровой клавиатурой. Также подходит исполнение экрана в виде сенсорного экрана. Кроме того,, интерфейс 260 оператора может также включать множество круговых шкал и/или переключателей, чтобы оператор мог выполнять наладку при различных условиях отрывки грунта.
На фиг. 5 схематично проиллюстрирован способ по настоящему изобретению. При использовании известной трехмерной системы местоопределения с внешним источником опорного сигнала, например (но не только), трехмерной лазерной системы, глобальной системы местоопределения (GPS), комбинации глобальной системы местоопределения и лазерной системы, радиотриангуляции, коротковолновой или радиолокационной системы, в блоке 602 определяются координаты положения приемного устройства в процессе работы машины в пределах рабочей площадки. Эти координаты мгновенно передаются в виде последовательности дискретных (отдельных) точек алгоритму вычисления последовательных разностей, обозначенному 604. Затем информация о местоположении и ориентации становится доступной оператору на стадии 610 воспроизведения, обеспечивая индикацию в реальном времени положения рабочей машины 102 на рабочей площадке, для которой предварительно выполнена топографическая съемка, причем информация представляется в виде, удобном для чтения. Используя информацию на дисплее, оператор может эффективно отслеживать и обеспечивать ручное управление машиной, обозначенное 612.
Дополнительно или альтернативно может быть предусмотрена подача динамически обновленной информации системе автоматического управления машиной, обозначенной 614. Элементы системы автоматического управления могут обеспечить помощь оператору в минимизации рабочих движений машины и ограничитель смещения органов ручного управления, если предложенное оператором воздействие приведет, например, к перегрузке машины. Альтернативно, скорректированная информация о площадке из динамической базы данных может быть использована для обеспечения полностью автоматического управления машиной/орудием.
На фиг. 6 в виде блок-схемы показано устройство, которое можно использовать для приема и обработки сигналов глобальной системы местоопределения с целью реализации настоящего изобретения, причем это устройство содержит приемное устройство 702 глобальной системы местоопределения с локальной опорной антенной и спутниковой антенной; цифровой процессор 704, реализующий алгоритм вычисления последовательных разностей и подсоединенный для приема позиционных сигналов от 702; цифровое устройство 706 для хранения и поиска, к которому имеется доступ от процессора 704, обеспечивающего корректировку информации, и дисплей оператора и/или органы автоматического управления машиной, обозначенные поз. 708 и получающие сигналы от процессора 704.
Приемное устройство 702 глобальной системы местоопределения включает спутниковую антенну, принимающую сигналы от спутников глобальной системы местоопределения, и локальную опорную антенну. Приемное устройство 702 глобальной системы местоопределения использует позиционные сигналы от спутниковой антенны и дифференциальные корректирующие сигналы от локальной опорной антенны для генерирования данных о координатах положения в трех измерениях с точностью до сантиметра для движущихся объектов. Альтернативно, необработанные данные от опорной антенны могут быть обработаны устройством для определения данных о координатах положения.
Эта информация о положении подается в цифровой процессор 704 в (таком) режиме реального времени, который может быть обеспечен частотой дискретизации координат приемного устройства 702 глобальной системы местоопределения. В цифровом устройстве 706 хранения хранится модель рабочей площадки. Данные о положении машины и модели рабочей площадки выводятся на дисплей оператора и/или подаются в систему автоматического управления машиной, обозначенную 708, для управления работой машины на рабочей площадке.
На фиг. 7 представлена более подробная схема устройства, на фиг. 6, в котором используется кинематическая глобальная система местоопределения для позиционных опорных сигналов. Модуль 802 базового опорного сигнала и модель 804 положения совместно определяют трехмерные координаты приемного устройства 125 относительно площадки, в то время как модуль 806 положения машины и ковша преобразует эту информацию о положении в представления в реальном времени, отображающие положения машины, ковша и рабочей площадки, которые можно использовать для точного отслеживания и управления машиной.
Модуль 802 базового опорного сигнала включает стационарное приемное устройство 808 глобальной системы местоопределения; компьютер 810, получающий входную информацию от приемного устройства 808; программное обеспечение 812 приемного устройства для опорного сигнала глобальной системы местоопределения, которое временно или постоянно хранится в компьютере 810; стандартный экран 814 монитора компьютера; и цифровую радиостанцию 816 типа приемопередатчика, подсоединенную к компьютеру и способную передавать поток цифровых данных. В приведенном в качестве примера варианте исполнения приемное устройство 808 для базового опорного сигнала представляет собой высокоточное приемное устройство кинематической глобальной системы местоопределения; компьютер 810, например, представляет собой компьютер 486DX с жестким диском, оперативной памятью 8 Мегабайт, двумя последовательными коммуникационными портами, портом принтера, портом внешнего монитора и портом внешней клавиатуры; экран 814 монитора представляет собой цветной дисплей на пассивной матрице, на жидких кристаллах или какой-либо другой подходящий тип дисплея, такой как VGA; а радиостанция 816 представляет собой имеющийся на рынке приемопередатчик цифровых данных.
Модуль 804 положения содержит согласованно функционирующее приемное устройство 125 кинематической глобальной системы местоопределения, согласованно функционирующий компьютер 818, получающий входную информацию от приемного устройства 125, программное обеспечение 820 кинематической глобальной системы местоопределения, которое постоянно или временно храниться в компьютере 818, и согласованно функционирующую цифровую радиостанцию 822 типа приемопередатчика, которая получает сигналы от радиостанции 816 в модуле 802 базового опорного сигнала. В показанном в качестве примера варианте исполнения модуль 804 положения размещен на карьерном экскаваторе с целью смещения вместе с ним по рабочей площадке.
Модуль 806 положения машины и ковша, также расположенный на машине в показанном в качестве примера варианте исполнения, включает дополнительное логическое устройство 250, принимающее входную информацию от модуля 804 положения; одну или более цифровых моделей 826 площадки, которые в цифровом виде хранятся или загружены в память компьютера; модуль 828 корректировки динамической базы данных, также хранящийся или загруженный в память логического устройства 250; и интерфейс 260 оператора, включающий цветной экран дисплея, подсоединенный к логическому устройству 250. Вместо интерфейса 260 оператора или в дополнение к нему к компьютеру могут быть подсоединены органы автоматического управления машиной для приема сигналов, которые управляют машиной в автономном или полуавтономном режиме. Для передачи дополнительной информации, касающейся функционирования рабочей машины 102, логическому устройству 250 датчики и входы, показанные на фиг. 4, также подсоединены к логическому устройству 250.
Хотя в данном случае модуль 806 положения машины и ковша показан установленным на подвижной машине, некоторые или все его части могут быть установлены дистанционно. Например, логическое устройство 250, модель (-и) 826 площадки и динамическая база данных 828 могут быть связаны с помощью радиолинии передачи данных с модулем 804 положения и интерфейсом 260 оператора. Скорректированная информация о положении и рабочей площадке в этом случае может передаваться к машине и от нее для воспроизведения или использования операторами или диспетчерами, находящимися как на машине, так и вне ее.
Модуль 802 базового опорного сигнала закреплен к точке с известными трехмерными координатами относительно рабочей площадки. Через приемное устройство 808 модуль 802 базового опорного сигнала получает информацию о положении от системы спутников глобальной системы местоопределения, используя программное обеспечение 812 для опорного сигнала глобальной системы местоопределения с целью получения величины мгновенной ошибки или коэффициента коррекции известным образом. Этот коэффициент коррекции (поправочный коэффициент) передается от базового модуля 802 к модулю 804 положения на подвижной машине через радиолинию 816, 822. Альтернативно, необработанные данные о положении могут передаваться от базового модуля 802 модулю 804 положения через радиолинию 816, 822 и обрабатываются компьютером 818.
Смонтированное на машине приемное устройство 125 получает информацию о положении от системы спутников, в то время как программное обеспечение 820 кинематической глобальной системы местоопределения объединяет сигнал от приемного устройства 125 и коэффициент коррекции от модуля 802 базового опорного сигнала для определения положения приемного устройства 125 относительно модуля 802 базового опорного сигнала и рабочей площадки с точностью до нескольких сантиметров. Эта информация трехмерна (например, широта, долгота и высота; восточное склонение (магнитной стрелки), отклонение к северу и вверх; или т.п.) и доступна по принципу "точка за точкой" в соответствии с частотой дискретизации глобальной системы местоопределения.
В соответствии с принципом работы модуля 806 положения машины и ковша при загрузке цифровых планов или моделей рабочей площадки в логическое устройство 250 информация о положении, полученная от модуля 804 положения, используется логическим устройством 250 вместе с базой данных 828 для генерирования графического изображения машины, наложенного на модель реальной площадки на интерфейсе 260 оператора в соответствии с фактическим положением и ориентацией машины на площадке.
Вследствие того, что частота дискретизации модуля 804 положения приводит к задержке по времени/расстоянию между точками координат положения в процессе работы машины, динамическая база данных 828 по настоящему изобретению использует алгоритм вычисления последовательных разностей для определения и корректировки в реальном времени траектории приемного устройства 125.
Зная точное положение машины относительно площадки, имея цифровое представление площадки и данные об изменении положения машины относительно нее, оператор может маневрировать ковшом для выемки материала, и при этом ему не нужно опираться на физические указатели (маркеры), размещенные на поверхности площадки. И, по мере того как оператор продолжает управлять машиной в пределах рабочей площадки, динамическая база данных 828 продолжает считывать и обрабатывать поступающую от модуля 804 информацию о положении с целью динамической корректировки как положения машины относительно площадки, так и положения и ориентации ковша.
Рабочая машина 102 оснащена системой местоопределения, способной определить положение машины с высокой степенью точности, в предпочтительном варианте исполнения эта система представляет собой фазовое дифференциальное приемное устройство 125 глобальной системы местоопределения, расположенное на машине с фиксированными известными координатами относительно корпуса 104 поворотной платформы. Смонтированное на машине приемное устройство 125 получает позиционные сигналы от спутников глобальной системы местоопределения и сигнал ошибки/коррекции от базового источника 808 опорного сигнала через радиолинию 816, 822, как показано на фиг. 7. Система использует как сигналы от спутников, так и сигнал ошибки/коррекции от базового источника 808 опорного сигнала для точного определения своего положения в трехмерном пространстве. Альтернативно, от базового источника 802 опорного сигнала могут передаваться необработанные данные о положении, и они могут обрабатываться известным образом установленным на машине приемным устройством для достижения того же результата. Информацию о кинематической глобальной системе местоопределения и системе, пригодной для использования с настоящим изобретением, модно найти, например, в патенте США N 4812991, выданном 14 марта 1989, и в патенте США N 4963889, выданном 16 октября 1990, причем оба патента выданы на имя Hatch. При использовании кинематической глобальной системы местоопределения или других соответствующих сигналов о положении в трехмерном пространстве от внешнего источника опорного сигнала можно точно определить местоположение приемного устройства 125 по принципу "точка за точкой" с точностью до нескольких сантиметров в процессе функционирования рабочей машины 102 в пределах рабочей площадки. В данном случае частота дискретизации для точек координат при использовании приведенной в качестве примера системы местоопределения составляет приблизительно одну точку в секунду.
Координаты базового приемного устройства 808 могут быть определены любым известным образом, таким как местоопределение с помощью глобальной системы местоопределения или обычная съемка. В США и в других странах также были предприняты меры по размещению источников опорных сигналов глобальной системы местоопределения на фиксированных площадках национального значения, для которых выполнена съемка, таких как аэропорты. Если место расположения источника опорного сигнала находится в пределах дальности (в настоящее время приблизительно 32,19 км (20 миль)) такой площадки национального значения и местного приемного устройства глобальной системы местоопределения, это местное приемное устройство можно использовать в качестве базового источника опорного сигнала. В качестве дополнительной возможности можно использовать переносное приемное устройство, такое как обозначенное 808, имеющее установленное на треноге приемное устройство глобальной системы местоопределения, и ретрансляционный передатчик. Переносное приемное устройство 808 устанавливается и подвергается съемке на месте рабочей площадки или рядом с ней.
В предпочтительном варианте исполнения предварительно выполняется съемка рабочей площадки для разработки подробного топографического плана. Создание географических карт или топографических планов таких мест, как свалки, рудники и строительные площадки, с помощью оптической съемки и других способов хорошо известно в данной области; опорные точки наносятся на сетку, наложенную на площадку, а затем соединяются или закрашиваются для создания контуров площадки на плане. Чем больше количество опорных точек, тем точнее карта.
В настоящее время имеются системы и программное обеспечение для создания цифровых трехмерных карт географических участков. Например, план площадки может быть преобразован в трехмерные цифровые модели исходной географии или топографии площадки. На контуры площадки известным образом может быть наложена координатная сетка из однородных элементов сетки. Цифровые планы площадок можно накладывать, рассматривать в двух или трех измерениях под различными углами (например, можно рассматривать профиль площадки и вид в плане), а также можно различными цветами обозначать зоны, в которых на площадке необходимо выполнить отрывку грунта. Имеющееся программное обеспечение может также выполнять оценку затрат и идентифицировать различные характеристики площадки и препятствия над или под землей.
Когда данные о местоположении и ориентации рабочей машины в пределах рабочей площадки получены логическим устройством 250, эти данные могут быть использованы известными системами автоматической отрывки грунта в большей степени для управления отрывкой грунта по отношению к рабочей площадке, чем по отношению к самой рабочей машине. Пример системы автоматической отрывки грунта, полезной в связи с настоящим изобретением, раскрыт в патенте США N 5065326, выданном 12 ноября 1991 на имя Sahm.
Датчики положения соединений рабочих органов, показанные выше на фиг. 4. используются известными способами для индикации положения ковша относительно центра вращения экскаватора. Путем объединения местоположения и ориентации ковша в системе отсчета машины с местоположением и ориентацией машины во внешней системе отсчета, полученными с помощью описанного ниже алгоритма, местоположение и ориентация ковша могут быть скорректированы при использовании известных геометрических преобразований для определения местоположения и ориентации ковша во внешней системе отсчета. Таким образом, выполняется отслеживание и контроль положения ковша относительно рабочей площадки.
На основании изображения на фиг. 8 описывается расчет местоположения и ориентации корпуса 104 поворотной платформы и местоположения ковша 120, который выполняется логическим устройством 250. Как описывается ниже крен (отклонение относительно продольной оси) и тангаж (отклонение относительно поперечной оси) экскаватора относятся к наклону в боковых направлениях и в продольном направлении. Поскольку экскаватор поворачивается, крен и тангаж непрерывно изменяются по отношению к перспективе, видимой для оператора, в различных условиях эксплуатации. Следовательно, рассчитывается уравнение плоскости, в которой вращается корпус 104 поворотной платформы, и из этого уравнения может быть получен наклон, или крен и тангаж, при использовании какой-либо желательной системы отсчета. Две наиболее общие системы отсчета для воспроизведения поверхности представляют собой системы с использованием перпендикулярных осей, определяемых направлениями север-юг (N-S) и восток-запад (E-W) или вдоль и поперек продольной оси машины.
Расчеты, приведенные ниже, определяют уравнение плоскости исходя из координат x, y и z 3 точек, дискретизированных приемным устройством 125. С целью облегчения понимания были выбраны произвольные величины для выполнения приведенных в качестве примера расчетов; однако ни одна из этих величин не должна никоим образом ограничивать универсальную применимость изобретения и данных формул.
Для расчета плоскости вращения через 3 выбранные точки:
тчк1 = (тчк1x, тчк1y, тчк1z) (1,1,3) ТЧК1
тчк2 = (тчк2x, тчк2y, тчк2z) (7,2,2) ТЧК2
тчк3 = (тчк3x, тчк3y, тчк3z) (2,5,1) ТЧК3
тчк1x•A + тчк1y•B + тчк1z•C + D = 0
тчк2x•A + тчк2y•B + тчк2z•C + D = 0
тчк3x•A + тчк3y•B + тчк3z•C + D = 0
При решении вышеуказанных уравнений получается следующее решение:
-.02439•тчк_x-.13414•тчк_y-.28049•тчк_z + 1 = 0
Для простоты примера примем, что оператор обращен лицом к северу (в данном примере положительное направление y). Крен в боковом направлении рассчитывается путем подставления любых двух значений x в плоскости, перпендикулярной данному направлению, и вычисления значений z.
При x = 0, y = 0, z = 3.56519
x = 7, y = 0, z = 2.9565
Крен в боковом направлении = (2.9565-3.56519)/(7-0) = 0.8696 при западной части выше восточной = 4.96 градуса
Аналогично может быть рассчитан продольный тангаж (отклонение относительно поперечной оси);
При x = 7, y = 0, z = 3.56519
x = 7, y = 5, z = 1.17402
Отклонение относительно поперечной оси = (1.17402-3.56519)/(5) = .47823
при южной части выше северной = 25.56 градуса
В предпочтительном варианте исполнения центр вращения дуги, описываемой при вращении антенны, и 3 выбранные точки определяются путем нахождения мест пересечения 3 плоскостей. Одна плоскость определяется вращением антенны. Вторая плоскость перпендикулярна к линии, соединяющей точку 1 и точку 2, и проходит через ее середину. Третья плоскость перпендикулярна к линии, соединяющей точку 2 и точку 3, и проходит через ее середину. Ниже приводятся вычисления, данные в качестве примера, для определения центра вращения при вращении приемного устройства.
Рассчитать плоскость, перпендикулярную к линии, проходящей от тчк1 до тчк2, и проходящую через ее середину
тчк1 = (тчк1x, тчк1y, тчк1z) (1, 1, 3)
тчк2 = (тчк2x, тчк2y, тчк2z) (7, 2, 2)
сртчк_1_2 (середина между точками 1 и 2) = ((тчк1x+тчк2x)/2, (тчк1y+тчк2y)/2, (тчк1z+тчк2z)/2)
сртчк_1_2 = (4, 1ю5, 2.5)
инд_напр_x = тчк2x - тчк1x = 6
инд_напр_y = тчк2y - тчк1y = 1
инд_напр_z = тчк2z - тчк1z = -1
где инд_ напр_x, инд_напр_y и инд_напр_z соответственно относятся к индексам направлений по x, y и z.
0 = инд_напр_x•(X-сртчк_1_2_x) + инд_напр_y•(Y-сртчк_1_2_y) + инд_напр_ z•(Z-сртчк_1_2_z)
где сртчк_ 1_ 2_x, сртчк_1_2_y, сртчк_1_2_z, соответственно относятся к координатам x, y и z середины линии, соединяющей тчк1 и тчк2.
Решение уравнения плоскости дает:
0 = 6тчк_x + тчк_y - тчк_z - 23
Аналогично рассчитать плоскость, перпендикулярную к линии, проходящей от тчк2 до тчк3, и проходящую через ее середину.
тчк2=(тчк2x, тчк2y, тчк2z) (7,2,2)
тчк3=(тчк3x, тчк3y, тчк3z) (2,5,1)
сртчк_2_3 (середина между точками 2 и 3) = ((тчк2x+тчк3x)/2, (тчк2y+тчк3y)/2, (тчк2z+тчк3z)/2)
сртчк_2_3 = (4.5, 3.5, 1.5)
инд_напр_x = тчк3x - тчк2x = -5
инд_напр_y = тчк3y - тчк2y = 3
инд_напр_z = тчк3z - тчк2z = -1
0 = инд_напр_x•(X-сртчк_2_3_x) + инд_напр_y•(Y-сртчк_2_3_y) + инд_напр_ z•(Z-сртчк_2_3_z)
0 = -5тчк_x + 3тчк_y - тчк_z + 13.5
Рассчитать точку пересечения между плоскостью вращения, плоскостью, перпендикулярную к средней точке между тчк1_2, и плоскостью, перпендикулярную к средней точке между тчк2_3x/
-.02439•тчк_х - .13414•тчк_y - .28049•тчк_z + 1 = 0
= плоскость вращения
6тчк_x + тчк_y - тчк_z - 23 = 0
= плоскость, перп. к сртчк между тчк_1_2
-5тчк_x + 3тчк_y - тчк_z + 13.5 = 0
= плоскость, перп. к сртчк между тчк2_3
23тчк_y - 11тчк_z - 34 = 0
= пересечение двух плоскостей, проходящих через средние точки
Рассчитать точку центра вращения приемного устройства:
-.02439•тчк_x-.13414•тчк_y-.28049•тчк_z+1 = 0
6тчк_x + тчк_y - тчк_z - 23 = 0
тчк_y = -2.1876тчк_z + 6.96909
тчк_z_центр_вращ_ант = 2.05968
тчк_y_центр_вращ_ант = (11тчк_z + 34)/23 = 2.46333
тчк_x_центр_вращ_ант = (-тчк_y+тчк_z+23)/6 = 3.76606
Поскольку приемное устройство 125 зафиксировано относительно корпуса 104 поворотной платформы, радиус его вращения и высота над землей известны. Пересечение линии (оси) вращения корпуса поворотной платформы и поверхности земли может быть определено, как показано ниже. Эта точка имеет важное значение, поскольку координата z показывает уровень высоты поверхности земли непосредственно под машиной.
Уравнение линии, перпендикулярной к плоскости, проходящей через центр вращения антенны, которое было получено выше, имеет вид:
-.02439•тчк_x-.13414•тчк_y-.28049•тчк_z+1 = 0
тчк_x_центр_вращ_ант = 3.76606
тчк_y_центр_вращ_ант = 2.46333
тчк_z_центр_вращ_ант = 2.05968
тчк_x_земля_центр_вращ = 3.76606 - .02439t
тчк_y_земля_центр_вращ = 2.46333 - .13414t
тчк_z_земля_центр_вращ = 2.05968 - .28049t
принимая, что высота = 5 = ((-.02439t)^2 + (.13414t)^2 + (.28049t)^2)^.5
5 = .31187t; t = 16.03231
тчк_x_земля_центр_вращ = 3.76606 - .02439t = 3.37503
тчк_y_земля_центр_вращ = 2.46333 - .13414t = .31276
тчк_z_земля_центр_вращ = 2.05968 - .28049t = 2.43722
Где тчк_x_земля_центр_вращ, тчк_y_земля_центр_вращ и тчк_z_земля_центр_ вращ представляют собой координаты соответственно по x, y и z точки пересечения оси вращения с землей.
Теперь известен достаточный объем информации для воспроизведения положения рабочей машины по отношению к окружающим объектам. При известном местоположении и ориентации рабочей машины во внешней системе отсчета местоположение ковша во внешней системе отсчета получается путем использования известных геометрических преобразований между внешней системой отсчета и местоположением ковша в системе отсчета машины, полученным исходя из сигналов датчиков, описанных в связи с фиг. 4.
Блок-схема алгоритма, подлежащего выполнению логическим устройством 250 в одном варианте исполнения изобретения, показана на фиг. 9a-9t. Модуль 802 опорного сигнала глобальной системы местоопределения, рабочая машина 102 и встроенное электронное оборудование приводятся в действие в блоке 1202. Геометрия машины и данные о площадке загружаются в логическое устройство 250 из базы данных 828 соответственно в блоках 1204 и 1206. Инициализируются перечисленные в блоке 1208 переменные и флажки. В блоке 1210 выбирается (задается) положение приемного устройства 125 глобальной системы местоопределения и отмечается время.
Сигналы управления рабочими органами считываются в блоке 1212. Команда перемещения считывается в блоке 1214 путем определения того, приведен ли в действие рычаг 255 управления, связанный с перемещением. Если в блоке 1226 команда перемещения = "истина" ("true"), указывая тем самым, что ходовая часть перемещается, то флажки статической_настройки и настройки_вращения устанавливаются равными "лжи" ("false") и управление переходит блоку 1262. Аналогично, если в блоке 1228 настройка_вращения = "истина", указывая тем самым, что настройка_вращения в данном месте завершена, управление переходит к блоку 1262. Если в блоке 1230 статическая_ настройка = "истина", указывая тем самым, что статическая_настройка завершена, то управление переходит блоку 1238.
Затем оператор использует клавиатуру, имеющуюся в интерфейсе оператора, для подтверждения того, что машина готова для статической инициализации. Когда, таким образом, флажок "готов_ для_статики" устанавливается равным "истине", положение приемного устройства 125 считывается и усредняется на заранее заданном промежутке времени. Затем на интерфейс 260 выводится фраза "статическая настойка завершена", и в блоке 1236 флажок статической_настройки устанавливается равным "истине".
Следует отметить, что операция статической настройки, описанная в связи с блоками 1230, 1234 и 1236, включена исключительно для универсальности и представляет только один вариант исполнения. Алгоритм по фиг. 9 может работать без статической настройки, и в этом случае первая точка будет автоматически выбирается на базе команды перемещения, по существу равной 0 в блоке 1226, и алгоритм будет переходить к блоку 1238 для начала настройки вращения.
В блоке 1238 на интерфейс 260 оператора выводится сообщение "повернуть корпус поворотной платформы". Когда команда поворота устанавливается равной значению "истина" в ответ на сигнал датчика 243 поворота, указывающий, что корпус поворотной платформы поворачивается, точки местоположений приемного устройства, полученные от кинематической глобальной системы местоопределения, записываются через строго соблюдаемые интервалы до тех пор, пока в блоке 1242 оператор с помощью клавиатуры не подтвердит, что выборка при вращении завершена. Однако предотвращается возможность завершения оператором настройки вращения до того, как будут получены три точки. Затем на интерфейс 260 оператора выводится сообщение, что "настройка вращения завершена", и флажок настройки_вращения устанавливается на значение "истина". В блоке 1246 выполняется отсчет_положения_машины.
Плоскость вращения приемного устройства 125 рассчитывается в блоке 1248, как описано выше в связи с фиг. 8. Затем в блоке 1250 логическое устройство 250 рассчитывает отклонение относительно поперечной оси (продольный тангаж) и отклонение относительно продольной оси (боковой крен) корпуса поворотной платформы для каждого из 360 градусов поворота для экономии времени обработки данных в процессе работы карьерного экскаватора. Естественно, большая точность может быть получена при увеличении количества вычислений.
В блоке 1252 рассчитывается центр вращения плоскости вращения приемного устройства, как описано выше в связи с фиг. 9d. В блоке 1256 рассчитывается уравнение линии (оси ) вращения, перпендикулярной к плоскости корпуса 104 поворотной платформы. Координаты точки пересечения линии (оси) вращения с землей определяются в блоке 1260. В блоке 1262 определяется местоположение ковша 120 на базе местоположения приемного устройства 125, рассчитанных выше величин и сигналов от датчиков, показанных на фиг. 4.
Если команда перемещения равна значению "истина" в блоке 1264, то для вычисления координат местоположения рабочей машины 102 используются текущее и последнее положения приемного устройства. В предпочтительном варианте исполнения принято, что перемещение происходит только тогда, когда передняя часть корпуса 104 поворотной платформы обращена в направлении перемещения ходовой части. Это предположение позволяет облегчить отслеживание машины при перемещении.
Альтернативно, положение рабочей машины только вычисляется, и машина воспроизводится на рабочей площадке на базе выбранных точек, соответствующих (подогнанных) описанию круга. Это в целом будет происходить только тогда, когда ходовая часть неподвижна.
Промышленная применимость
При работе настоящее изобретение обеспечивает простую систему для определения местоположения и ориентации рабочей машины 102. Устройство кинематической глобальной системы местоопределения установлено на рабочей машине 102 таким образом, что оно удалено от центра вращения на измеряемую величину. Когда корпус поворотной платформы поворачивается из стороны в сторону, приемное устройство 125 описывает дугу. Эта дуга или находится в одной плоскости (x), или наклонена на некоторый угол и, кроме того, "опрокинута" на некоторый угол. Путем расчета кривой траектории по x, y, z вычисляется угол наклона и опрокидывания платформы экскаватора. При объединении получаемых параметров рассчитывается местоположение по x, y, и z и отклонение машины от продольной и поперечной осей (крен и тангаж) при данном местоположении.
Показанные варианты исполнения дают понимание широких возможностей изобретения, подробно раскрывают предпочтительное применение и не направлены на ограничение изобретения. Может быть выполнено множество других модификаций изобретения и могут быть другие случаи применения, которые тем не менее находятся в рамках объема пунктов приложенной формулы изобретения.
Другие аспекты, цели и преимущества данного изобретения могут быть получены при изучении графических материалов, описания и приложенной формулы изобретения.
Список надписей на фигурах
Фиг. 1: 1.1 - точка вращения
1.2 - антенна глобальной системы местоопределения
Фиг. 2: 2.1 - точка вращения
2.2 - антенна глобальной системы местоопределения
Фиг. 3: 3.1 - точка вращения
3.2 - кабина
3.3 - стрела
3.4 - корпус
3.5 - местоположение антенны глобальной системы местоопределения
Фиг. 4: 255 - рычаги управления
260 - интерфейс оператора
250 - логическое устройство
253 - память
270)
275) - гидравлический управляющий клапан
280)
285)
245 - формирование сигнала
185 - узел поворота
243 - датчик вращения
140 - цилиндр стрелы
145 - цилиндр рукояти
150 - цилиндр ковша
210)
215) - датчик смещения
220)
Фиг. 5: 602 - положение машины
604 - алгоритм вычисления последовательных разностей
606 - исходные модели площадки загружены/хранятся
608 - создание динамической модели площадки
610 - выдать сообщение оператору
612 - ручное управление машиной
614 - автоматическое управление
Фиг. 6: 6.1 - инженерный план
6.2 - съемка
6.3 - динамическая съемка и корректировки
6.4 - данные о координатах
6.5 - местная антенна опорного сигнала
6.6 - спутниковая антенна
706 - хранение и поиск цифровой информации
704 - цифровой процессор с алгоритмом вычисления последовательных разностей
702 - приемное устройство глобальной системы местоопределения
708 - дисплей и/или органы автоматического управления машиной
Фиг. 7: 802 - опорный сигнал/база
125) - приемное устройство глобальной системы
808) местоопределения
810)
818) - компьютер
824)
816) - радиостанция
822)
812 - программное обеспечение опорного сигнала глобальной системы местоопределения
814 - экран монитора
804 - положение приемного устройства
820 - программное обеспечение кинематической глобальной системы местоопределения
806 - положение машины и ковша
826 - план площадки
828 - база данных
830 - интерфейс оператора
Фиг.8: 8.1 - точка 1
8.2 - точка 2
8.3 - точка 3
8.4 - точка 4
8.5 - точка 5
8.6 - север
8.7 - восток
8.8 - земля
Фиг. 9а: 1202 - привести в действие источник опорного сигнала глобальной системы местоопределения привести в действие встроенное электронное оборудование
1204 - загрузить (импортировать) геометрию машины
1206 - загрузить (импортировать) данные о площадке
1208 - выполнить процедуры инициализации
счетчик положения машины = 0
счетчик нагрузки ходовой части = 0
счетчик нагрузки ковша = 0
статическая настройка = ложь
настройка вращения = ложь
готов для статич. режима = ложь
конец выборки при вращении = ложь
1210 - задать (выбрать) x, y, z, время
1212 - дискретизировать сигналы положения рабочих органов (орудия)
1214 - считать команду перемещения
Фиг. 9b: 1226 - если команда перемещения >0,
статическая настройка = ложь
настройка вращения = ложь
1228 - если настройка вращения = истина
1230 - если статическая настройка = истина
1234 - ждать до тех пор, пока оператор не подтвердит с помощью ввода на клавиатуре, что машина готова для статической инициализации
когда готов для статич. режима = истина
считать (дискретизировать) и усреднить данные по местоположению антенны глобальной системы местоопределения по x, y, z, в течение _ секунд
9b.1 - да, 9b - нет
9b.3 - пока время выборки < _ секунд
Фиг. 9c: 1236 - вывести сообщение "статическая настройка завершена"
статическая настройка = истина
1238 - вывести запрос "повернуть корпус поворотной платформы"
1240 - начать запись и сохранение данных, когда команда поворота = истина
1242 - конец выборки при вращении = истина,
когда оператор подтверждает с помощью ввода на клавиатуре, что выборка при вращении завершена
9c.1 - пока конец выборки пари вращении = ложь
1244 - вывести сообщение "настройка вращения завершена"
настройка вращения = истина
Фиг. 9d: 1246 - счетчик положения машины = счетчик положения машины + 1
1248 - рассчитать плоскость вращения антенны
1250 - общая таблица продольного тангажа (отклонений от поперечной оси) и бокового крена (отклонений от продольной оси) для 360oC поворота корпуса поворотной платформы
1252 - рассчитать положение центра вращения в плоскости антенны
1254 - рассчитать радиус дуги, образованной при вращении антенны (определяет положение элементов присоединения)
1256 - рассчитать уравнение линии вращения, перпендикулярной плоскости корпуса поворотной платформы
Фиг. 9e: 1260 - рассчитать координаты точки пересечения линии (оси) вращения с землей
положение x
положение y
положение z
1262 - рассчитать местоположение ковша и всех остальных желательных точек машины
1264 - если команда перемещения = истина, использовать текущее и последнее положения антенны для определения ориентации механической лопаты (одноковшового экскаватора) и ходовой частис

Claims (18)

1. Устройство для определения местоположения копающего приспособления на рабочей площадке, содержащее ходовую часть, корпус поворотной платформы, присоединенный с возможностью вращения к ходовой части, приемное устройство, присоединенное к корпусу поворотной платформы, устройства системы местоопределения для определения местоположения приемного устройства в трехмерном пространстве, средства для вращения корпуса поворотной платформы, тем самым приемное устройство имеет возможность перемещения по дуге, причем устройства системы местоопределения определяют местоположение приемного устройства на множестве точек по дуге, и средства обработки данных для определения местоположения корпуса поворотной платформы на базе местоположения трех или более из множества точек.
2. Устройство по п.1, отличающееся тем, что средства обработки данных определяют плоскость вращения приемного устройства.
3. Устройство по п.2, отличающееся тем, что средства обработки данных рассчитывают центр вращения приемного устройства.
4. Устройство по п.1, отличающееся тем, что средства обработки данных определяют местоположение точки пересечения оси вращения указанного приемного устройства с землей.
5. Устройство по п.1, отличающееся тем, что средства обработки данных рассчитывают таблицу продольного тангажа - отклонений от поперечной оси и бокового крена - отклонений от продольной оси для полного оборота корпуса поворотной платформы.
6. Устройство для определения местоположения копающего приспособления на рабочей площадке, содержащее ходовую часть, корпус поворотной платформы, присоединенный с возможностью вращения к ходовой части, элементы присоединения орудия, присоединенные к корпусу поворотной платформы, один или более датчиков для выдачи сигналов об элементах присоединения, указывающих на конфигурацию элементов присоединения орудия, причем элементы присоединения орудия включают копающее орудие, приемное устройство, присоединенное к корпусу поворотной платформы, устройства системы местоопределения для определения местоположения приемного устройства в трехмерном пространстве, средства для вращения корпуса поворотной платформы, тем самым приемное устройство имеет возможность перемещения по дуге, причем устройства системы местоопределения определяют местоположение приемного устройства на множестве точек по дуге, и средства обработки данных для определения местоположения копающего орудия на базе трех или более множества точек и сигналов об элементах присоединения.
7. Устройство по п.6, отличающееся тем, что средства обработки данных определяют местоположение точки пересечения оси вращения приемного устройства с землей.
8. Устройство по п.6, отличающееся тем, что указанные средства обработки данных рассчитывают таблицу продольного тангажа - отклонений от поперечной оси и бокового крена - отклонений от продольной оси для полного оборота корпуса поворотной платформы.
9. Способ определения местоположения рабочей машины на рабочей площадке, причем рабочая машина включает ходовую часть и корпус поворотной платформы, присоединенный к ходовой части с возможностью поворота, причем способ включает операции вращения корпуса поворотной платформы, получения сигналов от внешнего источника опорного сигнала, определения местоположения приемного устройства в трехмерном пространстве по мере вращения корпуса поворотной платформы, тем самым местоположение приемного устройства определяется на множестве точек по дуге, и определения местоположения корпуса поворотной платформы на базе местоположения трех или более из множества точек.
10. Способ по п.9, отличающийся тем, что включает операцию определения плоскости вращения приемного устройства.
11. Способ по п.10, отличающийся тем, что включает операцию расчета центра вращения приемного устройства.
12. Способ по п.9, отличающийся тем, что включает операцию определения местоположения точки пересечения оси вращения приемного устройства с землей.
13. Способ по п.9, отличающийся тем, что включает операцию вычисления таблицы продольного тангажа - отклонений от поперечной оси и бокового крена - отклонений от продольной оси для полного оборота корпуса поворотной платформы.
14. Способ по п.9, отличающийся тем, что рабочая машина включает элементы присоединения орудия, присоединенные к корпусу поворотной платформы, и ковш, присоединенный к элементам присоединения, и тем, что способ включает операции выдачи сигналов об элементах присоединения, указывающих на конфигурацию элементов присоединения орудия и определения местоположения ковша на базе сигналов об элементах присоединения и местоположения множества точек.
15. Устройство для определения местоположения копающего приспособления на рабочей площадке, содержащее ходовую часть, корпус поворотной платформы, присоединенный с возможностью вращения к ходовой части, приемное устройство, присоединенное к корпусу поворотной платформы, устройства системы местоопределения для определения местоположения приемного устройства в трехмерном пространстве, средства для вращения корпуса поворотной платформы, тем самым указанное приемное устройство имеет возможность перемещения по дуге, причем устройства системы местоопределения определяют местоположение приемного устройства на множестве точек по дуге, и средства обработки данных для определения ориентации корпуса поворотной платформы на базе местоположения трех или более из множества точек.
16. Устройство по п.15, отличающееся тем, что средства обработки данных определяют местоположение корпуса поворотной платформы на базе местоположения трех или более из множества точек.
17. Способ определения местоположения рабочей машины на рабочей площадке, причем рабочая машина включает ходовую часть и корпус поворотной платформы, присоединенный к ходовой части с возможностью поворота, причем способ включает операции вращения корпуса поворотной платформы, получения сигналов от внешнего источника опорного сигнала, определения местоположения приемного устройства в трехмерном пространстве по мере вращения корпуса поворотной платформы, тем самым местоположение приемного устройства определяется на множестве точек по дуге, и определения ориентации корпуса поворотной платформы на базе местоположения трех или более из множества точек.
18. Способ по п.17, включающий операцию определения местоположения корпуса поворотной платформы на базе местоположения трех или более из множества точек.
RU96102596A 1994-05-10 1995-04-27 Устройство для определения местоположения копающего приспособления (варианты) и способ определения местоположения рабочей машины на рабочей площадке (варианты) RU2134329C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/241,118 US5438771A (en) 1994-05-10 1994-05-10 Method and apparatus for determining the location and orientation of a work machine
US08/241118 1994-05-10
PCT/US1995/005607 WO1995030799A1 (en) 1994-05-10 1995-04-27 Method and apparatus for determining the location and orientation of a work machine

Publications (2)

Publication Number Publication Date
RU96102596A RU96102596A (ru) 1998-04-27
RU2134329C1 true RU2134329C1 (ru) 1999-08-10

Family

ID=22909331

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96102596A RU2134329C1 (ru) 1994-05-10 1995-04-27 Устройство для определения местоположения копающего приспособления (варианты) и способ определения местоположения рабочей машины на рабочей площадке (варианты)

Country Status (8)

Country Link
US (1) US5438771A (ru)
JP (1) JP3662587B2 (ru)
AU (1) AU681289B2 (ru)
DE (1) DE19581454B3 (ru)
RU (1) RU2134329C1 (ru)
SE (1) SE9504218L (ru)
WO (1) WO1995030799A1 (ru)
ZA (1) ZA953150B (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2633426C2 (ru) * 2012-09-21 2017-10-12 Сименс Индастри, Инк. Способ и система для предварительного определения веса груза для карьерного экскаваторного оборудования
RU2681800C2 (ru) * 2014-06-25 2019-03-12 Сименс Индастри, Инк. Система управления рукоятью экскаватора
RU2745144C1 (ru) * 2014-07-02 2021-03-22 Дж.С. Бэмфорд Экскавейторс Лимитед Способ управления машиной для перемещения материалов
RU2800704C1 (ru) * 2021-11-30 2023-07-26 Цзянсу Скмг Констракшн Машинери Рисерч Инститьют Лтд. Машина для инженерно-геологических работ и способ компенсации отклонения манипулятора указанной машины

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3364303B2 (ja) * 1993-12-24 2003-01-08 株式会社小松製作所 作業機械の制御装置
JP2566745B2 (ja) * 1994-04-29 1996-12-25 三星重工業株式会社 電子制御油圧掘削機の自動平坦作業方法
US5563607A (en) * 1994-05-26 1996-10-08 Trimble Navigation Limited Time and/or location tagging of an event
US5572809A (en) * 1995-03-30 1996-11-12 Laser Alignment, Inc. Control for hydraulically operated construction machine having multiple tandem articulated members
US5764511A (en) * 1995-06-20 1998-06-09 Caterpillar Inc. System and method for controlling slope of cut of work implement
US5612864A (en) * 1995-06-20 1997-03-18 Caterpillar Inc. Apparatus and method for determining the position of a work implement
JP3112814B2 (ja) * 1995-08-11 2000-11-27 日立建機株式会社 建設機械の領域制限掘削制御装置
US5960378A (en) * 1995-08-14 1999-09-28 Hitachi Construction Machinery Co., Ltd. Excavation area setting system for area limiting excavation control in construction machines
US5991694A (en) * 1995-11-13 1999-11-23 Caterpillar Inc. Method and apparatus for determining the location of seedlings during agricultural production
EP0801174A1 (en) * 1995-11-23 1997-10-15 Samsung Heavy Industries Co., Ltd Device and process for controlling the automatic operations of power excavators
US5815826A (en) * 1996-03-28 1998-09-29 Caterpillar Inc. Method for determining the productivity of an earth moving machines
US5801967A (en) * 1996-03-29 1998-09-01 Caterpillar Inc. Method for determining the volume between previous and current site surfaces
WO1997046763A1 (de) * 1996-06-03 1997-12-11 Siemens Aktiengesellschaft Verfahren und anordnung zur steuerung eines bewegungsablaufs bei einer fortbewegbaren landbearbeitungsmaschine
US5854988A (en) * 1996-06-05 1998-12-29 Topcon Laser Systems, Inc. Method for controlling an excavator
JP3824715B2 (ja) * 1996-08-26 2006-09-20 日立建機株式会社 発破地面の掘削負荷計測装置
US5784029A (en) * 1996-10-28 1998-07-21 Motorola, Inc. Recognition of and method and apparatus for GPS antenna lever arm compensation in integrated GPS/dead reckoning navigation systems
DE19647523A1 (de) 1996-11-16 1998-05-20 Claas Ohg Landwirtschaftliches Nutzfahrzeug mit einem in seiner Lage und/oder Ausrichtung gegenüber dem Fahrzeug verstellbar angeordneten Bearbeitungsgerät
US6047227A (en) * 1996-11-19 2000-04-04 Caterpillar Inc. Method and apparatus for operating geography altering machinery relative to a work site
US5987371A (en) * 1996-12-04 1999-11-16 Caterpillar Inc. Apparatus and method for determining the position of a point on a work implement attached to and movable relative to a mobile machine
US5935192A (en) * 1996-12-12 1999-08-10 Caterpillar Inc. System and method for representing parameters in a work site database
US5974348A (en) * 1996-12-13 1999-10-26 Rocks; James K. System and method for performing mobile robotic work operations
US5848485A (en) * 1996-12-27 1998-12-15 Spectra Precision, Inc. System for determining the position of a tool mounted on pivotable arm using a light source and reflectors
US5968103A (en) * 1997-01-06 1999-10-19 Caterpillar Inc. System and method for automatic bucket loading using crowd factors
US5974352A (en) * 1997-01-06 1999-10-26 Caterpillar Inc. System and method for automatic bucket loading using force vectors
US5768811A (en) * 1997-02-19 1998-06-23 Vermeer Manufacturing Company System and process for controlling an excavation implement
US5864060A (en) * 1997-03-27 1999-01-26 Caterpillar Inc. Method for monitoring the work cycle of mobile machinery during material removal
US5844160A (en) * 1997-05-23 1998-12-01 Caterpillar Inc. Land mine clearing tool
US5944764A (en) * 1997-06-23 1999-08-31 Caterpillar Inc. Method for monitoring the work cycle of earth moving machinery during material removal
US6025686A (en) * 1997-07-23 2000-02-15 Harnischfeger Corporation Method and system for controlling movement of a digging dipper
US5953838A (en) * 1997-07-30 1999-09-21 Laser Alignment, Inc. Control for hydraulically operated construction machine having multiple tandem articulated members
JP3364419B2 (ja) * 1997-10-29 2003-01-08 新キャタピラー三菱株式会社 遠隔無線操縦システム並びに遠隔操縦装置,移動式中継局及び無線移動式作業機械
US6115660A (en) * 1997-11-26 2000-09-05 Case Corporation Electronic coordinated control for a two-axis work implement
US6233511B1 (en) 1997-11-26 2001-05-15 Case Corporation Electronic control for a two-axis work implement
SE508951C2 (sv) * 1997-11-28 1998-11-16 Spectra Precision Ab Anordning och förfarande för att bestämma läget för en bearbetande del
US6223110B1 (en) * 1997-12-19 2001-04-24 Carnegie Mellon University Software architecture for autonomous earthmoving machinery
US6202013B1 (en) * 1998-01-15 2001-03-13 Schwing America, Inc. Articulated boom monitoring system
US6114993A (en) * 1998-03-05 2000-09-05 Caterpillar Inc. Method for determining and displaying the position of a truck during material removal
US6152238A (en) * 1998-09-23 2000-11-28 Laser Alignment, Inc. Control and method for positioning a tool of a construction apparatus
US6363632B1 (en) * 1998-10-09 2002-04-02 Carnegie Mellon University System for autonomous excavation and truck loading
US8478492B2 (en) 1998-11-27 2013-07-02 Caterpillar Trimble Control Technologies, Inc. Method and system for performing non-contact based determination of the position of an implement
US6211471B1 (en) 1999-01-27 2001-04-03 Caterpillar Inc. Control system for automatically controlling a work implement of an earthmoving machine to capture, lift and dump material
US6401051B1 (en) * 1999-04-20 2002-06-04 Sun Microsystems, Inc. Method and apparatus for locating buried objects
US6191732B1 (en) * 1999-05-25 2001-02-20 Carlson Software Real-time surveying/earth moving system
US6191733B1 (en) 1999-06-01 2001-02-20 Modular Mining Systems, Inc. Two-antenna positioning system for surface-mine equipment
JP4318807B2 (ja) * 1999-08-25 2009-08-26 株式会社鴻池組 掘削揚土作業支援システム
JP4082646B2 (ja) * 1999-11-19 2008-04-30 株式会社小松製作所 排土板の前方監視装置付き車両
US6351697B1 (en) 1999-12-03 2002-02-26 Modular Mining Systems, Inc. Autonomous-dispatch system linked to mine development plan
US6615114B1 (en) 1999-12-15 2003-09-02 Caterpillar Inc Calibration system and method for work machines using electro hydraulic controls
US6282477B1 (en) 2000-03-09 2001-08-28 Caterpillar Inc. Method and apparatus for displaying an object at an earthworking site
US6418364B1 (en) 2000-12-13 2002-07-09 Caterpillar Inc. Method for determining a position and heading of a work machine
DE10121955A1 (de) * 2001-01-23 2002-07-25 Ruhrgas Ag System zum Bestimmen der Position von Baufahrzeugen oder Geräten mit einem Werkzeug zur Bodenbewegung
US6438456B1 (en) * 2001-04-24 2002-08-20 Sandia Corporation Portable control device for networked mobile robots
US6735888B2 (en) * 2001-05-18 2004-05-18 Witten Technologies Inc. Virtual camera on the bucket of an excavator displaying 3D images of buried pipes
US6701239B2 (en) 2002-04-10 2004-03-02 Caterpillar Inc Method and apparatus for controlling the updating of a machine database
US6898484B2 (en) 2002-05-01 2005-05-24 Dorothy Lemelson Robotic manufacturing and assembly with relative radio positioning using radio based location determination
US6711838B2 (en) 2002-07-29 2004-03-30 Caterpillar Inc Method and apparatus for determining machine location
DE10246783A1 (de) * 2002-10-08 2004-04-22 Stotz-Feinmesstechnik Gmbh Verfahren und Vorrichtung zum Handhaben von Objekten
JP4233932B2 (ja) * 2003-06-19 2009-03-04 日立建機株式会社 作業機械の作業支援・管理システム
US7593798B2 (en) * 2003-10-30 2009-09-22 Deere & Company Vehicular guidance system having compensation for variations in ground elevation
US6845311B1 (en) 2003-11-04 2005-01-18 Caterpillar Inc. Site profile based control system and method for controlling a work implement
US7079931B2 (en) * 2003-12-10 2006-07-18 Caterpillar Inc. Positioning system for an excavating work machine
US7139651B2 (en) * 2004-03-05 2006-11-21 Modular Mining Systems, Inc. Multi-source positioning system for work machines
US10458099B2 (en) 2004-08-26 2019-10-29 Caterpillar Trimble Control Technologies Llc Auto recognition of at least one standoff target to determine position information for a mobile machine
DE102005024676A1 (de) * 2004-12-21 2006-07-06 Bosch Rexroth Aktiengesellschaft System zur Lageerfassung und -regelung für Arbeitsarme mobiler Arbeitsmaschinen
US7245999B2 (en) 2005-01-31 2007-07-17 Trimble Navigation Limited Construction machine having location based auto-start
US7681192B2 (en) * 2005-01-31 2010-03-16 Caterpillar Trimble Control Technologies Llc Location-centric project data delivery system for construction
US7555855B2 (en) * 2005-03-31 2009-07-07 Caterpillar Inc. Automatic digging and loading system for a work machine
US20060225310A1 (en) * 2005-04-12 2006-10-12 Koch Roger D Work machine alignment system and method of maintaining alignment of a work machine
US20070044980A1 (en) * 2005-08-31 2007-03-01 Caterpillar Inc. System for controlling an earthworking implement
US20070219521A1 (en) * 2006-03-17 2007-09-20 The Procter & Gamble Company Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article
US8311738B2 (en) * 2006-04-27 2012-11-13 Caterpillar Inc. Boom-mounted machine locating system
US20080000111A1 (en) * 2006-06-29 2008-01-03 Francisco Roberto Green Excavator control system and method
US7725234B2 (en) * 2006-07-31 2010-05-25 Caterpillar Inc. System for controlling implement position
US20080047170A1 (en) * 2006-08-24 2008-02-28 Trimble Navigation Ltd. Excavator 3D integrated laser and radio positioning guidance system
US7979181B2 (en) 2006-10-19 2011-07-12 Caterpillar Inc. Velocity based control process for a machine digging cycle
US8083004B2 (en) 2007-03-29 2011-12-27 Caterpillar Inc. Ripper autodig system implementing machine acceleration control
US8386134B2 (en) 2007-09-28 2013-02-26 Caterpillar Inc. Machine to-machine communication system for payload control
US7810260B2 (en) * 2007-12-21 2010-10-12 Caterpillar Trimble Control Technologies Llc Control system for tool coupling
US8024095B2 (en) 2008-03-07 2011-09-20 Caterpillar Inc. Adaptive work cycle control system
US8185290B2 (en) * 2008-03-07 2012-05-22 Caterpillar Inc. Data acquisition system indexed by cycle segmentation
US8156048B2 (en) * 2008-03-07 2012-04-10 Caterpillar Inc. Adaptive payload monitoring system
US8989971B2 (en) * 2008-05-27 2015-03-24 Eaton Corporation Method and apparatus for detecting and compensating for pressure transducer errors
CN103298728B (zh) 2011-07-05 2015-04-08 天宝导航有限公司 起重机操纵辅助
DE112012000316B3 (de) * 2012-11-13 2014-10-09 Komatsu Ltd. Hydraulikbagger
JP6147037B2 (ja) * 2013-03-14 2017-06-14 株式会社トプコン 建設機械制御システム
JP6233740B2 (ja) * 2013-09-30 2017-11-22 五洋建設株式会社 クレーン船用吊り位置検出装置の自動設定方法
EP3249113B1 (en) * 2014-12-19 2020-02-26 Volvo Construction Equipment AB System for measuring friction force of excavator swing device for supplying lubricating oil
JP6002873B1 (ja) * 2016-03-28 2016-10-05 株式会社小松製作所 評価装置及び評価方法
JP6812066B2 (ja) * 2016-08-03 2021-01-13 株式会社トプコン 位置方位測定装置及び測量装置
US10151830B2 (en) * 2016-09-14 2018-12-11 Caterpillar Inc. Systems and methods for detecting objects proximate to a machine utilizing a learned process
JP2018146407A (ja) * 2017-03-06 2018-09-20 株式会社トプコン 建築作業機械における回転部材の回転中心取得方法
US9943022B1 (en) * 2017-08-02 2018-04-17 Caterpillar Trimble Control Technologies Llc Determining yaw and center-of-rotation of a rotating platform using a single position sensor
JP6398062B1 (ja) * 2018-03-26 2018-10-03 有限会社ソクテック ケーソン工法における作業室監視システム
US10900202B2 (en) 2018-05-14 2021-01-26 Caterpillar Trimble Control Technologies Llc Systems and methods for generating operational machine heading
JP2024004211A (ja) * 2022-06-28 2024-01-16 株式会社クボタ 旋回作業機、及び旋回作業機の方位検出方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4244123A (en) * 1979-03-26 1981-01-13 Germain Lazure Guidance device for drain tile laying machine
US4630685A (en) * 1983-11-18 1986-12-23 Caterpillar Inc. Apparatus for controlling an earthmoving implement
FR2555624B1 (fr) * 1983-11-28 1986-12-26 Syndicat Nal Entr Drainage Procede et appareillage pour le guidage automatique des engins de terrassement, notamment d'une machine de pose d'elements de drainage
US4672564A (en) * 1984-11-15 1987-06-09 Honeywell Inc. Method and apparatus for determining location and orientation of objects
US4812991A (en) * 1986-05-01 1989-03-14 Magnavox Govt. And Industrial Electronics Company Method for precision dynamic differential positioning
IE59553B1 (en) * 1986-10-30 1994-03-09 Inst For Ind Res & Standards Position sensing apparatus
US4776750A (en) * 1987-04-23 1988-10-11 Deere & Company Remote control system for earth working vehicle
US4888890A (en) * 1988-11-14 1989-12-26 Spectra-Physics, Inc. Laser control of excavating machine digging depth
JP2523005B2 (ja) * 1988-11-29 1996-08-07 株式会社小松製作所 建設作業の管制システム
JP2772551B2 (ja) * 1989-07-31 1998-07-02 大成建設株式会社 総合工事管理方法
US5065326A (en) * 1989-08-17 1991-11-12 Caterpillar, Inc. Automatic excavation control system and method
US4963889A (en) * 1989-09-26 1990-10-16 Magnavox Government And Industrial Electronics Company Method and apparatus for precision attitude determination and kinematic positioning
DE4011316A1 (de) * 1990-04-07 1991-10-17 Rheinische Braunkohlenw Ag Verfahren zur bestimmung der geodaetischen standortes von teilen eines ortsbeweglichen grossgeraetes
US5100229A (en) * 1990-08-17 1992-03-31 Spatial Positioning Systems, Inc. Spatial positioning system
WO1992003701A1 (en) * 1990-08-17 1992-03-05 Spatial Positioning Systems, Inc. Spatial positioning system
JPH04174388A (ja) * 1990-11-06 1992-06-22 Komatsu Ltd 建設機械の監視装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2633426C2 (ru) * 2012-09-21 2017-10-12 Сименс Индастри, Инк. Способ и система для предварительного определения веса груза для карьерного экскаваторного оборудования
RU2681800C2 (ru) * 2014-06-25 2019-03-12 Сименс Индастри, Инк. Система управления рукоятью экскаватора
US10358796B2 (en) 2014-06-25 2019-07-23 Siemens Industry, Inc. Operator assist features for excavating machines based on perception system feedback
RU2745144C1 (ru) * 2014-07-02 2021-03-22 Дж.С. Бэмфорд Экскавейторс Лимитед Способ управления машиной для перемещения материалов
RU2800704C1 (ru) * 2021-11-30 2023-07-26 Цзянсу Скмг Констракшн Машинери Рисерч Инститьют Лтд. Машина для инженерно-геологических работ и способ компенсации отклонения манипулятора указанной машины
RU2800704C9 (ru) * 2021-11-30 2023-08-24 Цзянсу Скмг Констракшн Машинери Рисерч Инститьют Лтд. Машина для инженерно-геологических работ и способ компенсации отклонения манипулятора указанной машины

Also Published As

Publication number Publication date
JP3662587B2 (ja) 2005-06-22
SE9504218L (sv) 1996-03-08
ZA953150B (en) 1996-01-04
WO1995030799A1 (en) 1995-11-16
SE9504218D0 (sv) 1995-11-27
JPH09500700A (ja) 1997-01-21
AU681289B2 (en) 1997-08-21
DE19581454B3 (de) 2013-08-22
AU2470695A (en) 1995-11-29
US5438771A (en) 1995-08-08
DE19581454T1 (de) 1997-02-27

Similar Documents

Publication Publication Date Title
RU2134329C1 (ru) Устройство для определения местоположения копающего приспособления (варианты) и способ определения местоположения рабочей машины на рабочей площадке (варианты)
US6047227A (en) Method and apparatus for operating geography altering machinery relative to a work site
US6191732B1 (en) Real-time surveying/earth moving system
US6711838B2 (en) Method and apparatus for determining machine location
JP3645568B2 (ja) 作業場所に対して地形変更マシンを操作する方法と装置
EP0776485B1 (en) Apparatus and method for determining the position of a work implement
JP3585242B2 (ja) 切削勾配制御装置
US5925085A (en) Apparatus and method for determining and displaying the position of a work implement
JP3585237B2 (ja) ワークサイトで使用される圧縮成形用機械の操作のための方法と装置
AU683165B2 (en) Method and apparatus for determining the location of a work implement
US5964298A (en) Integrated civil engineering and earthmoving system
US5951613A (en) Apparatus and method for determining the position of a work implement
US6421627B1 (en) Device and method for determining the position of a working part
US20050187731A1 (en) Device and method for determining the position of a working part
AU702626B2 (en) Method and apparatus for operating geography-altering machinery relative to work site