RU2125972C1 - Способ очистки сточных вод от ионов тяжелых металлов - Google Patents

Способ очистки сточных вод от ионов тяжелых металлов Download PDF

Info

Publication number
RU2125972C1
RU2125972C1 RU94028195A RU94028195A RU2125972C1 RU 2125972 C1 RU2125972 C1 RU 2125972C1 RU 94028195 A RU94028195 A RU 94028195A RU 94028195 A RU94028195 A RU 94028195A RU 2125972 C1 RU2125972 C1 RU 2125972C1
Authority
RU
Russia
Prior art keywords
sorbent
heavy metals
ions
sewage waters
polymer binder
Prior art date
Application number
RU94028195A
Other languages
English (en)
Other versions
RU94028195A (ru
Inventor
М.В. Зильберман
Е.Г. Налимова
Е.А. Тиньгаева
Original Assignee
Уральский научно-исследовательский институт региональных экологических проблем (УралНИИ "Экология")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Уральский научно-исследовательский институт региональных экологических проблем (УралНИИ "Экология") filed Critical Уральский научно-исследовательский институт региональных экологических проблем (УралНИИ "Экология")
Priority to RU94028195A priority Critical patent/RU2125972C1/ru
Publication of RU94028195A publication Critical patent/RU94028195A/ru
Application granted granted Critical
Publication of RU2125972C1 publication Critical patent/RU2125972C1/ru

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

Изобретение относится к способам очистки сточных вод от ионов тяжелых металлов и может найти применение на заводах металлоизделий и предприятиях цветной металлургии. Для осуществления способа очистку стоков от ионов тяжелых металлов ведут путем сорбции на органоминеральном сорбенте на основе гальваношлама, гранулированного полимерным связующим с составом 75-83%, 17-25% соответственно. В качестве полимерного связующего используют полимеры, растворимые в растворителях, смешивающихся с водой. Способ отличается простотой и экономичностью и позволяет осуществить очистку стоков до уровня ПДК при повышении производительности процесса. 2 з.п. ф-лы, 2 табл.

Description

Изобретение относится к способам очистки сточных вод от тяжелых металлов, в том числе к очистке сточных вод гальванических производств от ионов меди, никеля, цинка, кадмия, железа и может быть использовано на заводах металлоизделий и предприятиях цветной металлургии.
Известны способы очистки сточных вод от ионов тяжелых металлов при их совместном присутствии путем их связывания в труднорастворимые соединения, где в качестве осадителей применяют оксиды, гидроксиды, соли щелочных, щелочноземельных и переходных металлов, сульфид- и фосфатсодержащие материалы /1/.
Следует отметить, что осаждение щелочными агентами, такими как гашеная и негашеная известь, сода, карбидное молоко, являющееся отходом ацетиленового производства, не решает в целом проблему загрязнения стоков тяжелыми металлами. По данным /2/ такая обработка позволяет снизить концентрации тяжелых металлов в обработанном растворе до 5 - 7 мг/дм3. Существенными недостатками способа известкования является высокая стоимость реагентов, а также образование пересыщенного раствора гипса при очистке сульфатных растворов, что приводит к порче трубопроводов и аппаратуры.
Глубокая очистка от катионов тяжелых металлов возможна путем их осаждения в виде труднорастворимых сульфидов. Известны способы использования сероводорода в качестве осадителя /3/, однако практическое применение этого способа снижается из-за токсичности сероводорода, выделяющегося в атмосферу. Эта же причина сдерживает применение в качестве осадителя полисульфида кальция, используемого в сельском хозяйстве в качестве инсектицида /3/.
Общим и главным недостатком осадительных способов очистки является образование плохоотстаивающихся и труднофильтруемых осадков - шламов, вопрос утилизации которых еще не везде решен.
Известны способы очистки сточных вод от ионов тяжелых металлов электрокоагуляцией, в частности электроосаждение кадмия из цианидного раствора /4/. Степень извлечения металла составила 98 - 99%. Недостатками способа электрокоагуляции является большой расход листового металла (алюминия и железа) и электроэнергии. Кроме того, на практике пока удается использовать не более 50 - 70% металла электродов вследствие зашламления электродных систем гидроксидом железа и возникновения коротких замыканий. Одним из наиболее эффективных методов очистки сточных вод является сорбционный метод.
Известны способы извлечения ионов тяжелых металлов сульфированным бурым углем /5/, сорбентом на основе торфа /6/, золой ТЭЦ /7/, природным минералом вермикулитом /8/. Применение активных углей и природных материалов для очистки сточных вод сдерживается их невысокой поглотительной способностью, высокой стоимостью регенерации, составляющей 50% от стоимости угольного материала, низкой прочностью сорбента и, следовательно, высокими потерями при фильтрации.
Высокую избирательность по отношению к ионам кадмия проявляют сорбенты на основе гидроксида циркония и фосфата титана /9/, однако их высокая стоимость и недостаточная гидромеханическая устойчивость сдерживают их применение в промышленности. Высокая стоимость комплексообразующих органических смол и их восприимчивость к "отравлению" органическими примесями не дает возможность применить их в производственных масштабах /10/.
Наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ очистки сточных вод от ионов тяжелых металлов путем их извлечения сорбентом на основе магнезиально-железистых шлаков цветной металлургии /14/.
По данному способу сорбцию ведут на шлакосиликатном сорбенте, который получен смешением порошка шлакового стекла с раствором силиката натрия с последующей гидротермальной обработкой суспензии при температуре 100oC /11/.
Очистка стоков от ионов никеля, меди, цинка осуществляется путем пропускания раствора через слой сорбента. После отработки предложено шлакосиликатный сорбент не десорбировать (раствор соляной кислоты регенерирует его на 30% и несколько разрушает матрицу сорбента), а подвергнуть его сульфидизирующей плавке. Степень очистки от ионов тяжелых металлов составила 65 - 75%, содержание металлов, в частности никеля, в сорбенте 23 - 24 мг/г. Недостаток этого способа заключается в невысокой эффективности, невозможности регенерации сорбента ввиду невысокой прочности гранул. Задачей изобретения является сокращение затрат на очистку сточных вод, повышение производительности процесса.
Поставленная задача решается путем применения для очистки сточных вод сорбента на основе гальваношлама, содержащего Fe2O3 - 6,3%, ZnO - 1%, CaO - 16,6% (1) и Fe2 O3 - 25%, ZnO - 0,7%, CuO - 2%, CoO - 0,3%, NiO - 0,3% (2), который гранулируют аналогично известной методике /12/ с применением в качестве полимерного органического связующего перхлорвинила или акрилатбутадиенстирола.
Очистку от ионов тяжелых металлов предпочтительно вести в интервале pH 6,5 - 7,5.
Десорбцию ионов тяжелых металлов осуществляют раствором состава, г/дм3: (NH4)2SO4 - 100; MgSO4 - 20; NH4OH - до pH = 9, при этом разрушения сорбента не происходит, что позволяет использовать его многократно.
Выбор в качестве сорбента материала на основе гальваношлама после очистки электрокоагуляцией позволяет снизить затраты на очистку ввиду применения сорбента с невысокой стоимостью, а вместе с тем решать вопрос утилизации гальваношламов.
Использование для очистки сточных вод от ионов тяжелых металлов сорбента на основе гальваношлама позволяет сократить затраты на очистку за счет регенерации сорбента и решения задачи утилизации гальваношламов, повысить производительность процесса очистки ввиду лучшей фильтрующей способности и меньшего гидродинамического сопротивления гранулята.
Применение предложенного способа очистки приводит к новому неожиданному результату - улучшению очистки за счет применения сорбента с лучшими сорбционными характеристиками, чем у прототипа, несмотря на то, что доля активной фазы в сорбенте снижена до 80%.
Оценку гидромеханической устойчивости проводили с учетом рекомендаций, предложенных в /13/.
Эффективность описываемого способа очистки сточных вод от тяжелых металлов и необходимость заявленных условий для достижения цели иллюстрируется следующими примерами.
Пример 1.
Серию навесок органоминеральных сорбентов, содержащих 10, 17, 20, 25, 30% перхлорвинила, массой от 0,1 до 1,0 г помещают в стаканчики, содержащие по 250 см3 солей тяжелых металлов. После установления равновесия раствор отфильтровывают от гранул. Результаты экспериментов приведены в таблице 1.
Пример 2.
5 г гранулированного сорбента, содержащего 80% шлама (2) и 20% пластика АБС 2020 (акрилат бутадиенстирола ТУ6-05-1587-84) загружено в колонку диаметром 10 мм, высотой 200 мм. Через колонку со скоростью 2 - 3 колонных объема в час пропускают промывные воды химического меднения с концентрацией меди от 3 до 53 мг/дм3. Использование сорбента позволило извлечь из перерабатываемого раствора примерно 95% содержащейся в нем меди. Емкость сорбента составила свыше 2 мг•экв/г (65 мг/г).
Пример 3.
20 дм3сорбента, содержащего 80% шлама (1) и 20% перхлорвинила загружено в колонну диаметром 150 мм. Высота загрузки слоя 2 м. Через колонну со скоростью 90 - 100 дм3/ч пропущены стоки кислотно-щелочной, хромсодержащей жидкостей и их смесь.
Результаты эксперимента и некоторые характеристики сорбентов приведены в таблице 2.
Из таблицы 1 следует, что оптимальное содержание полимера в используемом для очистки сорбенте составляет 17 - 25%. При меньшем содержании полимерного связующего увеличивается расход сорбента за счет увеличения его механических потерь в цикле, при большем - несколько ухудшаются сорбционные характеристики.
Как видно из приведенных примеров, предложенный способ эффективнее известного. Степень очистки в 1,1 - 1,4 раза превышает степень очистки старым способом, емкость по сорбции из чистых растворов находится на одном уровне, а в ряде случаев (для меди) в 2 - 2,5 раза выше. Предложенный способ значительно экономичнее за счет снижения потерь сорбента в цикле и возможности его регенерации.
Кроме того, решается проблема утилизации гальваношлама.
Предлагаемый способ может найти применение для извлечения из стоков ионов тяжелых металлов как индивидуальный и как дополнение к уже имеющейся на предприятии реагентной системе очистки.
Источники информации
1. Баймаханов М. Т., Лебедев К.Б., Антонов В.Н., Озеров А.И. Очистка и контроль сточных вод предприятий цветной металлургии. -М.: Металлургия, 1983, с. 191.
2. Kostura J.D. Recovtry and treatment of plating and anodizing waster // Plating and Surface Finish - 1980. - 67 N 8, p. 52 - 54.
3. Фишман Г.И., Литник А.А. Водоснабжение и очистка сточных вод предприятий химических волокон. -М.: Химия, 1971, 160 с.
4. Bochan P. J., Bussett W., Calver B.A. Электролитическое регенерирование кадмия в промышленных условиях / Plat. and Surface Finish. - 1986, 73, N 4, p. 68 - 70.
5. Ibarra J. , Moliner R. "Fuel", Удаление ионов тяжелых металлов из сточных вод с помощью сульфированного бурого угля. 1984, 63, N 3, p. 377.
6. Ludwig G., Simon J. Очистка промышленных сточных вод от тяжелых металлов с помощью фильтров с гранулированным сорбентом на основе торфа. "Geol Jahrb" 1983, N 6a, p. 365.
7. Реброва Т. И., Квятковский А.Н., Кадырова З.О. - Труды Казмеханобр. Алма-Ата, 1970, N 4, c. 62 - 65.
8. Keramida V., Etzel J. Очистка гальванических сточных вод управляемым материалом. Proc. 37 th Ind. Waste Conf. West Lafayette, Ind., 1983, 181 - 188.
9. Каблуков В. И., Каминская Н.А., Сухов А.В. Извлечение и регенерация кадмия из гальваностоков неорганическими сорбентами // Тез. докл. зонального научно-технического семинара "Синтез неорганических сорбентов и применение их для очистки сточных вод", Челябинск, 1990, с. 30 - 31.
10. Гребенюк В.Д., Соболевская Т.Т., Махно А.Г. Состояние и перспективы развития методов очистки сточных вод гальванических производств. - Химия и технология воды, 1989, N 5, т. 11, ч. 20.
11. Зосин А. П., Гуревич Б.И., Милованова И.Б. О сорбционных свойствах шлакосиликата. В кн. Химия и технология силикатных материалов. Л.: Наука, 1971, с. 100 - 105.
12. Онорин С.А., Вольхин В.В., Сесюнина Е.А., Алпатова Е.В. Органоминеральные сорбенты на основе диоксида титана для селективного извлечения лития из растворов // Тез. докл. - Аппатиты, 1988, с. 101 - 102.
13. О. В. Мамонов, В.Н.Пащенко, Г.А.Козлова. Об измерении механической прочности гранулированных дисперсий // Неорганические ионообменники: Межвуз. сб. науч. тр. Перм. политех. ин-т.- Пермь, 1977, с. 76 - 81.
14. А.П.Зосин, Т.И.Примак. Очистка промышленных стоков от катионов никеля, кобальта, меди, сорбентом на основе магнезиально-железистых шлаков цветной металлургии //Химия и технология неорганических сорбентов: Минвуз. Сб. науч. тр. Перм. политехн. ин-т. - Пермь, 1980, с. 92 - 97.

Claims (2)

1. Способ очистки сточных вод от ионов тяжелых металлов путем сорбции на композиционном сорбенте, отличающийся тем, что в качестве сорбента используют гальваношлам, гранулированный с полимерным связующим.
2. Способ по п.1, отличающийся тем, что используется сорбент состава, %:
Шлам - 75 - 83
Полимерное связующее - 17 - 25
3. Способ по пп.1 и 2, отличающийся тем, что в качестве полимерного связующего используются перхлорвинил или акрилат бутадиенстирол.
RU94028195A 1994-07-27 1994-07-27 Способ очистки сточных вод от ионов тяжелых металлов RU2125972C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94028195A RU2125972C1 (ru) 1994-07-27 1994-07-27 Способ очистки сточных вод от ионов тяжелых металлов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94028195A RU2125972C1 (ru) 1994-07-27 1994-07-27 Способ очистки сточных вод от ионов тяжелых металлов

Publications (2)

Publication Number Publication Date
RU94028195A RU94028195A (ru) 1996-05-20
RU2125972C1 true RU2125972C1 (ru) 1999-02-10

Family

ID=20159003

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94028195A RU2125972C1 (ru) 1994-07-27 1994-07-27 Способ очистки сточных вод от ионов тяжелых металлов

Country Status (1)

Country Link
RU (1) RU2125972C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2467958C1 (ru) * 2011-06-17 2012-11-27 Федеральное государственное образовательное учреждение высшего профессионального образования "Уральский государственный университет путей сообщения" (УрГУПС) Способ очистки поверхностного стока от ионов тяжелых металлов и биогенных веществ
RU2475299C2 (ru) * 2010-12-27 2013-02-20 Государственное образовательное учреждение высшего профессионального образования Иркутский государственный университет путей сообщения (ИрГУПС (ИрИИТ)) Способ получения серосодержащих сорбентов для очистки сточных вод от тяжелых металлов

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2734712C1 (ru) * 2020-03-10 2020-10-22 Федеральное государственное бюджетное учреждение "33 Центральный научно-исследовательский испытательный институт" Министерства обороны Российской Федерации Полимерный сорбционный композиционный материал для очистки воды от ионов тяжелых металлов и способ его получения
CN112811763B (zh) * 2020-12-29 2023-03-31 江西挺进环保科技股份有限公司 一种电镀污泥处理方法
CN112811658B (zh) * 2020-12-29 2023-04-07 江西挺进环保科技股份有限公司 一种电镀污水处理方法
CN112794502B (zh) * 2020-12-29 2023-04-07 江西挺进环保科技股份有限公司 一种电镀污水处理系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Зосин А.П. и др. Химия и технология неорганических сорбентов. Сб. научн. тр. Пермский политехнический институт. Пермь, 1980, с.92-97. 2. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2475299C2 (ru) * 2010-12-27 2013-02-20 Государственное образовательное учреждение высшего профессионального образования Иркутский государственный университет путей сообщения (ИрГУПС (ИрИИТ)) Способ получения серосодержащих сорбентов для очистки сточных вод от тяжелых металлов
RU2467958C1 (ru) * 2011-06-17 2012-11-27 Федеральное государственное образовательное учреждение высшего профессионального образования "Уральский государственный университет путей сообщения" (УрГУПС) Способ очистки поверхностного стока от ионов тяжелых металлов и биогенных веществ

Also Published As

Publication number Publication date
RU94028195A (ru) 1996-05-20

Similar Documents

Publication Publication Date Title
Naja et al. Treatment of metal-bearing effluents: removal and recovery
AjayKumar et al. Study of various parameters in the biosorption of heavy metals on activated sludge
US6599429B1 (en) Water treatment product and method
CS274259B2 (en) Method of suspended materials removal and equipment for realization of this method
WO2009063456A1 (en) Method for adsorption of phosphate contaminants from water solutions and its recovery
US4824576A (en) Process for removal, separation and recovery of heavy metal ions from solutions using activated alumina including acid treated activated alumina
CA2812120A1 (en) A method for the removal of organic chemicals and organometallic complexes from process water or other streams of a mineral processing plant using zeolite
RU2136607C1 (ru) Способ очистки сточных вод от мышьяка
Bowers et al. Activated carbon processes for the treatment of chromium (VI)-containing industrial wastewaters
RU2125972C1 (ru) Способ очистки сточных вод от ионов тяжелых металлов
JP2005028281A (ja) 複合吸着剤及びそれを用いた排水の処理方法
CN101538073A (zh) 利用贝壳去除工业废水中重金属盐的方法
Namasivayam et al. Removal of lead (II) by adsorption onto" waste" iron (III)/chromium (III) hydroxide from aqueous solution and radiator manufacturing industry wastewater
Ku et al. Innovative uses from carbon adsorption of heavy metals from plating wastewaters: I. Activated carbon polishing treatment
Tels Advances in treating heavy metals containing wastes
CN101538075A (zh) 一种利用蛋壳去除工业废水中重金属盐的方法
Anderson et al. A method for chromate removal from cooling tower blowdown water
Germain et al. Plating and cyanide wastes
RU2534108C2 (ru) Способ сорбционной очистки проточных промышленных сточных и питьевых вод на глауконите от катионов меди
Bulai et al. Iron removal from wastewater using chelating resin purolite S930
RU2137717C1 (ru) Способ очистки сточных вод от ионов меди
JPH07232161A (ja) 水中のリン除去方法
KR19980045201A (ko) 천연무기질을 이용한 폐수처리제 및 그 제조방법
Akretche Metals Removal from Industrial Effluents
Calmon et al. New directions in ion exchange