RU2127874C1 - Устройство для различения объектов, преимущественно сельскохозяйственных растений, и способ определения местоположения растения - Google Patents
Устройство для различения объектов, преимущественно сельскохозяйственных растений, и способ определения местоположения растения Download PDFInfo
- Publication number
- RU2127874C1 RU2127874C1 RU95104941A RU95104941A RU2127874C1 RU 2127874 C1 RU2127874 C1 RU 2127874C1 RU 95104941 A RU95104941 A RU 95104941A RU 95104941 A RU95104941 A RU 95104941A RU 2127874 C1 RU2127874 C1 RU 2127874C1
- Authority
- RU
- Russia
- Prior art keywords
- radiation
- light
- herbicide
- reflected
- photodetector
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 230000005855 radiation Effects 0.000 claims abstract description 40
- 230000000694 effects Effects 0.000 claims abstract description 8
- 239000004009 herbicide Substances 0.000 claims description 74
- 230000002363 herbicidal effect Effects 0.000 claims description 66
- 238000005507 spraying Methods 0.000 claims description 22
- 238000012545 processing Methods 0.000 claims description 16
- 238000005070 sampling Methods 0.000 claims description 15
- 230000033001 locomotion Effects 0.000 claims description 13
- 230000010363 phase shift Effects 0.000 claims description 8
- 230000003287 optical effect Effects 0.000 claims description 5
- 239000003990 capacitor Substances 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims 4
- 230000000977 initiatory effect Effects 0.000 claims 3
- 230000004913 activation Effects 0.000 claims 2
- 239000000463 material Substances 0.000 claims 2
- 230000001960 triggered effect Effects 0.000 claims 2
- 230000003213 activating effect Effects 0.000 claims 1
- 230000001939 inductive effect Effects 0.000 claims 1
- 230000001360 synchronised effect Effects 0.000 claims 1
- 241000196324 Embryophyta Species 0.000 abstract description 107
- 239000000126 substance Substances 0.000 abstract description 7
- 230000003595 spectral effect Effects 0.000 abstract description 6
- 238000001228 spectrum Methods 0.000 abstract 1
- 238000009333 weeding Methods 0.000 description 18
- 239000002689 soil Substances 0.000 description 17
- 239000007921 spray Substances 0.000 description 14
- 238000003860 storage Methods 0.000 description 14
- 230000010355 oscillation Effects 0.000 description 13
- 238000002310 reflectometry Methods 0.000 description 5
- 230000006378 damage Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000006424 Flood reaction Methods 0.000 description 1
- 239000012773 agricultural material Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- 239000001752 chlorophylls and chlorophyllins Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 244000037666 field crops Species 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 230000035784 germination Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000012887 quadratic function Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000009991 scouring Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 244000045561 useful plants Species 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/46—Measurement of colour; Colour measuring devices, e.g. colorimeters
- G01J3/50—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01M—CATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
- A01M21/00—Apparatus for the destruction of unwanted vegetation, e.g. weeds
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01M—CATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
- A01M7/00—Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
- A01M7/0089—Regulating or controlling systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
- G01J1/44—Electric circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/42—Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/46—Measurement of colour; Colour measuring devices, e.g. colorimeters
- G01J3/50—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
- G01J3/501—Colorimeters using spectrally-selective light sources, e.g. LEDs
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
- G01J2001/4242—Modulated light, e.g. for synchronizing source and detector circuit
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0229—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using masks, aperture plates, spatial light modulators or spatial filters, e.g. reflective filters
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Insects & Arthropods (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Engineering & Computer Science (AREA)
- Catching Or Destruction (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Soil Working Implements (AREA)
- Burglar Alarm Systems (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Conveying And Assembling Of Building Elements In Situ (AREA)
- Forklifts And Lifting Vehicles (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Examining Or Testing Airtightness (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Air Bags (AREA)
Abstract
Устройство и способ предназначены для избирательного уничтожения сорняков при обработке возделываемых сельскохозяйственных культур. Для обеспечения избирательного уничтожения осуществляется высокоскоростная модуляция двух излучателей света (201, 202). Каждый излучатель испускает излучение с отличающейся длиной волны. Модуляция, реализуемая посредством включения и выключения одного излучателя, сдвинута по фазе приблизительно на 90o по отношению к модуляции подсвечиваемого участка поверхности. Световые лучи (203, 204), формируемые излучателями, отражаются от растения (206) или почвы и принимаются фотоприемником. Поскольку растения имеют характерную спектральную отражательную способность а областях электромагнитного спектра, которую можно отличить от спектральной отражательной способности фона, относительные амплитуды отраженного излучения на двух длинах волн излучателей меняются в зависимости от того, растением или почвой отражается излучение. Отношение излучений на двух длинах волн, принимаемых фотоприемником, преобразуется в фазу. Эта фаза сравнивается с начальной опорной фазой модуляции одного из излучателей. Контроллер (221) использует эту фазовую информацию для определения присутствия или отсутствия растения, а затем инициирует уничтожение сорняка. 4 с. и 37 з.п.ф-лы, 8 ил. .
Description
Изобретение относится к устройству и способу, обеспечивающим различие одного объекта от другого, и, в частности, к устройству, которое оптически обнаруживает сорняки, а затем уничтожает эти сорняки.
Во многих ситуациях необходимо обеспечивать различение объекта одного типа от другого. В частности, решение этой задачи важно в таких областях, как производство, обработка данных и доставка почты. Но особую важность различение объектов приобретает в сельском хозяйстве. Например, способность отличать сорняки от полезных растений позволяет уничтожать сорняки, которые уменьшают количество влаги, света и питательных веществ, приходящихся на долю культурных растений, значительно снижая этим урожаи этих культур. Кроме того, сорняки могут засорять механическое оборудование и препятствовать доступу к культурам во время сельскохозяйственных операций, таких как уборка урожая. Общепринятым способом борьбы с сорняками является распыление гербицида. Однако, при распылении гербицида для борьбы с редко растущими сорняками большая часть гербицида расходуется бесполезно, осаждаясь на открытую почву, где гербицид не оказывает никакого действия. Из-за дороговизны гербицидов многие садоводы пытаются снизить затраты путем использования меньшего количества гербицида. Однако, в таких случаях, более устойчивые к воздействию химических средств сорняки часто сохраняют жизнеспособность из-за недостаточного применения гербицида. Кроме того, гербициды могут оказывать очень нежелательное действие на окружающую среду, например, вызывая загрязнения почвенных вод или химическое высушивание различных культур на соседних полях во время паводков. Таким образом, существует потребность в уменьшении стоимости гербицидов и их влияния на окружающую среду путем избирательного распыления только на сорняки.
В настоящее время в технике известны способы оптического различения почвы и растений. Однако многие из этих способов используют устройства, которые используют естественный солнечный свет для создания отраженного изображения. Таким образом, устройства не могут работать ночью и их работа серьезно ухудшается в условиях облачности, или даже при работе в тени. Другие способы различения почвы и растений используют устройства, применяющие для создания отраженного изображения источник искусственного белого цвета. Однако при нормальных рабочих условиях (т.е. в присутствии солнечного света) этот источник искусственного света должен конкурировать с солнцем, которое в тысячи раз ярче и постоянно меняет яркость и спектральное распределение. Следовательно, при любом способе, как с использованием естественного солнечного света, так и источника искусственного белого света, не удается обеспечить получение точной спектральной характеристики объектов, находящихся в поле зрения устройства, достаточной для уничтожения отдельных сорняков. Реально применение этих способов ограничено борьбой с сорняками культур полей с низким уровнем обработки или без нее, где этот недостаток точности является допустимым. Однако, фруктовые деревья, виноградники и пропашные культуры при борьбе с сорняками требуют высокой степени точности воспроизведения спектральных характеристик. Таким образом, существует потребность в устройстве, которое обеспечивает точное оптическое восприятие сорняков и эффективное уничтожение этих сорняков.
В соответствии с настоящим изобретением, предлагаются устройство и способ различения растений различных типов, которые дают возможность идентификации, и тем самым избирательного уничтожения или обработки, отдельных растений. В одном варианте осуществления этого изобретения два светоизлучателя обеспечивают избирательно модулированные монохроматические лучи света с различными длинами волн. Эти лучи света фокусируются на небольшом участке поверхности на грунте (где может быть голая земля, требуемые растения или нежелательные сорняки). Детектор обнаруживает составляющие этих лучей света, отраженные от участка поверхности, и вырабатывает сигнал, идентифицирующий объект, от которого был отражен световой луч: растение или иной какой-либо объект, нерастительного происхождения например, почвы. Контроллер анализирует этот сигнал, и если обнаружено растение, приводит в действие соответствующее устройство, предназначенное для оказания некоторого воздействия на растение. Если растение является сорняком, то указанным воздействием может быть распыление гербицида на растение.
Настоящее изобретение позволяет значительно уменьшить применение гербицидов за счет избирательного воздействия на растение, которое должно быть уничтожено. Кроме того, настоящее изобретение обеспечивает возможность работы в широком диапазоне внешних условий, включая ветреную погоду, яркое солнце, искусственное освещение или даже полную темноту. Фактически нанесение гербицида в соответствии с настоящим изобретением ночью имеет существенные преимущества. Более низкие температуры дают возможность повысить продолжительность и эффективность работы в критические периоды во время сезонов роста. Кроме того, отсутствие солнца продлевает эффективность действия гербицида. Более высокая относительная влажность ночью способствует орошению листвы, что также увеличивает эффективность применения гербицида. Отсутствие ветра, часто имеющее место после заката солнца, исключает чрезмерное распыление. Следовательно, настоящее изобретение позволяет значительно повысить эффективность использования гербицида для уничтожения сорняков.
Затраты на проведение работ и используемое оборудование в значительной мере связаны со скоростью, с которой распыляющее транспортное средство перемещается по полю, саду или винограднику. При использовании традиционных способов распыления скорость распыляющего транспортного средства может быть ограничена турбулентностью воздуха, обусловленной движением оборудования и возникающим при этом избыточным распылением. В одном варианте осуществления настоящего изобретения прополочный культиватор использует распылительную насадку, которая направляет на опрыскиваемое растение очень узкий сплошной конус распыляемого раствора. Этот конус распыляемого раствора эффективно исключает чрезмерное распыление и дает возможность более высоких скоростей транспортного средства.
Настоящее изобретение обеспечивает условия, при которых можно не пропускать никаких сорняков, не расходовать на сорняки гербицида больше, чем требуется, и не распылять гербицид или распылять меньше гербицида на голую землю. Получаемые при этом преимущества включают экономию затрат за счет уменьшения количеств вносимого гербицида, уменьшение затрат на оплату труда, уменьшение стоимости работы оборудования, повышение качества, уничтожения сорняков и резкое снижение воздействия гербицида на культуры и на обслуживающий персонал.
На фиг. 1 показаны кривые, характеризующие отражательную способность растения и почвы для различных длин волн;
на фиг. 2 - схематичное представление одного их вариантов осуществления прополочного культиватора в соответствии с настоящим изобретением;
на фиг. 3 - иллюстрация действия диафрагмы при обнаружении сорняка;
на фиг. 4 - огибающие сигналов для двух различных длин волн до и после отражения от поверхности;
на фиг. 5 - другой вариант осуществления прополочного культиватора в соответствии с настоящим изобретением;
на фиг. 6A и 6B - иллюстрация типовых промежутков, требующихся на поле пропашных культур;
на фиг. 7 - еще один вариант осуществления прополочного культиватора в соответствии с настоящим изобретением.
на фиг. 2 - схематичное представление одного их вариантов осуществления прополочного культиватора в соответствии с настоящим изобретением;
на фиг. 3 - иллюстрация действия диафрагмы при обнаружении сорняка;
на фиг. 4 - огибающие сигналов для двух различных длин волн до и после отражения от поверхности;
на фиг. 5 - другой вариант осуществления прополочного культиватора в соответствии с настоящим изобретением;
на фиг. 6A и 6B - иллюстрация типовых промежутков, требующихся на поле пропашных культур;
на фиг. 7 - еще один вариант осуществления прополочного культиватора в соответствии с настоящим изобретением.
Нижеследующее описание является иллюстративным и не накладывает никаких ограничений. Возможны другие варианты осуществления изобретения, вытекающие из последующего раскрытия.
Излучение отражается от 35 поверхностей или, наоборот, поглощается 35 поверхностями в зависимости от характеристик этих поверхностей. В случае растений излучение с длинами волн синей и красной области (то есть, от 380 до 700 нм) сильно поглощаются хлорофиллами в растениях, тогда как длины волн ближнего инфракрасного (ИК) диапазона (то есть, 700 - 1000 нм) сильно отражаются. Другие вещества, такие, как почва, поглощают гораздо больше излучения для многих из этих длин волн. На фиг. 1 показан график, ось x которого представляет длины волн света от 400 нм до приблизительно 1000 нм, а ось y представляет отражательную способность в процентах. Как следует из фиг. 1, для длины волны, например, 750 нм типовое растение (кривая 100) легче отличить от типов почвы (кривая 101), потому что растение отражает более высокий процент падающего света, чем почва. Следует отметить, что растение имеет минимальную отражательную способность и фактически отражает меньше, чем почвы на длине волны приблизительно 670 нм. В соответствии с настоящим изобретением для создания отраженного света используется множество источников монохроматического света, а не естественный солнечный свет или источник искусственного белого света. Источники света, оптимизированные для различения растения от почвы, как показано на фиг. 1, имеют длину волны приблизительно 670 нм (в верхнем красном диапазоне) и длину волны приблизительно 720 - 750 нм (в ближнем ИК-диапазоне).
На фиг. 2 показан возможный вариант осуществления устройства в соответствии с изобретением, которое может использоваться как, например, "интеллектуальный" прополочный культиватор. В этом варианте предусмотрены два источника монохроматического света 201 и 202. Источник монохроматического света 201 испускает луч света 203 с длиной волны 750 нм, а источник монохроматического света 202 луч света 204 с длиной волны приблизительно 670 нм. Источники света 201 и 202 в типовом случае представляют собой коммерчески доступные светодиоды. На основе арсенида галлия, фосфида арсенида галлия или арсенида галлия, алюминия, являющиеся весьма надежными и дешевым источником монохроматического света. В качестве источников света могут быть также использованы лазеры или широкополосные источники света с фильтрами.
Если диоды 201 и 202 просто включить постоянным током и направить на предварительно определенный участок земли 206, то отражение солнечного света от поверхности 206 значительно ухудшит работу устройства 200 или вообще сделает ее невозможной. Поэтому в соответствии с настоящим изобретением, ток диодов 201 и 202 избирательно модулируется. В одном варианте осуществления модуляция такова, что диоды 201 и 202 возбуждаются с наивысшей возможной частотой в пределах их полосы, при обеспечении совместимости с другими компонентами системы (подробно описанной ниже). В этом варианте осуществления диоды 201 и 202 модулируются с частотой 455 килогерц. Следует иметь в виду, что по мере возрастания частоты имеется больше информации для использования в определенном временном интервале, благодаря чему обеспечивается повышение чувствительности измерений.
Световые лучи 203 и 204, испускаемые диодами 201 и 202 соответственно, фокусируются объективом (линзой) 205 излучателя на предварительно определенном участке поверхности 206, который может содержать растение, почву или то и другое вместе. Световые лучи 207, отраженные от поверхности 206, обнаруживаются фотоприемником 210 после прохождения через объектив 208 детектора и отверстия 209А пластинки с отверстием (диафрагмы) 209. Свет, обнаруженный фотоприемником 210, будет содержать различные соотношения длин волн монохроматического света, в зависимости от того, растением или почвой отражаются лучи света 203 и 204.
Заметим, что полное количество света, отраженного от поверхности, например от листа растения, пропорционально общей площади участка отражения. Например, как показано на фиг. 3, если диаметр d сорняка 300 составляет одну четверть (1/4) дюйма [5,14 мм] (таким образом, имея площадь в π/64 квадратных дюйма), а диаметр D общей площади отражающего участка 302 составляет один дюйм [25,4 мм] (таким образом, имея площадь π/4 квадратных дюймов), сорняк 300 представляет 1/16-ю от общей отражающей площади, а следовательно, вносит только 1/16-ю часть в полное количество отраженного света. Однако, если свет, отраженный от сорняка того же размера (диаметром в одну четверть дюйма) ограничивается отверстием 301, которое имеет в длину 1 дюйм, но в ширину только одну четверть дюйма, то количество света, отраженного от сорняка, начинает приближаться к одной четверти новой общей отражающей площади (то есть, площади отверстия 301). Таким образом, в этом примере уровень светового сигнала, отраженного от поверхности, возрастает в четыре раза. Отсюда следует, что за счет введения диафрагмы 209 (фиг. 2), которая содержит отверстие 209A с длиной, значительно превышающей ее ширину, изобретение позволяет заменить типичную квадратичную функцию площади (то есть D2/d2) линейным соотношением (то есть, D/d).
Для обеспечения надлежащей юстировки детекторного объектива 208 отверстия 209A диафрагмы 209 и фотоприемника 210 в описываемом варианте осуществления изобретения предусмотрено, что отверстие 209A гораздо меньше, чем объектив 208. Кроме того, в этом варианте осуществления изобретения предусматривается получение изображения отраженных лучей 207 посредством детекторного объектива 208 меньших размеров по сравнению с фотоприемником 210. Таким образом любые неточности юстировки этих трех элементов не оказывает решающего влияния, пока рассогласование находится в пределах, определяемых с учетом размера отверстия 209A, размера фотодиода 210 и расстояния диода 210 от отверстия 209A. Следует иметь в виду, что увеличение размера фотоприемника 210 обуславливает нежелательное увеличение емкостного сопротивления. Таким образом, в идеале, для минимизации емкостного сопротивления фотоприемник 210 должен быть лишь немного больше отверстия 209A. Однако в соответствии с одним из вариантов осуществления изобретения это емкостное сопротивление демфируется каскадной усилительной схемой, обеспечивая этим по существу ту же самую ширину полосы, как в случае использования устройства с более низким емкостным сопротивлением, то есть фотоприемника 210 меньших размеров.
Фотоприемник 210 превращает световую энергию отраженных световых лучей 207 в электрические сигналы низкого уровня, которые представляют цветовую характеристику объекта (объектов) в поле зрения. Как показано на фиг. 4, огибающая колебаний 400 имеет длину волны, например, 750 нм, а огибающая колебаний 401 имеет длину волны, например, 670 нм. Заметим, что диоды 201 и 202 (фиг. 2) модулируются сигналом с одной и той же частотой и с тем же самым рабочим циклом (скважностью), благодаря чему формируются одинаковые огибающие колебания.
Однако, как показано на фиг. 4, модуляция одного диода (обеспечивающая формирование огибающей 400) примерно на 30 - 45o сдвинута по фазе относительно модуляции другого диода (обеспечивающей формирование огибающей 401). После отражения световых лучей 203 и 204 от поверхности 206 (временной период 404) фотоприемник 210 (фиг. 2) формирует ток, фаза которого является функцией относительного количества света каждой длины волны. Например, колебание 400A представляет ток, сформированный фотоприемником после детектирования огибающей 400. Точно также колебание 401A представляет собой ток, сформированный фотоприемником 210 после детектирования огибающей 401. Колебание 401A теперь сдвинуто по фазе приблизительно на 90o по сравнению с колебанием 400A. Этот сдвиг по фазе обусловлен более высоким емкостным сопротивлением диода 202 (фиг. 2), который формирует огибающую 401, по сравнению с емкостным сопротивлением диода 201, который формирует огибающую 400, и задержками фотоэмиссии (то есть, током излучателя по сравнению с действительным светоиспусканием). Фотоприемник 210 суммирует колебания 400A и 401A и вырабатывает колебание 402, которое сдвинуто по фазе в этом примере приблизительно на 45o. Таким образом, фазовый сдвиг колебания 402 является функцией относительных фаз колебаний 400A и 401A, а также различия в фазовой задержке, свойственной различным излучателям. Заметим, что после отражения световых лучей 203 и 204 от поверхности 206 (фиг. 2) полученное в результате суммарное колебание 402 изменяется по амплитуде (на фиг. 4 не показано), в зависимости от того, отражается или поглощается свет с длиной волны 750 нм или 670 нм. Эта разница амплитуд обуславливает в токе 402 детектора еще один источник фазового сдвига. Этот переменный фазовый сдвиг содержит требуемую спектральную информацию об отражательной способности.
Резонансный контур 213, содержащий катушку индуктивности 211 и емкость 213, включенный последовательно с фотоприемником 210, резонирует вследствие возбуждения от фотоприемника 210. Выходное колебание резонансного контура 213, следовательно, сохраняет существенно синусоидальную форму. Резонансный контур 213 режектирует все несинусоидальные составляющие нерезонансной частоты (то есть, нежелательные гармоники). Прошедшие синусоидальное колебание поступает на схему 214, обычно содержащую усилители 215A и 215B и резонансный контур 215.
Схема 214 обеспечивает высокий коэффициент усиления для модулированных сигналов, сформированных из отраженных световыми лучами 207, и в то же время катушка индуктивности 211 в резонансном контуре 213 отводит нежелательный выходной сигнал постоянного тока от фотодиода 210, обусловленный солнечным светом, прямо на землю. Автоматическая подстройка частоты (не показана) используется для того, чтобы обеспечить резонансным контуром 215 максимальное подавление за пределами полосы и снизить до минимума помехи, вызванные солнечным светом, отраженным от поверхности 206, воздействующие на модулированные световые лучи 207, отраженные от той же самой поверхности. Автоматическая регулировка усиления (АРУ) 230 используется для обеспечения максимального широкого динамического диапазона усилителей 215A и 215B. Схема 215B ограничивает усиленное синусоидальное колебание для формирования прямоугольных колебаний, подаваемых на фазовый детектор 217. Фазовый детектор 217 принимает прямоугольные выходные схемы 214 и умножает эти колебания на колебания диода 201. Другими словами, фазовый детектор 217 определяет сдвиг фаз выходных колебаний схемы 214 по отношению к первоначальной фазе колебаний, с выхода диода 201. В одном из примеров осуществления в качестве фазового детектора 217 использован блок промежуточной частоты ЧМ - приемника LM3089, производимого компанией "Нашнэл Семикэндактер" (National Semiconductor).
Для увеличения быстродействия обработки информации система 200 использует схему выборки и хранения 218, соединенную с фазовым детектором 217. Выходной сигнал схемы выборки и хранения 218 подается на вычитающий вход устройства сравнения (компаратора) 219. Входной сигнал схемы выборки и хранения 218 подается на суммирующий вход компаратора 219, на вычитающий выход устройства сравнения (компаратора) 220 и на аналого-цифровой преобразователь (АПП) 223. Компаратор 219 обеспечивает сравнение мгновенного значения входного сигнала схемы выборки и хранения 218 с последним значением, обнаруженным схемой выборки и хранения 218, и таким образом обеспечивает индикатор, положительным или отрицательным является мгновенное изменение аналогового сигнала, обнаруживаемого фотодиодом 210. Выходной сигнал компаратора 219, подаваемый на контроллер 221, таким образом указывает направление изменения любой определенной цветовой характеристики. Таким образом компаратор 219 обеспечивает для контроля 221 информацию, которая позволяет контроллеру 221 определять величину и направление сдвига фаз суммарного отраженного излучения по отношению к начальным модулированным лучам 203 и 204.
Устройство сравнения отношений (компаратор) 220 сравнивает выходной сигнал цифроаналогового преобразователя (ЦАП) 222 с мгновенным значением выходного сигнала фазового детектора 217. Пороговое опорное напряжение в данном варианте осуществления регулируется вручную для различных типов минеральной почвы фона и частично разложившегося органического вещества. В другом варианте осуществления пороговое опорное напряжение регулируется автоматически соответствующим программным обеспечением в контроллере 221 и ЦАП 222. Таким образом, контроллер 221 обеспечивает непрерывное обновление данных фона для компаратора 220 посредством ЦАП 222. Компаратор 220 имеет двоичный выходной сигнал, который зависит от того, превышает ли отношение длин волн, обнаруженных в поле зрения, отношение длин волн для опорного фона.
В соответствии с настоящим изобретением, контроллер 221 анализирует сигналы, вырабатываемые компараторами 219 и 220, и определяет, обнаруживается ли сорняк на предварительно определенной площади поверхности 206. Следует иметь в виду, что хотя показаны одиночные компоненты (например, один фотоприемник 210), система 200 в некоторых вариантах осуществления может содержать множество фотоприемников 210 и соответствующие схемы обработки сигнала.
При обнаружении сорняка контроллер 221 приводит в действие устройство для уничтожения сорняка. На фиг. 2 контроллер 221 формирует сигнал возбуждения (обычно имеющий высокий уровень для транзистора 228) для базы биполярного n1p-n - транзистора 228, если обнаруживается сорняк, включая этим транзистор 228. Включение транзистора 228 затем открывает клапан с электромагнитным управлением 227, который выпускает струю гербицида 226 через насадку 229.
Для минимизации взаимных помех при фотодетектировании сигналов от растения гербицид 266 не распыляется в тот интервал времени, когда фотоприемник 210 принимает отраженные световые лучит 207 от участка поверхности 206. Следовательно, распылительная насадка 229 располагается позади (относительно движения транспортного средства) поверхности 206, то есть поля зрения фотоприемника 210.
Следовательно, для надлежащего направления струи гербицида 226 на поверхность 206 контроллер 221 задерживает сигнал для транзистора 228 с учетом скорости v транспортного средства (которая определяется спидометром 224 транспортного средства) и расстояния X струи позади сорняка в момент обнаружения сорняка. Это время задержки T определяется как T = X/v, где X - расстояние в фунтах, v - скорость в футах в секунду, а T - время в секундах. Могут быть использованы различные типы спидометров, включая доплеровские измерители скорости. В настоящем изобретении допустимы скорости транспортного средства больше 10 миль в час (0,16 дюйма за миллисекунду) [16,0934 км/ч] , потому что система располагает средствами реализаций вычислительных операций при тактовых участках контроллера в мегагерцовом диапазоне.
Рабочее программное обеспечение контроллера 221 хранится в твердотельной памяти. Это программное обеспечение может быстро и легко адаптироваться к различным культурам и различным условиям для сорняков. Например, если фотоприемник 210 обнаружил сорняк в течение трех последовательных временных кадров, и соседние фотоприемники также зафиксировали этот же сорняк в двух из трех временных кадров, то могут включаться клапаны с электромагнитным управлением на каждой стороне клапана 227 (который специальным образом срабатывает) в ожидании приближения к крупному сорняку.
В одном варианте осуществления насадки 229 направляются на землю. Каждая насадка 229, направленная на поверхность 206, связана с определенным фотоприемником 210. Контроллер 221 управляет каждым клапаном 227 посредством сигналов, подаваемых на базу каждого транзистора 228. Транзистор 228 возбуждается для оптимизации скорости переключения клапана с электромагнитным управлением 227. Этот клапан с электромагнитным управлением 227 обычно отрывается и закрывается приблизительно за 5 - 10 мс. Насадки 229 осуществляют импульсный выброс гербицида 226 прямо на листву растения, тем самым исключая распыление на окружающую площадь.
При применении изобретения может использоваться фотоприемник для обнаружения сорняков, отстоящих на некотором расстоянии от клапана, через который должен выбрасываться гербицид. Это применение особенно полезно при борьбе с сорняками вдоль автомобильных дорог. Одна из проблем в борьбе с сорняками вдоль автомобильных дорог состоит в том, что транспортное средство, содержащее гербицид, может оставаться на автомобильной дороге, тогда как с сорняками растут на обочинах или на участках вблизи автомобильной дороги. Таким образом, в соответствии с изобретением фотоприемник обнаруживал бы сорняки в данном месте у автомобильной дороги.
Насадка, через которую распыляется гербицид, калибруется, чтобы обеспечить надлежащий угол для выброса струи гербицида так, чтобы гербицид попадал на участок с сорняками. Гербицид будет выпускаться под выбранным углом и в течение выбранного периода времени для того, чтобы гарантировать, что участок земли, на котором растут сорняки, покрывается гербицидом, но при этом другие соседние участки не покрываются гербицидом. Вычисление угла и давления, требуемого для выброса гербицида до надлежащего участка вблизи дороги может осуществляться с использованием хорошо известных уравнений движения потока жидкости и гидродинамики.
Выброс жидкого гербицида на большие расстояния (несколько футов) на конкретный сорняк требует использования сплошного потока гербицида достаточной массы. Если этот сплошной поток гербицида включается и остается непрерывным во время присутствия сорняков в оптическом поле зрения, то распыляется больше гербицида, чем необходимо.
Для минимизации количества гербицида при сохранении той же самой траектории поток модулируется посредством широтно-импульсной модуляции. Рабочий цикл (скважность) широтно-импульсной модуляции становится эквивалентным регулировке потока, без влияния на давление или размеры насадки.
Система 200 имеет значительные преимущества при использовании в качестве прополочного культиватора за счет более быстрого движения через ряды культур по сравнению с общепринятыми прополочными культиваторами. Затраты на выполнение работ и используемое оборудование по существу связаны со скоростью, с которой оборудование может перемещаться, например, по саду или винограднику. При использовании традиционных способов уничтожения сорняков скорость, с которой транспортное средство способно перемещаться, ограничивается турбулентностью воздуха, происходящей от движения оборудования и связанного с этим избыточного распыления. Распылительная насадка 229 направляет распыление очень узким сплошным конусом. Таким образом, настоящее изобретение эффективно исключает избыточное распыление и позволяет использовать гораздо более высокие скорости транспортного средства.
В другом варианте осуществления настоящего изобретения, показанном на фиг. 5, световые лучи 203 и 204 изолируются от солнечного света. В частности, диоды 201 и 202 последовательно включаются и выключаются с высокой частотой, например, 1 МГц. Усилитель 501 буферизует напряжение, выработанное фотоприемником 210, формирует усиленное напряжение для схем выборки и хранения 502. Схемы выборки и хранения 502 стробируются тем же тактовым сигналом, который управляет источниками света 201 и 202. Таким образом одна схема выборки и хранения включается в то же время, что и источник света 201, другая схема выборки и хранения включается в то же время, что и источник света 202, а последняя схема выборки и хранения включается, когда не включается ни источник света 201, ни источник света 202. Таким образом, одна схема выборки и хранения формирует выходной сигнал, представляющий свет, имеющий длину волны 670 нм и солнечный свет, другая схема выборки и хранения формирует выходной сигнал, представляющий свет с длиной волны 750 нм и солнечный свет, а последняя схема выборки и хранения формирует сигнал, представляющий только солнечный свет.
Усилители 503 вычитают сигналы, обусловленные солнечным светом, формируя на выходе сигналы, представляющие свет с длиной волны 670 и 750 нм. Усилитель 504 суммирует выходные сигналы усилителей 503. Заметим, что все эти выходные сигналы также поступают на АЦП 510 через аналоговые вентили переноса 508. АЦП 510 связан непосредственно с контроллером 221. Выходной сигнал от схемы выборки и хранения 505 подается на вычитающий вход устройства сравнения (компаратора) 506. Входной сигнал для схемы выборки и хранения 505 подается на суммирующий вход компаратора 506 и на вычитающий вход устройства сравнения (компаратора) 507. Компаратор 506 в этой конфигурации формирует выходной сигнал, индицирующий изменение любой определенной цветовой характеристики (см. также компаратор 219 на фиг. 2). Следовательно, компаратор 506 выдает информацию для контроллера 221, которая позволяет контроллеру 221 определять величину и направление сдвига фаз суммируемого отраженного излучения по отношению к световым лучам 203.
Компаратор 507 сравнивает выходной сигнал ЦАП 509 с мгновенным значением выходного сигнала усилителя 504. Выходной сигнал ЦАП (ЦАП 222 на фиг. 2) регулируется для компенсации составляющих от фоновой минеральной почвы и частично разложенного органического вещества. Таким образом, компаратор 507 формирует выходной сигнал, который меняется в зависимости от того, превышает ли отношение длины волны, обнаруженное в поле зрения, отношение у опорного фона. Контроллер 221 анализирует сигналы, формируемые компараторами 506 и 507 для того, чтобы определить, обнаружен ли сорняк.
Заметим, что в других вариантах осуществления изобретения для уничтожения сорняка или нежелательного растения вместо гербицида может использоваться механическое устройство, такое, как ротационная культиваторная лапа. Фиг. 6A и 6B иллюстрируют типичные промежутки в поле пропашных культур. Как показано на фиг. 6A, пропашные культуры 605 обычно высаживаются двумя рядами на грядках 604. Промежуток 600 между этими двумя рядами составляет приблизительно 6-12 дюймов [15, 24-30, 48 см], а промежуток 601 между серединами грядок 604 составляет приблизительные 24 - 48 дюймов [60, 96 - 121, 92 см]. Шины 603, например, трактора (не показан) проходят над двумя грядками 604 на расстоянии 608 приблизительно 48 - 96 дюймов [121, 92-243, 84 см]. Ряды 606, показанные на фиг. 6B, плотно засажены для обеспечения максимального производства. Однако, особенно при оптимальных условиях роста, слишком много растений растет в ряду в непосредственной близости друг к другу, и они должны прореживаться для того, чтобы дать возможность надлежащего развития каждого растения. Поэтому растения 607 должны подвергаться обработке лапой культиватора для обеспечения промежутка 602 величиной приблизительно 6-12 дюймов между остающимися растениями 605. Таким образом, прополочный культиватор, показанный на фиг. 2, либо на фиг. 5, который оборудован лапой с электромагнитным управлением вместо клапана с электромагнитным управлением, обеспечивает эту функцию прореживания в дополнение к уничтожению сорняков.
В другом варианте осуществления настоящего изобретения, показанном на фиг. 7, "интеллектуальный" прополочный культиватор 700 осуществляет различение между различными видами сорняков и культурных растений на основе спектральной отражательной способности, размера, формы и местонахождения растений.
Прополочный культиватор 700 использует множество источников монохроматического света 701-1, 701-2, 701-3 ... 702-N (где N - это общее число источников света, причем каждый источник имеет отличающуюся длину волны). В этом варианте осуществления изобретения микроконтроллер 221 в дополнение к функциям, описанным в связи с фиг. 2 и 5, должен иметь возможность осуществления анализа следующих параметров: размер отдельных листьев, форма отдельных листьев, местонахождение растения по отношению к определенному ряду и промежуток в ряду.
Различные длины волн источников света 701-1 - 701-N модулируются посредством многократной тональной модуляции, причем каждая длина волны соответствует определенной частоте модуляции. Световые лучи 702 отражаются от поверхности 206 в поле зрения фотоприемника 210 таким образом, как описано со ссылками на фиг. 2. Резонансный контур 713, состоящий из катушки индуктивности 711 и емкости 712, по ширине полосы обычно шире резонансного контура 213 (фиг. 2) для того, чтобы охватывать диапазон частот модуляции. Усилитель 703 обеспечивает коэффициент усиления и согласование полных сопротивлений, фильтры 704 являются узкополосными фильтрами, причем каждый фильтр настроен на одну из частот модуляции. Детекторы 705 преобразуют выходные сигналы от фильтров 704 в уровни постоянного тока, пропорциональные содержанию различных длин волн в отраженных лучах света 207. Аналоговые вентили переноса 707 мультиплексируют эти уровни постоянного тока для быстродействующего АЦП 223. АЦП 223 затем активизирует контроллер 221, который приводит в действие передатчик 228 и лапу с электромагнитным управлением 708.
В другом варианте осуществления настоящего изобретения (не показан) прополочный культиватор, подобный иллюстрируемому на фиг. 2, 5 или 7, является переносным, выполненным либо как ручное, либо как ранцевое устройство. В таком варианте осуществления оптическая система (например, диоды 201 и 202, объектив 205 излучателя, объектив 208 детектора, диафрагма 209 и фотоприемник 210, аналогичные показанным на фиг. 2) связана с распылительным отводом оптико-волоконным кабелем. Отвод, кроме того, содержит акселерометры для определения скорости и направления перемещения отвода.
Прополочный культиватор в соответствии с настоящим изобретением обеспечивает гораздо более эффективный способ уничтожения сорняков в любой культуре. Например, в типовом саду общепринятое уничтожение сорняков предусматривает в основном три типа обработки, некоторые из них выполняются два или более раз в год, в зависимости от возделывания культуры и конкретного географического района. Во время первой обработки ранней весной ряд шириной от трех до пяти футов [981,4-152,4 см] обильным слоем предвсходового гербицида. Состав смеси является богатым и покрытие чрезвычайно обильным, потому что упущенная возможность полного уничтожения однолетних сорняков в это время означает более высокие затраты позже, когда сорняки вызревают. Кроме того, в гербицидную смесь часто добавляют сильный послевсходовый гербицид для поражения однолетних растений, которые уже взошли, и многолетних сорняков, оставшихся от последнего вегетационного периода. Обработка проводится с участием водителя транспортного средства с использованием опрыскивателя, установленного на тракторе, и значительного количества дорогостоящего гербицида. Во время второй обработки в летние месяцы скашиваются или культивируются "середины" (то есть, участки между опрысканными рядами, которые обычно имеют в ширину от 15 до 17 футов [457,2-518,16 см]. Вновь в обработке участвует водитель, используется косилка и, вероятнее всего, другой трактор, помимо используемого для распыления. Обычно эта обработка повторяется во время вегетационного периода от двух до четырех раз. Наконец, при третьей обработке послевсходовый гербицид наносится на сорняки, которые избежали зимнего довсходового применения в опрысканных рядах. Это применение часто осуществляется двумя людьми, идущими за трактором с ручными распылительными отводами. Трактор движется от середины среднего ряда, тогда как двое рабочих опрыскивают сорняки в ранее опрысканных рядах, по одному рабочему в каждом из двух рядов, примыкающих к срединному ряду. На тракторе установлен опрыскиватель, который качает гербицид высокой концентрации, предназначенный для уничтожения полностью выросших здоровых сорняков. Обслуживающий персонал может использовать два ранцевых распылительных приспособления, при этом они находят и опрыскивают отдельные сорняки. Эта обработка выполняется два или больше раз в год.
В соответствии с настоящим изобретением операции опрыскивания и скашивания могут делаться одновременно. Таким образом, в течение всего сезона используется один трактор, а не три, описанных выше. Интеллектуальный прополочный культиватор в едином применении установлен спереди трактора. Сзади трактора затем устанавливается обычная ротационная косилка или косилка с бичевым аппаратом. Таким образом может делаться зимняя довсходовая обработка частью гербицида, используемого в общепринятых способах, или в некоторых случаях может исключаться целиком, потому что прополочный культиватор избирательно и точно нацелен на применение гербицида, а следовательно, он гораздо более эффективен позже в вегетационный период. Кроме того, как отмечено выше, вся работа осуществляется одним водителем и одним трактором. Кроме того, можно делать одновременно два различных типа распыления. Например, общепринятыми способами может наноситься довсходовый гербицид (направленный на всю площадь земли), тогда как послевсходовый гербицид (направленный на предварительно определенные растения) может применяться в соответствии с настоящим изобретением.
Кроме того, прополочный культиватор в соответствии с настоящим изобретением способен работать в широком диапазоне внешних условий, включая ветер, яркий солнечный свет, искусственное освещение или полную темноту, давая этим возможность 24-часовой работы. Распыление гербицида ночью имеет значительные преимущества, потому что более низкая температура дает возможность более длительной и более эффективной работы в критические периоды сезона. Например, более высокая относительная влажность ночью помогает орошению листвы, продлевая этим эффективность гербицидного вещества, а отсутствие ветра после захода солнца исключает избыточное распыление. Следовательно, в дополнение к значительному уменьшению затрат на гербицид, связанных с уничтожением сорняков, настоящее изобретение, благодаря обеспечению возможности работы в ночных условиях, дает дополнительные преимущества.
Кроме того, настоящее изобретение минимизирует или даже исключает использование гербицидов за счет более дешевых и более безвредных для окружающей среды послевсходовых гербицидов. Послевсходовые гербициды наносятся на отдельные растения и проникают в растения через их листву. Довсходовые гербициды наносятся на почву и предотвращают прорастание новых семян. Довсходовые гербициды продолжают существовать в почве в течение длительных периодов времени и, следовательно, должны подчиняться более жестким установленным нормативам применения. Кроме того, эти довсходовые гербициды обычно более дороги, чем послевсходовые гербициды, в частности вследствие вышеуказанного более строгого нормативного регулирования, связанного с этими веществами. Таким образом, настоящее изобретение уменьшает затраты на уничтожение сорняков и в то же время уменьшает воздействие на окружающую среду.
Итак, точность, обеспечиваемая прополочным культиватором в соответствии с настоящим изобретением гарантирует, что сорняки не пропускают, они не получают больше гербицида, чем требуется, и гербицид не распыляется на голую землю. В результате прополочный культиватор уменьшает затраты труда и затраты на работу оборудования, уменьшает затраты на гербицид, значительно улучшает качество уничтожения сорняков и резко уменьшает воздействие гербицида и на возделываемую культуру и на обслуживающий персонал.
Хотя изобретение описано выше со ссылками и на управление нанесением гербицидного вещества путем опрыскивания, настоящее изобретение может использоваться в сочетании с другими сельскохозяйственными материалами, такими, как удобрения, фунгицидов и инсектицидов. Кроме того, следует иметь в виду, что термин "свет" не ограничивается видимым светом, а относится к любому излучению с соответствующей длиной волны. Специалисты в этой области техники смогут разработать другие прополочные культиваторы в объеме настоящего изобретения, исходя из сведений, содержащихся в описании и иллюстрирующих его чертежах.
Claims (41)
1. Устройство для различения объектов, преимущественно сельскохозяйственных растений, содержащее источник излучения, приемник отраженного от участка поверхности излучения, средство анализа отраженного излучения для определения, является ли данный участок растением, средство инициирования избирательного воздействия в результате анализа и средство перемещения источника излучения и приемника для обеспечения сканирования поверхности, отличающееся тем, что источник излучения выполнен в виде по меньшей мере двух источников монохроматического света с разной длиной волны, причем каждый источник выполнен с возможностью фокусировки света на участке неподвижной поверхности.
2. Устройство по п.1, отличающееся тем, что источники света выполнены в виде светодиодов.
3. Устройство по п.1, отличающееся тем, что источники света выполнены в виде лазеров.
4. Устройство по п.1, отличающееся тем, что источники света выполнены в виде источников хроматического света с фильтрами.
5. Устройство по п. 4, отличающееся тем, что источники хроматического света выполнены в виде ламп накаливания.
6. Устройство по п. 4, отличающееся тем, что источники хроматического света выполнены в виде люминесцентных ламп.
7. Устройство по п.1, отличающееся тем, что содержит средства модуляции источников света.
8. Устройство по п.7, отличающееся тем, что содержит диафрагму, отверстие которой обеспечивает функциональную связь по оптическому сигналу с детектором и ограничивает световой луч, отраженный от предварительно определенного участка поверхности.
9. Устройство по п.8, отличающееся тем, что содержит первый объектив для фокусировки световых лучей на указанном предварительно определенном участке поверхности.
10. Устройство по п.9, отличающееся тем, что содержит объектив для фокусировки отраженного от участка поверхности светового луча, прошедшего через отверстие диафрагмы, на детекторе.
11. Устройство по п.10, отличающееся тем, что содержит схему выборки и сохранения для сравнения первого отраженного сигнала во время первого кадра предварительно определенного времени с вторым отраженным сигналом во время второго кадра предварительно определенного времени.
12. Устройство по п.1, отличающееся тем, что средство анализа содержит контроллер.
13. Устройство по п.12, отличающееся тем, что средство инициирования содержит схему запуска, активируемую контроллером при обнаружении растения.
14. Устройство по п.13, отличающееся тем, что содержит клапан, связанный со схемой запуска, срабатывающий при активизации схемы запуска.
15. Устройство по п.14, отличающееся тем, что содержит насадку, связанную с клапаном, для распыления гербицида на растение при активизации схемы запуска.
16. Устройство по п.13, отличающееся тем, что средство анализа содержит детектор скорости, связанный с контроллером, для синхронизации активизации схемы запуска.
17. Устройство по п.13, отличающееся тем, что содержит культиваторную лапу, связанную со схемой запуска и приводимую в действие при активизации схемы запуска.
18. Устройство по п.17, отличающееся тем, что средство анализа содержит детектор скорости, связанный с контроллером, для синхронизации активизации схемы запуска.
19. Устройство по п.7, отличающееся тем, что источники света сфазированы один с другим так, что один из источников света имеет сдвиг фаз по отношению к фазе другого из источников света.
20. Устройство по п.7, отличающееся тем, что источники света модулированы посредством многократной тональной модуляции.
21. Устройство по п.7, отличающееся тем, что источники света имеют фазы без перекрывания и синхронизированы со схемами, соединенными с выходом детектора.
22. Способ определения местоположения растения, при котором направляют излучение перемещаемого источника излучения на участок поверхности, принимают отраженное излучение, анализируют отраженное излучение для определения, является ли участок поверхности растением, и по результатам анализа инициируют избирательное воздействие, отличающийся тем, что источник излучения выполнен по меньшей мере в виде двух источников монохроматического света с разной длиной волны, который фокусируют на участке поверхности.
23. Способ по п.22, отличающийся тем, что источники света модулируют.
24. Способ по п. 23, отличающийся тем, что при модуляции осуществляют установку фазы одного из источников света со смещением по отношению к фазе другого источника света.
25. Способ по п.23, отличающийся тем, что модуляцию осуществляют с использованием многократной тональной модуляции.
26. Способ по п.23, отличающийся тем, что операция модуляции включает синхронизацию двух указанных источников монохроматического света с операцией детектирования отраженных световых лучей.
27. Устройство для различения объектов, содержащее средство генерации излучения, средство приема составляющих излучения двух длин волн, выполненное с возможностью обработки отраженных сигналов для индикации характеристик материалов на участке поверхности, которые определяются по характеристикам составляющих излучения двух длин волн, отраженных от этого участка поверхности, средство выброса гербицида на выбранный участок поверхности, связанное со средством приема и обработки, срабатывающее по сигналу индикации, и средство перемещения средства генерации, отличающееся тем, что средство генерации излучения выполнено с возможностью генерации излучения первой выбранной монохроматической длины волны во время первого временного интервала и генерации излучения второй выбранной монохроматической длины волны во время второго временного интервала, при этом устройство дополнительно содержит средство направления излучения первой и второй выбранных длин волн на указанный участок поверхности.
28. Устройство по п.27, отличающееся тем, что средство генерации излучения содержит светодиод.
29. Устройство по п.28, отличающееся тем, что средство приема и обработки имеет отверстие, ширина которого значительно меньше длины волны, причем названное отверстие ориентировано своей длиной в направлении, перпендикулярном направлению перемещения средства генерации излучения и средства направления излучения.
30. Устройство по п.29, отличающееся тем, что средство приема и обработки содержит множество приемников излучения для формирования множества сигналов, причем каждый из приемников излучения предназначен для обнаружения отраженного излучения от соответствующего участка из множества участков и формирования соответствующего сигнала, при этом сформированное множество сигналов средства приема и обработки обеспечивает нанесение гербицида или запрет нанесения гербицида на каждый из множества участков.
31. Устройство по п.30, отличающееся тем, что средство приема и обработки обеспечивает упомянутую индикацию так, что гербицид наносят на один из множества участков, только если определено, что соседний участок упомянутого множества участков содержит растение.
32. Устройство по п.27, отличающееся тем, что средство приема и обработки обеспечивает определение периода времени так, чтобы характеристики материалов на участке поверхности указывали на наличие растения на участке поверхности.
33. Устройство по п.27, отличающееся тем, что содержит средство определения скорости движения относительно указанной поверхности.
34. Устройство по п.33, отличающееся тем, что содержит средство для задержки нанесения гербицида таким образом, что участок нанесения гербицида отличается от участка, на который падает излучение с первой и второй выбранными длинами волн, причем участок нанесения гербицида расположен непосредственно за участком, на который падает излучение с первой и второй выбранными длинами волн, по отношению к направлению перемещения средства генерации излучения, средства направления излучения, средства приема и обработки и средства нанесения гербицида.
35. Устройство по п.27, отличающееся тем, что первый и второй временные интервалы перекрываются.
36. Устройство по п.27, отличающееся тем, что первый и второй временные интервалы не перекрываются.
37. Способ по п.22, отличающийся тем, что операции анализа отраженных сигналов и инициирования избирательного воздействия обеспечивают нанесение гербицида на предварительно определенный участок, если таким участком является площадь поверхности растения, и обеспечивают запрет нанесения гербицида на предварительно определенный участок, если таким участком является участок голой земли.
38. Устройство для различения объектов, содержащее средство генерации излучения, средство приема составляющих излучения, выполненное в виде фотоприемника для обнаружения составляющих отраженного от участка поверхности света на двух длинах волн, схему обработки принятых составляющих света и средство перемещения, отличающееся тем, что средство генерации излучения содержит первый источник монохроматического света для формирования света с первой длиной волны, модулируемого первым сигналом модуляции, характеризуемым частотой сигнала, причем свет с первой длиной волны падает на участок стационарной поверхности, и второй источник монохроматического света для формирования света с второй длиной волны, модулируемого вторым сигналом модуляции, характеризуемым частотой сигнала, причем свет с второй длиной волны падает на упомянутый участок стационарной поверхности, при этом устройство дополнительно содержит схему фильтрации, связанную с выходным выводом фотоприемника, предназначенную для подавления сигналов на выходном выводе фотоприемника, обусловленных солнечным светом с частотами ниже частот первого и второго сигналов модуляции, и выделения выходного сигнала фотоприемника, индуцирующего первый и второй сигналы модуляции, схема обработки обеспечивает анализ выходного сигнала фотоприемника и инициирование распыления гербицида на участке поверхности на основании определения относительных величин светового сигнала с первой длиной волны и светового сигнала с второй длиной волны, продетектированных фотоприемником после отражения от поверхности, а средство перемещения обеспечивает перемещение над участком поверхности первого и второго источников монохроматического света, фотоприемника, схемы фильтрации и схемы обработки.
39. Устройство по п.38, отличающееся тем, что первый и второй источники монохроматического света содержат каждый светодиод, частота первого сигнала модуляции совпадает с частотой второго сигнала модуляции, первый и второй сигналы модуляции имеют цифровую форму, а схема обработки инициирует распыление гербицида на упомянутом участке поверхности после того, как фотоприемник больше не детектирует световой сигнал с первой и второй длинами волны, отражающийся от участка, вследствие перемещения указанного средства перемещения над упомянутой поверхностью.
40. Устройство по п.39, отличающееся тем, что фотоприемник выполнен в виде фотодетектора, а схема фильтрации содержит конденсатор, имеющий первый и второй выводы, катушку индуктивности, имеющую первый и второй выводы, и усилитель, имеющий входной вывод, причем первый вывод конденсатора связан с первым выводом катушки индуктивности, с выходным выводом фотоприемника и с входным выводом усилителя, а второй вывод конденсатора связан с вторым выводом катушки индуктивности.
41. Устройство по п.40, отличающееся тем, что схема фильтрации содержит фазовый детектор, имеющий первый и второй входные выводы и выходной вывод, а усилитель имеет выходной вывод, причем выходной вывод усилителя связан с первым входным выводом фазового детектора, второй входной вывод которого предназначен для приема одного из сигналов модуляции, предназначенных для модулирования первого и второго источников монохроматического света.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/920,942 US5296702A (en) | 1992-07-28 | 1992-07-28 | Structure and method for differentiating one object from another object |
US920942 | 1992-07-28 | ||
US920,942 | 1992-07-28 | ||
PCT/US1993/006958 WO1994002812A1 (en) | 1992-07-28 | 1993-07-27 | Structure and method for differentiating one object from another object |
Publications (2)
Publication Number | Publication Date |
---|---|
RU95104941A RU95104941A (ru) | 1996-11-27 |
RU2127874C1 true RU2127874C1 (ru) | 1999-03-20 |
Family
ID=25444659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU95104941A RU2127874C1 (ru) | 1992-07-28 | 1993-07-27 | Устройство для различения объектов, преимущественно сельскохозяйственных растений, и способ определения местоположения растения |
Country Status (16)
Country | Link |
---|---|
US (2) | US5296702A (ru) |
EP (1) | EP0653051B2 (ru) |
JP (1) | JPH08501385A (ru) |
AT (1) | ATE173819T1 (ru) |
AU (1) | AU673186B2 (ru) |
BR (1) | BR9306806A (ru) |
CA (1) | CA2141038C (ru) |
DE (1) | DE69322277T3 (ru) |
DK (1) | DK0653051T4 (ru) |
ES (1) | ES2127291T5 (ru) |
GR (1) | GR3029475T3 (ru) |
HU (1) | HUT73363A (ru) |
NZ (1) | NZ254659A (ru) |
PL (1) | PL173490B1 (ru) |
RU (1) | RU2127874C1 (ru) |
WO (1) | WO1994002812A1 (ru) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2461814C1 (ru) * | 2011-01-24 | 2012-09-20 | Общество с ограниченной ответственностью "Центр Инновационных Технологий-НАНО" | СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ВЛАГИ В ЛИСТЬЯХ РАСТЕНИЙ in vivo |
US11240974B2 (en) | 2019-09-24 | 2022-02-08 | Haier Us Appliance Solutions, Inc. | Indoor garden center with a resilient sealing element |
US11240968B2 (en) | 2019-09-24 | 2022-02-08 | Haier Us Appliance Solutions, Inc. | Pollen distribution system for an indoor gardening appliance |
US11343976B2 (en) | 2019-09-24 | 2022-05-31 | Haier Us Appliance Solutions, Inc. | Indoor garden center with a plant pod detection system |
US11388863B2 (en) | 2019-09-24 | 2022-07-19 | Haier Us Appliance Solutions, Inc. | Adaptive lighting system for an indoor gardening appliance |
US11533859B2 (en) | 2019-11-13 | 2022-12-27 | Haier Us Appliance Solutions, Inc. | Hydration system for an indoor gardening appliance |
Families Citing this family (172)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5296702A (en) * | 1992-07-28 | 1994-03-22 | Patchen California | Structure and method for differentiating one object from another object |
US5793035A (en) * | 1992-07-28 | 1998-08-11 | Patchen, Inc. | Apparatus and method for spraying herbicide on weeds in a cotton field |
US5585626A (en) * | 1992-07-28 | 1996-12-17 | Patchen, Inc. | Apparatus and method for determining a distance to an object in a field for the controlled release of chemicals on plants, weeds, trees or soil and/or guidance of farm vehicles |
CA2203774A1 (en) * | 1994-10-25 | 1996-05-02 | James Ian Rees | Controller for agricultural sprayers |
US5790428A (en) * | 1994-11-23 | 1998-08-04 | Easton Goers, Inc. | Device to measure and provide data for plant population and spacing variability |
US5568405A (en) * | 1994-11-23 | 1996-10-22 | Easton Goers, Inc. | Device to measure and provide data for plant population and spacing variability |
US5734167A (en) * | 1996-04-04 | 1998-03-31 | Day-Glo Color Corporation | Methods for farming |
US5895910A (en) * | 1996-04-11 | 1999-04-20 | Fmc Corporation | Electro-optic apparatus for imaging objects |
US5833144A (en) * | 1996-06-17 | 1998-11-10 | Patchen, Inc. | High speed solenoid valve cartridge for spraying an agricultural liquid in a field |
US5763873A (en) * | 1996-08-28 | 1998-06-09 | Patchen, Inc. | Photodetector circuit for an electronic sprayer |
US5789741A (en) * | 1996-10-31 | 1998-08-04 | Patchen, Inc. | Detecting plants in a field by detecting a change in slope in a reflectance characteristic |
AUPO370596A0 (en) * | 1996-11-18 | 1996-12-12 | Research Foundation Institute Pty Limited, The | Vegetation recognition system |
US5809440A (en) * | 1997-02-27 | 1998-09-15 | Patchen, Inc. | Agricultural implement having multiple agents for mapping fields |
DE19723770A1 (de) * | 1997-06-06 | 1998-12-10 | Hydro Agri Deutschland Gmbh | Pflanzenzustandsmeßvorrichtung |
AU8252998A (en) * | 1997-06-18 | 1999-01-04 | Patchen Inc. | Detecting plants in a field using a plurality of power multiplexed sensor units |
US6160902A (en) * | 1997-10-10 | 2000-12-12 | Case Corporation | Method for monitoring nitrogen status using a multi-spectral imaging system |
US6529615B2 (en) | 1997-10-10 | 2003-03-04 | Case Corporation | Method of determining and treating the health of a crop |
US6178253B1 (en) | 1997-10-10 | 2001-01-23 | Case Corporation | Method of determining and treating the health of a crop |
WO1999030133A1 (en) * | 1997-12-08 | 1999-06-17 | Weed Control Australia Pty. Ltd. | Discriminating ground vegetation in agriculture |
US6020587A (en) * | 1998-01-06 | 2000-02-01 | United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Plant chlorophyll content meter |
AU743503B3 (en) * | 1998-03-02 | 2002-01-24 | United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration, The | Plant chlorophyll content imager |
US6114683A (en) * | 1998-03-02 | 2000-09-05 | The United States Of Ameria As Represented By The Administrator Of The National Aeronautics And Space Administration | Plant chlorophyll content imager with reference detection signals |
US6795568B1 (en) * | 1998-07-17 | 2004-09-21 | Torsana Laser Technologies A/S | Method and an apparatus for severing or damaging unwanted plants |
WO2000003589A1 (en) | 1998-07-17 | 2000-01-27 | Ministeriet For Fødevarer, Landbrug Og Fiskeri | A method and an apparatus for severing or damaging unwanted plants |
US6919959B2 (en) * | 1999-06-30 | 2005-07-19 | Masten Opto-Diagnostics Co. | Digital spectral identifier-controller and related methods |
US6683970B1 (en) * | 1999-08-10 | 2004-01-27 | Satake Corporation | Method of diagnosing nutritious condition of crop in plant field |
DE19950396C2 (de) * | 1999-10-12 | 2002-01-31 | Norsk Hydro As | Vorrichtung und Verfahren zum Bestimmen des Pflanzenzustandes |
CA2297476A1 (en) | 2000-01-21 | 2001-07-21 | Neks Recherche & Developpement Inc. | System for detection of dental tartar, e.g. subgingival tartar |
DE10016688C2 (de) * | 2000-04-04 | 2003-12-24 | Deutsch Zentr Luft & Raumfahrt | Verfahren zur Detektion von Tieren und/oder Gelegen von Bodenbrütern in deren natürlichem Lebensraum sowie Einrichtungen zur Durchführung des Verfahrens |
EP1324655A1 (en) * | 2000-10-14 | 2003-07-09 | Syngenta Participations AG | System for the application of pesticides |
AUPR457401A0 (en) | 2001-04-26 | 2001-05-24 | Weed Control Australia Pty Ltd | Selective weed discrimination |
MXPA04000796A (es) * | 2001-07-24 | 2004-12-03 | Univ Oklahoma State | Un proceso para la aplicacion de nutrimientos en temporada basado en el potencial de rendimiento pronosticado. |
US20040237394A1 (en) * | 2001-07-24 | 2004-12-02 | Mayfield Ted E. | Low-cost system and method for the precision application of agricultural products |
US6601341B2 (en) | 2001-07-24 | 2003-08-05 | The Board Of Regents For Oklahoma State University | Process for in-season fertilizer nitrogen application based on predicted yield potential |
US6702200B2 (en) | 2001-07-24 | 2004-03-09 | The Board Of Regents For Oklahoma State University | Nozzle attitude controller for spot and variable rate application of agricultural chemicals and fertilizers |
US6596996B1 (en) | 2001-07-24 | 2003-07-22 | The Board Of Regents For Oklahoma State University | Optical spectral reflectance sensor and controller |
DE10148737B4 (de) * | 2001-09-26 | 2004-03-18 | Norsk Hydro Asa | Verfahren und Vorrichtung zum berührungslosen Bestimmen biophysikalischer Parameter von Pflanzenbeständen |
DE10148746C2 (de) * | 2001-09-26 | 2003-12-24 | Norsk Hydro As | Verfahren und Vorrichtung zum berührungslosen Bestimmen und Beeinflussen des Pflanzenzustandes |
DE10239129A1 (de) * | 2002-08-27 | 2004-03-11 | Amazonen-Werke H. Dreyer Gmbh & Co. Kg | Vorrichtung zur berührungslosen Ermittlung des Pflanzenbewuchses eines Feldabschnittes |
WO2004038669A1 (en) * | 2002-10-22 | 2004-05-06 | Umc Utrecht Holding B.V. | System for remote transfer of a monitoring signal |
US7311004B2 (en) * | 2003-03-10 | 2007-12-25 | Capstan Ag Systems, Inc. | Flow control and operation monitoring system for individual spray nozzles |
FR2852785B1 (fr) † | 2003-03-31 | 2006-04-07 | Pellenc Sa | Procede et dispositif d'analyse de la structure et de la constitution de haies culturales, telles que, par exemple, des rangs de vigne |
DE10325534B4 (de) * | 2003-06-04 | 2005-06-23 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Verfahren zum Bestimmen des Düngebedarfs in Gärten, Gärtnereien oder Parkanlagen |
US7362439B2 (en) * | 2003-08-01 | 2008-04-22 | Li-Cor, Inc. | Method of detecting the condition of a turf grass |
US7408145B2 (en) * | 2003-09-23 | 2008-08-05 | Kyle Holland | Light sensing instrument with modulated polychromatic source |
US7262853B2 (en) * | 2003-09-23 | 2007-08-28 | X-Rite, Inc. | Color measurement instrument |
US9075008B2 (en) * | 2003-11-07 | 2015-07-07 | Kyle H. Holland | Plant treatment based on a water invariant chlorophyll index |
US20080291455A1 (en) * | 2003-11-07 | 2008-11-27 | Kyle Harold Holland | Active Light Sensor |
EP1610091A1 (de) * | 2004-06-23 | 2005-12-28 | Leica Geosystems AG | Scannersystem und Verfahren zur Erfassung von Oberflächen |
US7694502B2 (en) | 2004-09-14 | 2010-04-13 | Westside Equipment Co. | Small scale tomato harvester |
US7921628B2 (en) | 2004-09-14 | 2011-04-12 | Westside Equipment Company | Small scale tomato harvester |
US7581375B2 (en) * | 2004-09-14 | 2009-09-01 | Westside Equipment Co. | Small scale tomato harvester |
US8250907B2 (en) * | 2005-04-12 | 2012-08-28 | Durham Kenimer Giles | System and method for determining atomization characteristics of spray liquids |
US7278294B2 (en) * | 2005-04-12 | 2007-10-09 | Durham Kenimer Giles | System and method for determining atomization characteristics of spray liquids |
US7502665B2 (en) | 2005-05-23 | 2009-03-10 | Capstan Ag Systems, Inc. | Networked diagnostic and control system for dispensing apparatus |
US20060273189A1 (en) | 2005-06-07 | 2006-12-07 | Capstan Ag Systems, Inc. | Electrically actuated variable pressure control system |
DE102005030451A1 (de) * | 2005-06-28 | 2007-01-04 | Deutsche Bahn Ag | Jahreszeitunabhängige Bewertung von Vegetation auf und/oder an Verkehrswegen oder anderen zugänglichen Flächen |
KR20080070659A (ko) * | 2005-10-19 | 2008-07-30 | 코닌클리즈케 필립스 일렉트로닉스 엔.브이. | 컬러 조명 디바이스 및 컬러 조명 디바이스의 광출력을제어하는 방법 |
WO2007062196A2 (en) * | 2005-11-21 | 2007-05-31 | State Of Oregon Acting By And Through The State Board Of Higher Educ. On Behalf Of Oregon State Univ | Portable meter to measure chlorophyll, nitrogen and water and methods |
DE102006002437A1 (de) * | 2006-01-11 | 2007-07-12 | Agrocom Gmbh & Co. Agrarsysteme Kg | Messvorrichtung |
US20070282812A1 (en) * | 2006-03-08 | 2007-12-06 | Superior Edge, Inc. | Process execution support system |
ES2395062T3 (es) | 2006-08-01 | 2013-02-07 | Photonic Detection Systems Pty Ltd | Sistema y método de detección óptica para discriminación de plantas |
US7848865B2 (en) * | 2007-02-09 | 2010-12-07 | Tsd Integrated Controls, Llc | Method and system for applying materials to crops |
US8135178B2 (en) * | 2007-04-10 | 2012-03-13 | Deere & Company | Process for normalizing images or other data layers |
US8319165B2 (en) * | 2007-07-03 | 2012-11-27 | Holland Kyle H | Variable rate chemical management for agricultural landscapes |
US8816262B2 (en) | 2007-07-03 | 2014-08-26 | Kyle H. Holland | Auto-calibration method for real-time agricultural sensors |
US7723660B2 (en) * | 2007-07-03 | 2010-05-25 | Kyle Holland | Sensor-based chemical management for agricultural landscapes |
US9585307B2 (en) | 2007-07-03 | 2017-03-07 | Kyle H. Holland | Optical real-time soil sensor and auto-calibration methods |
GB2458951B (en) * | 2008-04-04 | 2012-09-19 | Environet Uk Ltd | Soil processing method and apparatus |
JP5522913B2 (ja) * | 2008-08-29 | 2014-06-18 | 株式会社トプコン | 植物用センサ装置 |
US8260507B2 (en) * | 2009-01-14 | 2012-09-04 | University Of Florida Research Foundation, Inc. | Managing application of agrochemicals to plants |
WO2010090842A2 (en) * | 2009-01-21 | 2010-08-12 | Rare Light, Inc. | Raman spectroscopy devices, systems and methods using multiple discrete light sources |
WO2010118175A2 (en) | 2009-04-07 | 2010-10-14 | Rare Light, Inc. | Peri-critical reflection spectroscopy devices, systems, and methods |
US9538714B2 (en) | 2009-04-21 | 2017-01-10 | Deere & Company | Managing resource prescriptions of botanical plants |
US8150554B2 (en) * | 2009-04-21 | 2012-04-03 | Deere & Company | Resource use management in yards and gardens |
JP2011013803A (ja) * | 2009-06-30 | 2011-01-20 | Ihi Corp | 周囲形状検出装置、自律移動装置、移動体の操縦補助装置、周囲形状検出方法、自律移動装置の制御方法及び移動体の操縦補助方法 |
NZ602143A (en) | 2010-01-21 | 2014-04-30 | Mackenzie Res Group Ltd | Improvements in and relating to methods and apparatus for applying substances to an area of interest |
AU2011256115B2 (en) * | 2010-05-18 | 2015-10-29 | Photonic Detection Systems Pty Ltd | A device for selecting specific matter |
DE102010034603B4 (de) * | 2010-08-13 | 2013-01-31 | Franke Gmbh | Sensorsystem und Verfahren zur Bestimmung einer optischen Eigenschaft einer Pflanze |
US9076105B2 (en) | 2010-08-20 | 2015-07-07 | Deere & Company | Automated plant problem resolution |
WO2012061393A1 (en) * | 2010-11-04 | 2012-05-10 | Dow Agrosciences Llc | Method and apparatus for treatment of targeted plants |
US8694454B2 (en) | 2011-02-17 | 2014-04-08 | Superior Edge, Inc. | Methods, apparatus and systems for generating, updating and executing a vegetation control plan |
JP5718153B2 (ja) | 2011-05-26 | 2015-05-13 | 株式会社トプコン | 植物用センサ装置 |
US9030549B2 (en) | 2012-03-07 | 2015-05-12 | Blue River Technology, Inc. | Method and apparatus for automated plant necrosis |
US9762437B2 (en) | 2012-07-17 | 2017-09-12 | The Procter & Gamble Company | Systems and methods for networking consumer devices |
US10165654B2 (en) | 2012-07-17 | 2018-12-25 | The Procter & Gamble Company | Home network of connected consumer devices |
US20140023363A1 (en) * | 2012-07-17 | 2014-01-23 | The Procter & Gamble Company | Systems and methods for networking consumer devices |
US8886785B2 (en) | 2012-07-17 | 2014-11-11 | The Procter & Gamble Company | Home network of connected consumer devices |
US9113590B2 (en) | 2012-08-06 | 2015-08-25 | Superior Edge, Inc. | Methods, apparatus, and systems for determining in-season crop status in an agricultural crop and alerting users |
US9661809B2 (en) | 2012-09-07 | 2017-05-30 | Trimble Navigation Limited | Dynamic application system priming |
US8942893B2 (en) | 2012-09-07 | 2015-01-27 | Trimble Navigation Limited | Predictive boom shape adjustment |
US9026316B2 (en) | 2012-10-02 | 2015-05-05 | Kyle H. Holland | Variable rate chemical management for agricultural landscapes with nutrition boost |
GB201219184D0 (en) * | 2012-10-25 | 2012-12-12 | Buhler Sortex Ltd | Adaptive ejector valve array |
US9282693B2 (en) | 2013-02-20 | 2016-03-15 | Deere & Company | Data encoding with planting attributes |
US9658201B2 (en) | 2013-03-07 | 2017-05-23 | Blue River Technology Inc. | Method for automatic phenotype measurement and selection |
US10537071B2 (en) | 2013-07-26 | 2020-01-21 | Blue River Technology Inc. | System and method for individual plant treatment based on neighboring effects |
US10327393B2 (en) | 2013-03-07 | 2019-06-25 | Blue River Technology Inc. | Modular precision agriculture system |
US9609858B2 (en) | 2013-09-13 | 2017-04-04 | Palo Alto Research Center Incorporated | Unwanted plant removal system having variable optics |
US9565848B2 (en) | 2013-09-13 | 2017-02-14 | Palo Alto Research Center Incorporated | Unwanted plant removal system |
US9609859B2 (en) * | 2013-09-13 | 2017-04-04 | Palo Alto Research Center Incorporated | Unwanted plant removal system having a stabilization system |
US20150130936A1 (en) | 2013-11-08 | 2015-05-14 | Dow Agrosciences Llc | Crop monitoring system |
EP3107367B1 (en) | 2014-02-21 | 2023-08-02 | Blue River Technology Inc. | Method and system for in-situ precision calibration of a precision agricultural system to accommodate for a treatment delay |
AU2015232048B2 (en) | 2014-03-20 | 2020-12-03 | Mackenzie Research Group Limited | A calibration device, a spraying system and a method of calibration |
US9489576B2 (en) | 2014-03-26 | 2016-11-08 | F12 Solutions, LLC. | Crop stand analysis |
US10785905B2 (en) | 2014-05-08 | 2020-09-29 | Precision Planting Llc | Liquid application apparatus comprising a seed firmer |
WO2015193822A1 (en) | 2014-06-17 | 2015-12-23 | Casella Macchine Agricole S.R.L. | Method and device for measuring vegetation cover on farmland |
US10773271B2 (en) | 2014-06-20 | 2020-09-15 | Deere & Company | Time varying control of the operation of spray systems |
AU2015203208B2 (en) | 2014-06-20 | 2017-04-13 | Deere & Company | Hybrid flow nozzle and control system |
US9884330B2 (en) | 2014-06-20 | 2018-02-06 | Deere & Company | Broadband spray nozzle systems and methods |
US10189031B2 (en) | 2014-06-20 | 2019-01-29 | Deere & Company | Hybrid flow nozzle and control system |
USD766399S1 (en) | 2014-10-03 | 2016-09-13 | Deere & Company | Hybrid spray nozzle turret |
DE102014226291A1 (de) | 2014-12-17 | 2016-06-23 | Bayerische Motoren Werke Aktiengesellschaft | Vorrichtung und Verfahren zum Warnen vor Oberflächenschäden an Fahrzeugen |
DE102015102080A1 (de) * | 2015-02-13 | 2016-08-18 | Horsch Leeb Application Systems Gmbh | Vorrichtung zum Ausbringen von Flüssigkeiten und Verfahren zur Bewegungssteuerung wenigstens zweier Auslegerarme einer landwirtschaftlichen Feldspritze |
WO2016144795A1 (en) | 2015-03-06 | 2016-09-15 | Blue River Technology Inc. | Modular precision agriculture system |
AU2016264718B2 (en) | 2015-05-21 | 2020-07-09 | C-Dax Limited | Plant matter sensor |
US10843216B2 (en) | 2016-04-26 | 2020-11-24 | Eco Shield Engineering Llc | Fluid dispersion nozzle |
EP3554212B1 (en) | 2016-12-19 | 2022-10-05 | Climate LLC | System for soil and seed monitoring |
US10269107B2 (en) | 2017-02-23 | 2019-04-23 | Global Neighbor Inc | Selective plant detection and treatment using green luminance photometric machine vision scan with real time chromaticity operations and image parameter floors for low processing load |
SI3480571T1 (sl) * | 2017-10-10 | 2023-09-29 | Poettinger Landtechnik Gmbh | Naprava za optično zaznavanje objektov |
US11690369B2 (en) * | 2017-11-29 | 2023-07-04 | Troy Benjegerdes | Method and apparatus for weed control using a high intensity light source |
US20210270792A1 (en) * | 2018-07-17 | 2021-09-02 | Photonic Detection Systems Pty Ltd | A detection system for detecting matter and distinguishing specific matter from other matter |
US11761886B2 (en) | 2018-07-17 | 2023-09-19 | Photonic Detection Systems Pty Ltd | Detection system for detecting matter and distinguishing specific matter from other matter |
US10921189B2 (en) * | 2018-08-23 | 2021-02-16 | Trimble Inc. | Detecting the presence of plants on the ground |
US10656133B2 (en) * | 2018-10-19 | 2020-05-19 | Trimble Inc. | Controlling plant detection systems using phase delay analysis |
US11672203B2 (en) | 2018-10-26 | 2023-06-13 | Deere & Company | Predictive map generation and control |
US12069978B2 (en) | 2018-10-26 | 2024-08-27 | Deere & Company | Predictive environmental characteristic map generation and control system |
US11178818B2 (en) | 2018-10-26 | 2021-11-23 | Deere & Company | Harvesting machine control system with fill level processing based on yield data |
US11589509B2 (en) | 2018-10-26 | 2023-02-28 | Deere & Company | Predictive machine characteristic map generation and control system |
US11079725B2 (en) | 2019-04-10 | 2021-08-03 | Deere & Company | Machine control using real-time model |
US11240961B2 (en) | 2018-10-26 | 2022-02-08 | Deere & Company | Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity |
US11641800B2 (en) | 2020-02-06 | 2023-05-09 | Deere & Company | Agricultural harvesting machine with pre-emergence weed detection and mitigation system |
US11467605B2 (en) | 2019-04-10 | 2022-10-11 | Deere & Company | Zonal machine control |
US11653588B2 (en) | 2018-10-26 | 2023-05-23 | Deere & Company | Yield map generation and control system |
US11957072B2 (en) | 2020-02-06 | 2024-04-16 | Deere & Company | Pre-emergence weed detection and mitigation system |
US10775299B2 (en) * | 2019-01-08 | 2020-09-15 | Trimble Inc. | Optical tuning for plant detection |
BR102019000530B1 (pt) * | 2019-01-10 | 2020-01-07 | Eirene Projetos E Consultoria Ltda | Dispositivo dotado de sistema de visão e identificação instalado em equipamento agrícola |
US10883872B2 (en) | 2019-02-28 | 2021-01-05 | Trimble Inc. | Plant detection systems comprising a photodetector housing with a detector lens and an aperture plate |
US11234366B2 (en) | 2019-04-10 | 2022-02-01 | Deere & Company | Image selection for machine control |
US11778945B2 (en) | 2019-04-10 | 2023-10-10 | Deere & Company | Machine control using real-time model |
DE102019124182A1 (de) * | 2019-09-10 | 2021-03-11 | Amazonen-Werke H. Dreyer Gmbh & Co. Kg | Verfahren und Vorrichtung zur reihenweisen Applikation von Pflanzenschutzmitteln |
DE102019131650A1 (de) * | 2019-11-22 | 2021-05-27 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zum Ermitteln und Optimieren des Gehalts von wenigstens einem Pflanzeninhaltsstoff von wenigstens einem Teil einer Pflanze |
US12035648B2 (en) | 2020-02-06 | 2024-07-16 | Deere & Company | Predictive weed map generation and control system |
BR112022017719A2 (pt) | 2020-03-05 | 2022-10-18 | Plantium S A | Sistema de detecção e identificação de espécies vegetais e método |
US11477940B2 (en) | 2020-03-26 | 2022-10-25 | Deere & Company | Mobile work machine control based on zone parameter modification |
FR3110743B1 (fr) * | 2020-05-20 | 2022-04-29 | Carbon Bee | Procede et systeme de controle de traitement agricole |
US11825768B2 (en) | 2020-10-09 | 2023-11-28 | Deere & Company | Machine control using a predictive map |
US11927459B2 (en) | 2020-10-09 | 2024-03-12 | Deere & Company | Machine control using a predictive map |
US11675354B2 (en) | 2020-10-09 | 2023-06-13 | Deere & Company | Machine control using a predictive map |
US12069986B2 (en) | 2020-10-09 | 2024-08-27 | Deere & Company | Map generation and control system |
US11871697B2 (en) | 2020-10-09 | 2024-01-16 | Deere & Company | Crop moisture map generation and control system |
US11874669B2 (en) | 2020-10-09 | 2024-01-16 | Deere & Company | Map generation and control system |
US11635765B2 (en) | 2020-10-09 | 2023-04-25 | Deere & Company | Crop state map generation and control system |
US11946747B2 (en) | 2020-10-09 | 2024-04-02 | Deere & Company | Crop constituent map generation and control system |
US11864483B2 (en) | 2020-10-09 | 2024-01-09 | Deere & Company | Predictive map generation and control system |
US11592822B2 (en) | 2020-10-09 | 2023-02-28 | Deere & Company | Machine control using a predictive map |
US11844311B2 (en) | 2020-10-09 | 2023-12-19 | Deere & Company | Machine control using a predictive map |
US11983009B2 (en) | 2020-10-09 | 2024-05-14 | Deere & Company | Map generation and control system |
US11711995B2 (en) | 2020-10-09 | 2023-08-01 | Deere & Company | Machine control using a predictive map |
US12013245B2 (en) | 2020-10-09 | 2024-06-18 | Deere & Company | Predictive map generation and control system |
US11849672B2 (en) | 2020-10-09 | 2023-12-26 | Deere & Company | Machine control using a predictive map |
US11849671B2 (en) | 2020-10-09 | 2023-12-26 | Deere & Company | Crop state map generation and control system |
US11845449B2 (en) | 2020-10-09 | 2023-12-19 | Deere & Company | Map generation and control system |
US11474523B2 (en) | 2020-10-09 | 2022-10-18 | Deere & Company | Machine control using a predictive speed map |
US11895948B2 (en) | 2020-10-09 | 2024-02-13 | Deere & Company | Predictive map generation and control based on soil properties |
US11889788B2 (en) | 2020-10-09 | 2024-02-06 | Deere & Company | Predictive biomass map generation and control |
US11650587B2 (en) | 2020-10-09 | 2023-05-16 | Deere & Company | Predictive power map generation and control system |
US11727680B2 (en) | 2020-10-09 | 2023-08-15 | Deere & Company | Predictive map generation based on seeding characteristics and control |
US11889787B2 (en) | 2020-10-09 | 2024-02-06 | Deere & Company | Predictive speed map generation and control system |
SE544814C2 (sv) * | 2020-10-12 | 2022-11-29 | Thoernberg Benny | Avbildande materialanalysator samt förfarande för att använda denna |
DE102021101299A1 (de) * | 2021-01-22 | 2022-07-28 | Amazonen-Werke H. Dreyer SE & Co. KG | Verfahren zum Ansteuern von Ventilen eines Spritzgestänges einer landwirtschaftlichen Ausbringmaschine |
US12082531B2 (en) | 2022-01-26 | 2024-09-10 | Deere & Company | Systems and methods for predicting material dynamics |
US12058951B2 (en) | 2022-04-08 | 2024-08-13 | Deere & Company | Predictive nutrient map and control |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB590598A (en) * | 1943-04-12 | 1947-07-23 | Leo Aloysius Marihart | Agricultural machines for hoeing, weeding or thinning |
US2682132A (en) * | 1948-05-14 | 1954-06-29 | M P H Ind | Agricultural machine |
US2514405A (en) * | 1948-05-14 | 1950-07-11 | M P H Ind | Photoelectric unit for agricultural operations |
US2894178A (en) * | 1956-01-18 | 1959-07-07 | Hewlett Packard Co | Photoelectric system |
US3373870A (en) * | 1966-07-08 | 1968-03-19 | American Tobacco Co | Cigar classification apparatus |
US3488511A (en) * | 1966-10-25 | 1970-01-06 | Tokyo Shibaura Electric Co | Automatic identifying apparatus of postage stamp indications |
US3512587A (en) * | 1967-10-09 | 1970-05-19 | Eversman Mfg Co | Photoelectrically controlled plant thinners |
US3590925A (en) * | 1968-05-06 | 1971-07-06 | Tara Corp | Automated agricultural system |
US3821550A (en) * | 1969-07-18 | 1974-06-28 | Deere & Co | Plant thinner having radiant energy plant detecting means |
US3609913A (en) * | 1969-07-24 | 1971-10-05 | Int Electric Fence Co Inc | Magnetic memory control |
US3701218A (en) * | 1969-08-07 | 1972-10-31 | Deere & Co | Spray type row crop thinner |
US3652844A (en) * | 1970-02-09 | 1972-03-28 | Ralph A Scott Jr | Laser plant control |
SU382367A1 (ru) * | 1971-11-15 | 1973-05-25 | Полтавский ордена Трудового Красного Знамени сельскохоз йственный институт | |
SU471074A1 (ru) * | 1973-06-11 | 1975-05-25 | Полтавский Ордена Трудового Красного Знамени Сельскохозяйственный Институт | Способ распознавани растений от комков почвы и камней |
US3910701A (en) * | 1973-07-30 | 1975-10-07 | George R Henderson | Method and apparatus for measuring light reflectance absorption and or transmission |
US4092800A (en) * | 1973-09-24 | 1978-06-06 | Phytox Corporation | Vegetation control |
SU547183A1 (ru) * | 1975-02-24 | 1977-02-25 | Кировоградский институт сельскохозяйственного машиностроения | Способ распознавани растений на фоне почвы |
US4015366A (en) * | 1975-04-11 | 1977-04-05 | Advanced Decision Handling, Inc. | Highly automated agricultural production system |
AT353487B (de) * | 1977-05-31 | 1979-11-12 | Plasser Bahnbaumasch Franz | Vermessungseinrichtung zur anzeige bzw. registrierung des profilverlaufes von tunnel- roehren, durchlaessen u.dgl. engstellen |
US4206569A (en) * | 1978-09-05 | 1980-06-10 | Randolph Joe G | Weed sprayer |
US4369886A (en) * | 1979-10-09 | 1983-01-25 | Ag-Electron, Inc. | Reflectance ratio sorting apparatus |
US4482960A (en) * | 1981-11-20 | 1984-11-13 | Diffracto Ltd. | Robot tractors |
JPS5848177A (ja) * | 1981-09-18 | 1983-03-22 | Toshiba Corp | 特定色彩パタ−ンの検出装置 |
US4768713B1 (en) * | 1982-12-15 | 1995-03-21 | Bert E Roper | Grove sprayer |
US4558786A (en) * | 1983-06-15 | 1985-12-17 | Marvin M. Lane | Electro-optical sorter |
GB2151018B (en) * | 1983-12-06 | 1987-07-22 | Gunsons Sortex Ltd | Sorting machine and method |
US4618257A (en) * | 1984-01-06 | 1986-10-21 | Standard Change-Makers, Inc. | Color-sensitive currency verifier |
US4550526A (en) * | 1984-01-23 | 1985-11-05 | Willard Smucker | Implement for contact application of liquid herbicides to crops |
SE443050B (sv) † | 1984-06-25 | 1986-02-10 | Enpece Ab | Metod och anordning for beroringsfri detektering av vexter |
US4709265A (en) * | 1985-10-15 | 1987-11-24 | Advanced Resource Development Corporation | Remote control mobile surveillance system |
GB2200446B (en) * | 1987-01-27 | 1991-03-13 | So Resprom | Colour sensor and method for use thereof |
CA1330362C (en) * | 1988-06-22 | 1994-06-21 | Warwick Felton | Controller for agricultural sprays |
US5021645A (en) * | 1989-07-11 | 1991-06-04 | Eaton Corporation | Photoelectric color sensor for article sorting |
US5072128A (en) * | 1989-07-26 | 1991-12-10 | Nikon Corporation | Defect inspecting apparatus using multiple color light to detect defects |
US5222324A (en) * | 1991-02-21 | 1993-06-29 | Neall Donald L O | Crop spraying system |
US5296702A (en) * | 1992-07-28 | 1994-03-22 | Patchen California | Structure and method for differentiating one object from another object |
-
1992
- 1992-07-28 US US07/920,942 patent/US5296702A/en not_active Expired - Lifetime
-
1993
- 1993-07-27 RU RU95104941A patent/RU2127874C1/ru not_active IP Right Cessation
- 1993-07-27 BR BR9306806A patent/BR9306806A/pt not_active IP Right Cessation
- 1993-07-27 JP JP6504728A patent/JPH08501385A/ja active Pending
- 1993-07-27 AU AU46877/93A patent/AU673186B2/en not_active Expired
- 1993-07-27 DK DK93917331T patent/DK0653051T4/da active
- 1993-07-27 CA CA002141038A patent/CA2141038C/en not_active Expired - Lifetime
- 1993-07-27 NZ NZ254659A patent/NZ254659A/en unknown
- 1993-07-27 WO PCT/US1993/006958 patent/WO1994002812A1/en not_active Application Discontinuation
- 1993-07-27 PL PL93307246A patent/PL173490B1/pl unknown
- 1993-07-27 DE DE69322277T patent/DE69322277T3/de not_active Expired - Lifetime
- 1993-07-27 ES ES93917331T patent/ES2127291T5/es not_active Expired - Lifetime
- 1993-07-27 AT AT93917331T patent/ATE173819T1/de not_active IP Right Cessation
- 1993-07-27 EP EP93917331A patent/EP0653051B2/en not_active Expired - Lifetime
- 1993-07-27 HU HU9500140A patent/HUT73363A/hu unknown
- 1993-11-10 US US08/149,867 patent/US5389781A/en not_active Expired - Lifetime
-
1999
- 1999-02-24 GR GR990400572T patent/GR3029475T3/el unknown
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2461814C1 (ru) * | 2011-01-24 | 2012-09-20 | Общество с ограниченной ответственностью "Центр Инновационных Технологий-НАНО" | СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ВЛАГИ В ЛИСТЬЯХ РАСТЕНИЙ in vivo |
US11240974B2 (en) | 2019-09-24 | 2022-02-08 | Haier Us Appliance Solutions, Inc. | Indoor garden center with a resilient sealing element |
US11240968B2 (en) | 2019-09-24 | 2022-02-08 | Haier Us Appliance Solutions, Inc. | Pollen distribution system for an indoor gardening appliance |
US11343976B2 (en) | 2019-09-24 | 2022-05-31 | Haier Us Appliance Solutions, Inc. | Indoor garden center with a plant pod detection system |
US11388863B2 (en) | 2019-09-24 | 2022-07-19 | Haier Us Appliance Solutions, Inc. | Adaptive lighting system for an indoor gardening appliance |
US11533859B2 (en) | 2019-11-13 | 2022-12-27 | Haier Us Appliance Solutions, Inc. | Hydration system for an indoor gardening appliance |
Also Published As
Publication number | Publication date |
---|---|
EP0653051A1 (en) | 1995-05-17 |
CA2141038C (en) | 1999-09-21 |
NZ254659A (en) | 1996-09-25 |
EP0653051A4 (en) | 1995-12-27 |
US5389781A (en) | 1995-02-14 |
CA2141038A1 (en) | 1994-02-03 |
AU673186B2 (en) | 1996-10-31 |
HU9500140D0 (en) | 1995-03-28 |
ES2127291T3 (es) | 1999-04-16 |
HUT73363A (en) | 1996-07-29 |
DE69322277D1 (de) | 1999-01-07 |
RU95104941A (ru) | 1996-11-27 |
GR3029475T3 (en) | 1999-05-28 |
JPH08501385A (ja) | 1996-02-13 |
DK0653051T3 (da) | 1999-08-09 |
BR9306806A (pt) | 1998-12-08 |
US5296702A (en) | 1994-03-22 |
ES2127291T5 (es) | 2002-06-16 |
PL173490B1 (pl) | 1998-03-31 |
EP0653051B2 (en) | 2001-11-28 |
ATE173819T1 (de) | 1998-12-15 |
DE69322277T3 (de) | 2002-06-27 |
WO1994002812A1 (en) | 1994-02-03 |
DK0653051T4 (da) | 2002-02-11 |
PL307246A1 (en) | 1995-05-15 |
AU4687793A (en) | 1994-02-14 |
DE69322277T2 (de) | 1999-07-08 |
EP0653051B1 (en) | 1998-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2127874C1 (ru) | Устройство для различения объектов, преимущественно сельскохозяйственных растений, и способ определения местоположения растения | |
AU696597B2 (en) | Apparatus and method for determining a distance to an object in a field | |
US5793035A (en) | Apparatus and method for spraying herbicide on weeds in a cotton field | |
US7408145B2 (en) | Light sensing instrument with modulated polychromatic source | |
US6443365B1 (en) | Discriminating ground vegetation in agriculture | |
US5789741A (en) | Detecting plants in a field by detecting a change in slope in a reflectance characteristic | |
US6855933B2 (en) | Optical spectral reflectance sensor and controller | |
EP3639660B1 (en) | Controlling plant detection systems | |
CA2193837C (en) | Apparatus and method for determining a distance to an object in a field | |
Beck | Reduced herbicide usage in perennial crops, row crops, fallow land and non-agricultural applications using optoelectronic detection | |
US10883872B2 (en) | Plant detection systems comprising a photodetector housing with a detector lens and an aperture plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
HK4A | Changes in a published invention | ||
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20100728 |