RU2124784C1 - Способ устранения структурных дефектов в твердых телах - Google Patents

Способ устранения структурных дефектов в твердых телах Download PDF

Info

Publication number
RU2124784C1
RU2124784C1 RU97116376A RU97116376A RU2124784C1 RU 2124784 C1 RU2124784 C1 RU 2124784C1 RU 97116376 A RU97116376 A RU 97116376A RU 97116376 A RU97116376 A RU 97116376A RU 2124784 C1 RU2124784 C1 RU 2124784C1
Authority
RU
Russia
Prior art keywords
defects
thermal
decreased
evaporation
energy
Prior art date
Application number
RU97116376A
Other languages
English (en)
Other versions
RU97116376A (ru
Inventor
А.Б. Мокров
В.В. Новиков
Original Assignee
Мокров Александр Борисович
Новиков Владимир Васильевич
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мокров Александр Борисович, Новиков Владимир Васильевич filed Critical Мокров Александр Борисович
Priority to RU97116376A priority Critical patent/RU2124784C1/ru
Application granted granted Critical
Publication of RU2124784C1 publication Critical patent/RU2124784C1/ru
Publication of RU97116376A publication Critical patent/RU97116376A/ru

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Использование: технология производства электронных компонентов, интегральных схем и устройств функциональной электроники. Сущность изобретения: для устранения структурных дефектов в твердом теле, в том числе пленке, возбуждают акустические колебания с длинами волн, соизмеримыми с эффективными размерами дефектов, и с энергией, превышающей энергию активации дефектов. Техническим результатом изобретения является устранение структурных дефектов в твердых телах при комнатной температуре, что обеспечивает исключение побочных нежелательных процессов диффузии и испарения примеси, расползания границ гетероструктур, испарения и диссоциации приповерхностного слоя подложки, возникновения термической неоднородности и термических напряжений; сокращение длительности процесса и энергозатрат, создание возможности устранения дефектов в ходе технологических операций вакуумного напыления и эпитаксиального наращивания пленок. 2 з.п.ф-лы.

Description

Изобретение относится к области микроэлектронной и наноэлектронной технологии производства электронных компонентов, интегральных схем и устройств функциональной электроники.
Известно, что в процессе выращивания кристаллов и пленок, в процессе механической обработки их поверхностей, при проведении высокотемпературных обработок окисления, при ионном легировании полупроводников, а также при различных плазменных и радиационных воздействиях, в объеме и на поверхности твердого тела, а также в объеме и на поверхности тонких пленок возникают разнообразные структурные дефекты, отрицательно влияющие на эксплуатационные характеристики готовых изделий.
Наиболее характерными видами структурных дефектов, проявляющихся в кристаллах и пленках кремния, германия, пьезокварца, арсенида галлия, твердых растворов на основе соединений типа A3B5, A2B6 и в других материалах, используемых в микроэлектронике и наноэлектронике являются:
- точечные дефекты (атом в междоузлии, вакансия, дивакансия, сочетание вакансии с атомом в междоузлии, инородный атом в узле решетки или в междоузлии);
- линейные дефекты (краевые и винтовые дислокации, линейно протяженные пустоты - треки от частиц высоких энергий);
- поверхностные дефекты (двойникование решетки, границы между зернами в поликристаллах, малоугловые дисклокационные границы, плоские кластеры, микротрещины);
- объемные дефекты (скопление вакансий, объемные кластеры, поры, пустоты, микрораковины, скопление атомов примеси или выделение инородной фазы);
В реальных кристаллах чаще всего наблюдается одновременное сочетание нескольких из перечисленных выше видов дефектов.
В соответствии с теорией электропроводимости полупроводников и металлов, структурные дефекты оказывают существенное влияние на их электрические свойства за счет:
- изменения подвижности носителей заряда вследствие рассеяния их на указанных видах дефектов решетки;
- изменения концентрации носителей заряда вследствие процессов генерации - рекомбинации с участием дефектов решетки и вследствие захвата дефектами свободных носителей заряда;
- перехода от дрейфового механизма электропроводности к прыжковому (туннельному) механизму на границах раздела зерен, в области микротрещин и на других поверхностных дефектах;
- изменения времени жизни носителей заряда за счет интенсивной рекомбинации на дефектах.
Указанные изменения электрических свойств оказывают значительное влияние на многие эксплуатационные параметры полупроводниковых приборов - диодов, транзисторов, инжекционных лазеров, светодиодов, фотоприемных устройств, интегральных схем и других электронных изделий. В частности, происходит изменение обратных токов и пробивных напряжений p-n переходов, коэффициентов усиления по току биполярных и крутизны полевых транзисторов, логических уровней цифровых схем и быстродействия приборов и устройств. В предельных случаях происходит деградация p-n переходов и полный отказ полупроводниковых приборов.
Влияние структурных дефектов проявляется не только в полупроводниковых материалах, но и в металлических элементах полупроводниковых приборов, интегральных схем и устройств функциональной электроники: пленочных проводниках, контактных площадках, пленочных резисторах, пленочных встречно-штыревых преобразователях поверхностных акустических волн и т.п.
Для снижения влияния структурных дефектов в существующей технологии широко применяется способ термического отжига дефектов (см. Чистяков Ю.Д., Райнова Ю.П. "Физико-химические основы технологии микроэлектроники", - М.: Металлургия, 1979, стр. 309-327). При этом способе полупроводниковые пластины, содержащие дефекты, подвергают термическому нагреву в печах. В монографии Риссел Х., Руге И. "Ионная имплантация", М., Наука, 1983 г., стр. 23-52 приводятся подробные сведения о создаваемых дефектах в полупроводниковых пластинах при ионном легировании и режимах термического отжига.
Существует и другая разновидность термического способа отжига дефектов с помощью мощных световых импульсов от лазера или с помощью мощных потоков электронов (см. например Двуреченский А.В. и др. "Импульсный отжиг полупроводниковых материалов", М., Наука, 1982 г.). Однако этот способ не нашел широкого применения в основном из-за более высокой стоимости оборудования и низкой производительности.
В обоих разновидностях способа в зависимости от вида дефектов и типа материала температура нагрева всей подложки либо локальная температура обычно задается в диапазоне от 500oC до 1800oC (для SiC), а длительность отжига составляет от 20 минут до нескольких часов.
В процессе тепловых колебаний кристаллической решетки элементарные дефекты могут получить энергию, превышающую энергию их активации, в результате чего данный дефект приобретает определенную вероятность аннигиляции. Например, дефект по Френкелю (сочетание вакансии и атома в междоузлии) исчезает, когда междоузельный атом преодолевает энергетический барьер и заполняет вакансию.
Однако способ термического отжига дефектов обладает рядом недостатков:
1. При термическом нагреве до температуры 800oC - 1100oC, в полупроводниковом материале помимо отжига дефектов происходят и другие, чаще всего нежелательные процессы (диффузия и испарение примеси, расползание границ гетероструктур, испарение и диссоциация основного материала подложки и т.п.).
2. Подложки, содержащие легкоплавкие элементы, в частности металлические проводники, вообще не могут подвергаться тепловому воздействию, так как это приведет к их полному разрушению.
3. Как известно, спектр тепловых колебаний очень широк (от 0 до 1013 Гц) и поэтому процесс термического отжига является хаотическим, случайным, вероятностным. Это приводит к большой длительности процесса отжига.
4. Процесс термического отжига является энергоемким.
5. Способ импульсного термического отжига создает значительную термическую неоднородность и, как следствие, вызывает нежелательные термические напряжения в структуре.
Задачей предлагаемого способа является:
- осуществление процесса устранения дефектов при комнатной температуре, обеспечивающего исключение побочных нежелательных процессов (диффузии и испарения примеси, расползания границ гетероструктур, испарения и диссоциации приповерхностного слоя материала подложки и др.);
- создание возможности устранения дефектов в образцах, содержащих легкоплавкие элементы;
- проведение процесса устранения дефектов за короткое время (до единиц минут) с минимумом энергозатрат;
- исключение возможности появления термической неоднородности и термических напряжений;
- создание возможности устранения дефектов не только после проведения указанных выше технологических операций, но и в ходе их осуществления, например, в ходе вакуумного напыления или эпитаксиального наращивания полупроводниковых, металлических или диэлектрических слоев.
Для решения поставленной задачи, в способе устранения структурных дефектов в твердых телах (в том числе тонких пленках) и на их поверхностях, включающем возбуждение колебаний кристаллической решетки, возбуждают акустические колебания с длинами волн, соизмеримыми с эффективными размерами дефектов, и с энергией, превышающей энергию активации дефектов.
Кроме того, указанные акустические колебания возбуждают воздействием на поверхность твердого тела периодическими сгустками электронов с частотным спектром, соответствующим спектру требуемых для устранения дефектов акустических колебаний.
Кроме того, указанные акустические колебания возбуждают путем помещения пьезопластины в СВЧ-поле.
Кроме того, указанные акустические колебания возбуждают одновременно с формированием пленок.
Возбуждение акустических колебаний указанной длины волны и энергии приводит к устранению дефектов при комнатной температуре, что исключает возникновение побочных процессов и открывает новые возможности для совершенствования технологии и повышения качества изделий.
Возбуждение в твердом теле акустических колебаний с длинами волн, соизмеримыми с размерами дефектов (1-100 нм), можно осуществлять, например, путем воздействия на подложку электронными сгустками, следующими со сверхвысокой частотой. Сгустки могут быть сформированы различным путем, за счет процессов, протекающих как внутри подложки, так и вне ее, например за счет механизма вторично-эмиссионного разряда (Л.В.Гришин, А.А.Дорофеюк, И.А.Коссый, Г. С.Лукьянчиков, М.М.Савченко. "Исследование вторично-эмиссионного СВЧ-разряда при больших углах пролета", Труды ФИАН им. П.Н.Лебедева, т. 92, 1977 г., стр. 82-131) - физического явления, заключающегося в развитии электронной лавины благодаря вторично-эмиссионному размножению первоначальных случайных электронов, совершающих синхронно с полем СВЧ-волны колебательные движения у поверхности подложки. В результате соударения сгустков электронов с подложкой, электроны передают ей свою энергию и импульс, возбуждая тем самым акустические колебания кристаллической решетки (акустические и термоупругие волны) со спектром, соответствующим спектру электронных сгустков.
Воздействие интенсивной акустической волны на твердое тело или пленку способствует упорядочению поверхности и устранению структурных дефектов в приповерхностном слое. Действительно, если длина волны таких колебаний имеет величину порядка характерных размеров дефекта, то будет происходить резонансное поглощение дефектом энергии колебаний решетки. Когда накопленная энергия достигнет величины энергии активации, произойдет ликвидация дефекта. Энергоемкость такого процесса тем ниже, чем точнее соответствует длина волны акустических колебаний характерным размерам дефектов.
Акустические колебания требуемых для отжига дефектов частот могут быть созданы также непосредственно с помощью пьезоэффекта либо в пьезоподложке, либо в слоистых структурах, содержащих пьезослой, путем помещения такой структуры в СВЧ-поле.
На практике дефекты обычно возникают как при осуществлении операций технологической обработки имеющихся образцов твердого тела (окисление, легирование и т.п.), так и при создании новых структур (эпитаксиальное наращивание, вакуумное напыление и т.д.). Устранение возникающих дефектов непосредственно в момент их возникновения в ходе реализации рассматриваемых технологических операций позволило бы значительно улучшить качество получаемых изделий. Однако при обычном термическом отжиге, как правило, не удается совместить температурный режим осуществляемого технологического процесса с требуемым температурным режимом отжига. В то же время, предлагаемый способ отжига путем возбуждения акустических колебаний с длинами волн, соизмеримыми с эффективными размерами дефектов и с энергией, превышающей энергию их активации, возможно применять при температуре, оптимальной для осуществляемой технологической операции.
Примеры реализации способа.
В экспериментальной установке, состоящей из вакуумной камеры и СВЧ-фидера, по которому от СВЧ-генератора подавалась электромагнитная волна, в конце фидера размещалась обрабатываемая подложка, у поверхности которой создавались пороговые условия возбуждения вторично-эмиссионного разряда. СВЧ-генератор работал на частоте 10 ГГц. При этом фазовая ширина сгустков составляла ориентировочно 30 градусов (В.И.Петрунин "Динамика движения электронов в эффекте мультипакции с учетом пространственного заряда, ЖТФ, т. 37, N 12, стр. 2239-2243, 1967 г.), поэтому возбуждаемые сгустками в подложке акустические колебания содержали частоты, спектр которых простирался от 10 до 1000 ГГц, что соответствовало диапазону длин волны в кремнии и арсениде галлия 3-300 нм.
Исследуемые образцы и экспериментальные результаты:
1. На кремниевых пластинах, легированных бором, диффузией фосфора на глубину 0,5 мкм формировались локальные резисторы, имеющие номинальное сопротивление 1 кОм. При воздействии акустическими колебаниями, возбуждаемыми вторично-эмиссионным разрядом при комнатной температуре в течение 0,1 - 0,2 секунды (чистое время воздействия), сопротивление понижалось на 10-15% благодаря уменьшению числа дефектов в диффузионном слое.
2. Указанные в п.1 пластины со сформированными диффузионными резисторами были подвергнуты облучению электронами высокой (3 МэВ) энергии с дозой 1015 см-2. Сопротивление резисторов при этом возросло до 10 кОм вследствие резкого увеличения концентрации дефектов. При воздействии акустическими колебаниями, возбуждаемыми вторично-эмиссионным разрядом при комнатной температуре в течение 0,1 - 0,2 секунды сопротивление резисторов практически возвращалось к исходному значению 1 кОм благодаря ликвидации подавляющего количества созданных при облучении дефектов.
3. Пластины кремния дырочного типа с эпитаксиальным слоем n-типа толщиной 5 мкм и удельным сопротивлением 3 кОм/n подвергались ионному легированию фосфором со стороны n-слоя. Энергия ионов составляла 120 кэВ, доза - 1015 см-2. Сопротивление эпитаксиального слоя при легировании не изменилось, так как большая часть введенной примеси находилась в неактивном состоянии, а ионно-легированный слой содержал значительное количество дефектов. После воздействия акустическими колебаниями, возбуждаемыми вторично-эмиссионным разрядом при комнатной температуре в течение 0,1 - 0,2 секунды удельное сопротивление эпитаксиального слоя снизилось до 50-60 Ом/n за счет ликвидации дефектов, вызванных ионным легированием, и увеличения активной части примеси.
4. На пластинах полуизолирующего арсенида галлия были сформированы локальные резисторы. После того как пластины были подвергнуты ионному легированию фтором, сопротивление полученных резисторов составляло 107 Ом. После воздействия акустическими колебаниями, возбуждаемыми вторично-эмиссионным разрядом при комнатной температуре в течение 0,1 - 0,2 секунды, сопротивление резисторов снизилось до 104 Ом.
Таким образом, путем возбуждения акустических колебаний с длинами волн, соизмеримыми с эффективными размерами дефектов и с энергией, превышающей энергию их активации, решена задача устранения структурных дефектов в твердых телах и в том числе в тонких пленках при комнатной температуре.
Способ обеспечил:
- исключение побочных нежелательных процессов в твердом теле (диффузии и испарения примеси, расползания границ гетероструктур, испарения и диссоциации приповерхностного слоя подложки, возникновения термической неоднородности и термических напряжений;
- сокращение длительности процесса устранения дефектов в 10 - 20 раз и энергозатрат в 3 - 10 раз;
- создание возможности устранения дефектов в ходе технологических операций вакуумного напыления и эпитаксиального наращивания пленок.

Claims (3)

1. Способ устранения структурных дефектов в твердых телах и на их поверхности, включающий возбуждение в твердом теле колебаний кристаллической решетки, отличающийся тем, что в твердом теле возбуждают акустические колебания с длинами волн, соизмеримыми с эффективными размерами дефектов и с энергией, превышающей энергию активации дефектов.
2. Способ по п.1, отличающийся тем, что акустические колебания возбуждают воздействием периодическими сгустками электронов со спектром колебаний, требуемым для устранения дефектов.
3. Способ по п. 1, отличающийся тем, что в твердом теле возбуждают акустические колебания одновременно с формированием пленок.
RU97116376A 1997-09-29 1997-09-29 Способ устранения структурных дефектов в твердых телах RU2124784C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU97116376A RU2124784C1 (ru) 1997-09-29 1997-09-29 Способ устранения структурных дефектов в твердых телах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97116376A RU2124784C1 (ru) 1997-09-29 1997-09-29 Способ устранения структурных дефектов в твердых телах

Publications (2)

Publication Number Publication Date
RU2124784C1 true RU2124784C1 (ru) 1999-01-10
RU97116376A RU97116376A (ru) 1999-03-10

Family

ID=20197669

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97116376A RU2124784C1 (ru) 1997-09-29 1997-09-29 Способ устранения структурных дефектов в твердых телах

Country Status (1)

Country Link
RU (1) RU2124784C1 (ru)

Similar Documents

Publication Publication Date Title
KR960001608B1 (ko) 반도체 재료 및 그 제작 방법과 박막 트랜지스터
Look et al. Production and annealing of electron irradiation damage in ZnO
JP3380313B2 (ja) ダイヤモンド電界効果トランジスタ
US5132754A (en) Thin film silicon semiconductor device and process for producing thereof
EP0036157A1 (en) Low temperature annealing of semiconductor devices
Wirth et al. Efficient p-type doping of 6H-SiC: Flash-lamp annealing after aluminum implantation
US6577386B2 (en) Method and apparatus for activating semiconductor impurities
US20190228971A1 (en) Doping system, doping method and method for manufacturing silicon carbide semiconductor device
US4249962A (en) Method of removing contaminating impurities from device areas in a semiconductor wafer
Kimerling et al. Injection‐stimulated dislocation motion in semiconductors
RU2124784C1 (ru) Способ устранения структурных дефектов в твердых телах
Gardner et al. Rapid thermal annealing of ion implanted 6H-SiC by microwave processing
US4595423A (en) Method of homogenizing a compound semiconductor crystal prior to implantation
JPH05117088A (ja) ダイヤモンドのn型及びp型の形成方法
US6083354A (en) Treatment method for diamonds
JPH0376129A (ja) 窒化ホウ素を用いた電子装置の作製方法
JP3124422B2 (ja) 高配向性ダイヤモンド薄膜の形成方法
Chalker et al. Formation of epitaxial diamond-silicon carbide heterojunctions
Prins Applications of diamond films in electronics
Ostapenko et al. Ultrasound stimulated defect reactions in semiconductors
US5997659A (en) Method of treatment of devices based on semiconductor and dielectric materials
Sullivan Development and efficiency of high voltage silicon carbide photoconductive semiconductor switches
DE102017203996B4 (de) p-n-Übergangssiliziumwafer-Herstellungsverfahren
Borsch et al. Photoelectrical properties of CdxHg1-xTe epitaxial layers irradiated by nanosecond laser pulses
JP3539738B2 (ja) 不純物添加方法