RU2117883C1 - Способ получения очень низких температур - Google Patents

Способ получения очень низких температур Download PDF

Info

Publication number
RU2117883C1
RU2117883C1 RU96102156A RU96102156A RU2117883C1 RU 2117883 C1 RU2117883 C1 RU 2117883C1 RU 96102156 A RU96102156 A RU 96102156A RU 96102156 A RU96102156 A RU 96102156A RU 2117883 C1 RU2117883 C1 RU 2117883C1
Authority
RU
Russia
Prior art keywords
temperature
mixture
joule
expansion
point
Prior art date
Application number
RU96102156A
Other languages
English (en)
Other versions
RU96102156A (ru
Inventor
Даниэль Бенуа Алан
Пюжоль Серж
Original Assignee
Сантр Насьональ Детюд Спасьаль
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сантр Насьональ Детюд Спасьаль filed Critical Сантр Насьональ Детюд Спасьаль
Publication of RU96102156A publication Critical patent/RU96102156A/ru
Application granted granted Critical
Publication of RU2117883C1 publication Critical patent/RU2117883C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/12Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using 3He-4He dilution

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Control Of Eletrric Generators (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Glass Compositions (AREA)

Abstract

Способ предназначен для получения очень низких температур и может быть использован в продолжительных экспериментах, например в космосе. Для достижения температур 0,2 К или ниже 3He и 4He раздельно подают в смесительную камеру (5), размещенную в корпусе (3), в котором поддерживают температуру примерно 2 К. Эндометрическое растворение 3He в 4He обеспечивает необходимый холод. Образовавшаяся смесь (М) выходит из смесительной камеры и корпуса, охлаждая подаваемые текучие среды помощью теплообменников (12.4). Кроме того, для компенсации термических потерь смесь (М) подвергают расширению Джоуля-Томсона в зоне (12) с последующим необязательным испарением в зоне (13). Эти операции проводят предпочтительно при температуре между примерно 1,5 и 2,5 К. Полученный холод служит для понижения температуры входящих текучих сред от температуры подачи, значительно превышающей 4 К, до 1,5 - 2,5 К, близкой к той, которая превалирует в кожухе 13, содержащем самую холодную точку (6) контура. Способ позволяет избежать необходимость использования ванны переохлажденного гелия, что позволяет упростить конструкцию. 3 з.п. ф-лы, 3 ил.

Description

Изобретение относится к способу и устройству для получения сверхнизких температур, ниже примерно 1 К, а именно 0,1 К.
В Европейской заявке на патент ЕР-А-0327457, которая соответствует патенту США 4991401 и в которой в качестве изобретателя указан один из авторов настоящей заявки, описан криостат, который содержит точку смешивания, в которой находится двухфазная система, состоящая из фазы раствора 3Не в жидком 4Не и жидкой фазы, образованной чистым 3Не. В точку смешивания непрерывно раздельно подают 3Не и жидкий 4Не и отводят из точки смешивания раствор с такой скоростью, которая предотвращает возврат 3Не в точку смешивания, чтобы содержание 3Не в 4Не не повышалось и, следовательно, чтобы он не становился менее пригодным для растворения вводимого жидкого 3Не. Точка смешивания расположена в корпусе, имеющем температуру ниже 2 К.
Более конкретно в точке смешивания две жидкости, смешиваясь, создают двухфазную систему, состоящую из фазы, обогащенной 3Не, и разбавленной фазы, причем энергия разбавления или растворения используется для охлаждения, а последовательность двух фаз в трубе для вывода смеси препятствует диффузии растворенного 3Не противотоком в холодную часть системы, тогда как при более высокой температуре (выше 0,5 К) растворимость 3Не в 4Не возрастает, а смесь состоит только из одной фазы, и скорость должна быть достаточной, чтобы 3Не не мог диффундировать противотоком.
Этот криостат обладает тем преимуществом, что он может функционировать в отсутствии силы тяжести, т.к. он не содержит дистиллятора, что делает его особенно пригодным для использования в космосе. При таком использовании криостат может функционировать, выбрасывая в пространство незначительные количества смеси 4Не и 3Не, которую он производит. В том случае, когда носитель должен вернуться на Землю, можно также сохранить эту смесь в резервуаре, чтобы разогнать ее на Земле. Если криостат используют на Земле, то он, разумеется, может быть соединен с перегонной установкой, и в этом случае комплекс функционирует в замкнутом контуре.
Недостаток, встречающийся при использовании этого криостата, заключается в том, что необходимо иметь резервуар с переохлажденным гелием для поддержания корпуса при температуре ниже 2 К, что усложняет конструкцию. Известно, что такое хранилище накладывает определенные ограничения, например, его трудно заполнять на борту космического корабля.
Целью изобретения является создание криостата, функционирующего в соответствии со способом, описанным в Европейской заявке на патент ЕР-А-0327457, и который имеет простую конструкцию, т.е. менее громоздкую и потребляющую мало энергии, и более конкретно - создание криостата, в котором отсутствует необходимость производства и/или хранения переохлажденного гелия для охлаждения корпуса до 2 К или ниже.
Для решения этой задачи по изобретению предложен способ получения сверхнизких температур, согласно которому 4Не и 3Не, которые охлаждают с помощью теплообменников до температуры порядка 0,2 К или ниже, непрерывно вводят в точку, где их смешивают для поглощения тепла растворения 3Не в 4Не, осуществляя таким образом охлаждение образовавшейся двухфазной смеси, эту смесь отводят через трубопровод, для предотвращения диффузии 3Не противотоком и уменьшения растворения 3Не, причем в этом способе теплообменник, находящийся рядом с точкой смешивания, используют для охлаждения жидкостей, направляемых в самую холодную точку, с помощью отведенной смеси, циркулирующей в противоположном направлении, при этом существенным отличием этого способа является то, что 4Не и 3Не, предназначенные для смешивания, охлаждают от температуры их подачи до температуры ниже 2,5 К, предпочтительно 1,5 -2,5 К, путем теплообмена с отведенной смесью, причем мощность поглощается при использовании расширения по Джоулю-Томсону этой смеси, позволяя таким образом системе работать при температуре подачи выше 4 К.
Мощность охлаждения при расширении по Джоулю-Томсону зависит только от давлений на входе и выходе смеси. Наилучшие эксплуатационные характеристики получают при давлениях порядка 2-15 бар на входе и 1-50 мбар на выходе.
Было установлено, что при соответствующем использовании расширения по Джоулю-Томсону применяемых жидкостей в способе охлаждения до сверхнизких температур можно предварительно охлаждать жидкости, входящие в систему, начиная с намного более высокой температуры, порядка 4-10 К, что позволяет избежать необходимости использования вспомогательных установок предварительного охлаждения, которые применяют в уровне техники, и, в частности, позволяет избежать необходимости использования ванны переохлажденного гелия. Температуры 4 - 10 К можно легко получить с помощью криогенной машины Стирлинга с последующей классической стадией Джоуля-Томсона с жидким 4Не.
Далее изобретение более подробно поясняется с помощью примеров выполнения и приложенных чертежей, на которых изображено:
на фиг. 1 - принципиальная схема устройства согласно изобретению;
на фиг. 2 - принципиальная схема известного из уровня техники устройства;
на фиг. 3 - энтальпийная диаграмма гелия 4, на которой представлены основные точки схемы по фиг. 2.
На фиг. 2 приведена принципиальная схема устройства, функционирующего в соответствии с Европейской заявкой на патент ЕР-А-0327457, приведенной выше.
Чистые газы 4Не и 3Не нагнетают под давлением (примерно 3 бар) и при комнатной температуре, каждый - в теплообменник 1, осуществляя при этом контакт с запасом переохлажденного гелия, обозначенного позицией 2, который поддерживает требуемую температуру в корпусе 3 криостата, и охлаждают до примерно 2 К. Обе текучие среды затем охлаждают в теплообменнике 4, после чего тепло, поглощенное их смесью в камере 5 смешивания, позволяет охладить опору 6 до температуры порядка 0,1 К. Смесь М поглощает тепло в теплообменнике 4 перед ее выходом из криостата при давлении на выходе, поддерживаемом равным примерно 2 бар. Разность давления с давлением на входе создается благодаря потере напора в теплообменниках.
На практике теплообменник 4 состоит из двух частей, при этом горячая часть (0,5-2 К) длиной 1 м состоит из трех труб с внутренним диаметром 0,03 мм, сваренных вместе, тогда как холодная часть (0,1-0,5 K образована тремя трубами диаметром 0,02 мм и длиной 3 м, сваренными вместе.
На фиг. 1 представлен схематический вид устройства по фиг. 2, модифицированного согласно изобретению. На обоих чертежах одинаковые позиции обозначают одинаковые элементы.
Чистые газы 4Не и 3Не нагнетают под давлением (между 2 и 20 бар) при комнатной температуре. Затем их охлаждают до температуры в диапазоне между 4 и 10 K с помощью теплообменников 10, которые соединены с дополнительной машиной 11 для предварительного охлаждения. Поступая во внешний корпус 13, текучие среды охлаждаются до температуры порядка 2 K с помощью теплообменников 12, которые соединены с промежуточным корпусом 3. При этом точка смешивания (5) и прилегающий к ней теплообменник (4) размещены в корпусе (13), поддерживаемом при температуре ниже 2,5 К. Внутренняя часть этого корпуса (3) идентична его внутренней части по фиг. 2.
На выходе из теплообменника 4 смесь теряет напор и находится в теплообменнике 14 при низком давлении, где жидкость испаряется, создавая большую охлаждающую мощность, которую используют для охлаждения экрана, ограничивающего наружный корпус 13, таким образом, что жидкости поступают через теплообменники 12. Затем смесь 11 выходит из криостата при низком давлении (между 1 и 50 мбар по трубопроводу 15.
На фиг. 3, которая представляет собой энтальпийную диаграмму гелия 4, поясняется физический аспект явлений, которые происходят внутри устройства. Эта диаграмма относится к чистому гелию 4, тогда как на практике используют гелий 4 и гелий 3 либо раздельно, либо в смеси. На практике количество гелия 3 по отношению к гелию 4 является относительно малым, примерно 20%, так что диаграмма на фиг. 3 представляет собой, тем не менее, наглядную общую иллюстрацию происходящих процессов.
При давлении на входе 9 бар и температуре 4 К, например, точка А, энтальпия составляет 50 Дж/моль. Если давление на выходе зафиксировано на уровне 30 мбар, жидкость сохраняет свою энтальпию и возвращается в точку В при температуре 2 К в виде двухфазной смеси, состоящей наполовину из пара, наполовину из жидкости. Доступная мощность охлаждения задается разностью энтальпий между точками В и С, т.е. равной примерно 50 Дж/моль. При обычном расходе 10 мкмоль/с доступная мощность в корпусе 3 составляет, следовательно, 0,5 мВт. Рассуждая аналогично, при температуре на входе выше 7 K получают нулевую доступную мощность. В этом случае необходимо добавить непрерывный теплообменник между входными трубами, соединяющими теплообменники 10 и 12, и выходной трубой 15. Использование такого теплообменника, спаренного с детандером Джоуля-Томсона, хорошо известно, благодаря чему можно осуществить такое расширение с высокой исходной температурой (до 10 или 20 К).
При заданных расходах (1,5 мкмоль/с для 3Не и 6 мкмоль/с для 4Не) необходимые количества газа составляют 1000 л для гелия 3 и 4000 л для гелия 4. Если используют стандартные баллоны высокого давления (объем 5 л, давление 200 бар, масса 6,7 кг), то для криостата требуется только один баллон гелия 3 и четыре баллона гелия 4 в год, что соответствует 33,5 кг в год. Эта масса может быть легко уменьшена при использовании баллонов высокого давления, изготовленных из более прочных материалов.
Поскольку все жидкости заключены в маленьких трубках и не имеется свободной поверхности отделения основы, система является нечувствительной к силе тяжести.
Простота системы обеспечивает очень простое управление путем регулирования расходов двух жидкостей на входе в криостат. Это позволяет остановить и возобновить растворение для оптимизации расхода газообразного гелия.
При такой конструкции можно охлаждать детекторы, например, до температуры 0,1 K, в космическом спутнике, используя криогенератор малого размера, потребляющий мощность несколько милливатт при температуре 5 К. Способ является очень надежным, не содержит механических узлов, и для его использования требуется порядка 5000 л газа в год. Устройство, следовательно, особенно пригодно для продолжительных экспериментов, например, в космосе.

Claims (4)

1. Способ получения сверхнизких температур, согласно которому 4He и 3He, которые охлаждают с помощью теплообменников до температуры порядка 0,2 К или ниже, непрерывно вводят в точку (5), где их смешивают для поглощения тепла растворения 3He в 4He, производя таким образом охлаждение образовавшейся двухфазной смеси, при этом смесь (М) отводят по трубопроводу для предотвращения диффузии 3He противотоком и уменьшения растворения 3He, причем теплообменник (4) вблизи точки (5) смешивания используют для охлаждения жидкостей, направляемых к самой холодной точке, с помощью отведенной смеси (М), циркулирующей в противоположном направлении, отличающийся тем, что 4He и 3He, предназначенные для смешивания, охлаждают от температуры их подачи до температуры ниже 2,5 К при теплообмене с отведенной смесью, при этом мощность поглощается при использовании расширения Джоуля-Томсона этой смеси, что позволяет таким образом этой системе функционировать с температурой подачи выше 4 К.
2. Способ по п.1, отличающийся тем, что расширения Джоуля-Томсона осуществляют путем понижения давления до примерно 1 - 50 мбар, а давление подачи 4He и 3He составляет примерно 2 - 15 бар.
3. Способ по п. 1 или 2, отличающийся тем, что расширение и возможное последующее испарение смеси проводят при температуре между примерно 1,5 и 2,5 К.
4. Способ по одному из пп.1 - 3, отличающийся тем, что точка смешивания (5) и прилегающий к ней теплообменник (4) размещены в корпусе (13), поддерживаемом при температуре ниже 2,5 К.
RU96102156A 1993-07-05 1994-07-04 Способ получения очень низких температур RU2117883C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR93/08201 1993-07-05
FR9308201A FR2707375B1 (fr) 1993-07-05 1993-07-05 Procédé d'obtention de très basses températures.

Publications (2)

Publication Number Publication Date
RU96102156A RU96102156A (ru) 1998-05-20
RU2117883C1 true RU2117883C1 (ru) 1998-08-20

Family

ID=9448906

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96102156A RU2117883C1 (ru) 1993-07-05 1994-07-04 Способ получения очень низких температур

Country Status (8)

Country Link
US (1) US5657635A (ru)
EP (1) EP0706632B1 (ru)
JP (1) JP3304978B2 (ru)
AT (1) ATE164441T1 (ru)
DE (1) DE69409236T2 (ru)
FR (1) FR2707375B1 (ru)
RU (1) RU2117883C1 (ru)
WO (1) WO1995002158A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0421111D0 (en) * 2004-09-22 2004-10-27 Oxford Instr Superconductivity Cryogenic flow valve system
FR2934674A1 (fr) * 2008-07-31 2010-02-05 Air Liquide Refrigerateur et procede de production de froid a tres basse temperature
DE102009025544B3 (de) * 2009-06-19 2010-09-23 Institut für Luft- und Kältetechnik gGmbH Lösungskältemaschine
US8991150B2 (en) 2012-07-27 2015-03-31 Board Of Trustees Of Northern Illinois University High specific impulse superfluid and nanotube propulsion device, system and propulsion method
US10240875B2 (en) * 2014-07-09 2019-03-26 The Regents Of The University Of California Active cryogenic electronic envelope

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2322337A1 (fr) * 1975-08-26 1977-03-25 Air Liquide Dispositif d'alimentation de refrigerant d'un refrigerateur a circuit ouvert, et systeme de refrigeration comportant un tel dispositif
US4080802A (en) * 1976-07-14 1978-03-28 International Telephone And Telegraph Corporation Hybrid gas cryogenic cooler
DE3435229A1 (de) * 1984-09-26 1986-04-03 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Kryostat fuer den betrieb einer (pfeil hoch)3(pfeil hoch)he-(pfeil hoch)4(pfeil hoch)he-mischeinheit
SU1229528A1 (ru) * 1984-10-15 1986-05-07 Всесоюзный научно-исследовательский институт гелиевой техники Способ пуска рефрижератора @ - @
US4697425A (en) * 1986-04-24 1987-10-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Oxygen chemisorption cryogenic refrigerator
FR2626658B1 (fr) * 1988-02-03 1990-07-20 Centre Nat Etd Spatiales Procede et appareillage pour l'obtention de tres basses temperatures
DE3941314A1 (de) * 1989-12-14 1991-06-20 Bodenseewerk Geraetetech Kuehlvorrichtung
US5063747A (en) * 1990-06-28 1991-11-12 United States Of America As Represented By The United States National Aeronautics And Space Administration Multicomponent gas sorption Joule-Thomson refrigeration
US5119637A (en) * 1990-12-28 1992-06-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ultra-high temperature stability Joule-Thomson cooler with capability to accommodate pressure variations

Also Published As

Publication number Publication date
FR2707375B1 (fr) 1995-09-22
EP0706632B1 (fr) 1998-03-25
ATE164441T1 (de) 1998-04-15
DE69409236D1 (de) 1998-04-30
EP0706632A1 (fr) 1996-04-17
JPH08512398A (ja) 1996-12-24
WO1995002158A1 (fr) 1995-01-19
JP3304978B2 (ja) 2002-07-22
FR2707375A1 (fr) 1995-01-13
US5657635A (en) 1997-08-19
DE69409236T2 (de) 1998-11-05

Similar Documents

Publication Publication Date Title
US3950958A (en) Refrigerated underground storage and tempering system for compressed gas received as a cryogenic liquid
EP2196722B1 (en) Device for re-liquefaction of liquefied gas, liquefied gas storage facility and liquefied gas carrying vessel equipped with the device, and method of re-liquefaction of liquefied gas
CA2481230C (en) Thermo-siphon method for providing refrigeration
US3848427A (en) Storage of gas in underground excavation
JP2006100275A (ja) バックアップ極低温冷却装置
US3613387A (en) Method and apparatus for continuously supplying refrigeration below 4.2 degree k.
US5193349A (en) Method and apparatus for cooling high temperature superconductors with neon-nitrogen mixtures
CN100467976C (zh) 用脉冲管制冷的低温容器系统和向其提供制冷作用的方法
BRPI0612403A2 (pt) aparelho de tanque criogênico, e, método para operar um sistema de tanque criogênico
US3299646A (en) Cryogenic joule-thomson helium liquefier with cascade helium and nitrogen refrigeration circuits
US3864926A (en) Apparatus for liquefying a cryogen by isentropic expansion
RU2117883C1 (ru) Способ получения очень низких температур
KR102282181B1 (ko) 직냉식 액화장치
Croft Cryogenic laboratory equipment
JP5313348B2 (ja) 冷凍器、および非常に低い温度の冷熱を作り出す方法
Benoit et al. New types of dilution refrigerator and space applications
SU330785A1 (ru) Установка дл получени сверхнизких температур
RU96102156A (ru) Способ получения очень низких температур
US3990265A (en) Joule-Thomson liquifier utilizing the Leidenfrost principle
GB2166535A (en) Cryostat for operation of a <3>He <4>He mixing unit
US3470065A (en) Production of cold neutrons
RU2193740C1 (ru) Аппарат сжижения газа
VanSant et al. Cryogenic system for the mirror fusion test facility
Arend et al. Cooling of a system of superconducting magnets by means of pumped subcooled liquid helium
RU2028560C1 (ru) Установка для получения низких температур

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20030705