RU2115137C1 - Дальномерный способ определения местоположения и составляющих вектора скорости объектов по радиосигналам космических аппаратов спутниковых радионавигационных систем - Google Patents

Дальномерный способ определения местоположения и составляющих вектора скорости объектов по радиосигналам космических аппаратов спутниковых радионавигационных систем Download PDF

Info

Publication number
RU2115137C1
RU2115137C1 RU94018148A RU94018148A RU2115137C1 RU 2115137 C1 RU2115137 C1 RU 2115137C1 RU 94018148 A RU94018148 A RU 94018148A RU 94018148 A RU94018148 A RU 94018148A RU 2115137 C1 RU2115137 C1 RU 2115137C1
Authority
RU
Russia
Prior art keywords
ranges
differences
range
navigation
satellite
Prior art date
Application number
RU94018148A
Other languages
English (en)
Other versions
RU94018148A (ru
Inventor
Николай Егорович Армизонов
Михаил Кириллович Чмых
Владимир Филиппович Черемисин
Алексей Николаевич Армизонов
Original Assignee
Николай Егорович Армизонов
Михаил Кириллович Чмых
Владимир Филиппович Черемисин
Алексей Николаевич Армизонов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Николай Егорович Армизонов, Михаил Кириллович Чмых, Владимир Филиппович Черемисин, Алексей Николаевич Армизонов filed Critical Николай Егорович Армизонов
Priority to RU94018148A priority Critical patent/RU2115137C1/ru
Publication of RU94018148A publication Critical patent/RU94018148A/ru
Application granted granted Critical
Publication of RU2115137C1 publication Critical patent/RU2115137C1/ru

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Дальномерный способ определения местоположения и составляющих вектора скорости объектов по радиосигналам космических аппаратов спутниковых радионавигационных систем может быть использован в космической радионавигации и геодезии. Согласно способу принимают N-канальным приемным устройством, установленным на объекте, навигационные радиосигналы спутников, определяют дальности от объектов до каждого спутника путем измерения временных сдвигов кодовых последовательностей, формируемых генераторами спутников относительно кодовой последовательности, формируемой генераторами объекта, а также составляющих вектора скорости путем измерения принимаемых доплеровских сдвигов частоты с использованием систем слежения за несущими. При этом в N-канальном приемном устройстве, один из которых является ведущим, а другие - ведомыми каналами, производят определение разности дальностей между дальностями, измеренными ведомыми приемными устройствами и дальностью, измеренной ведущим приемным устройством, а также определение разностей скоростей изменения дальностей между скоростями изменения дальностей, вычисленными по измерениям доплеровских сдвигов частоты ведомыми приемными устройствами и скоростью изменения дальности, вычисленной по измерению доплеровского сдвига частоты ведущим приемным устройством, затем производят определение двойных разностей дальностей и двойных разностей скоростей изменения дальностей путем взаимного вычитания друг из друга разностей дальностей и разностей скоростей изменения дальностей. Технический результат заключается в повышении точности определения координат местоположения, составляющих вектора скорости определяющегося объекта по навигационным сигналам КА СРНС; и с использованием радиосигналов наземных воздушных источников радиоизлучений, а также с использованием радиоизлучений КА других систем и имитаторов. 4 з.п. ф-лы, 3 ил.

Description

Изобретение относится к области космической радионавигации, геодезии и может быть использовано для определения координат местоположения и составляющих вектора скорости объектов.
Известен доплеровский разностно-дальномерный способ определения координат местоположения и составляющих вектора скорости объектов по навигационным радиосигналам космических аппаратов (КА) спутниковых радионавигационных систем (СРНС), основанный на измерениях разностей топоцентрических расстояний между объектом и двумя положениями одного и того же навигационного КА (НКА) в последовательные моменты времени (П.С. Волосов, Ю.С. Дубенко и др. Судовые комплексы спутниковой навигации. Л.: Судостроение, 1976).
Практической реализацией известного способа являются российская СРНС "Цикада" и американская СРНС "Транзит" - навигационные системы первого поколения. В нем интегрирование доплеровского смещения частоты принятых за интервал времени ΔT от навигационного искусственного спутника Земли (НИСЗ) радиосигналов позволяет определить число длин волн, укладывающихся в разность расстояний от фазового центра антенны приемного устройства объекта до двух положений НИСЗ (двух положений фазового центра антенны НИСЗ):
Figure 00000002

где
t1 и t2 - время передачи временных меток НИСЗ;
R1(t1) и R2(t2) - расстояния между фазовыми центрами антенн объекта и НИСЗ;
c - скорость света;
fп - частота принимаемого сигнала;
fо - частота опорного сигнала,
fп= fи±Δfи+Δfио+Δfтр+Δfгр+Δfдр,
где
fи - частота сигнала, излучаемого НИСЗ;
±Δfи - нестабильность частоты излучаемого сигнала;
Δfио,Δfтр - неизвестные сдвиги частоты, обусловленные распространением сигналов в ионосфере, тропосфере;
Δfгр - неизвестный сдвиг частоты, обусловленный гравитационными силами;
Δfдр - неизвестные сдвиги частоты, обусловленные другими факторами,
fo= fи±Δf+Δfo, ,
где
Δfo - известный постоянный сдвиг частоты (частотная подставка);
±Δf - нестабильность частоты опорного сигнала.
С учетом изложенного выражение примет вид
Figure 00000003

Из выражения видно, что интегральный доплеровский сдвиг частоты определяется двумя слагаемыми. Первое слагаемое - погрешности измерений, обусловленные условиями распространения радиоволн, гравитационным полем Земли, нестабильностью частоты излучения опорного генератора и другими факторами. Они войдут в навигационное уравнение как неизвестные. Второе слагаемое является прямым измерением изменения наклонной дальности в длинах волн опорной частоты определяющегося объекта.
Ошибка сложения системы слежения за несущей (ССР), которая отсутствует в рассмотренном навигационном уравнении, также входит в ошибку измерения радионавигационного параметра (РНП). Отслеживаемая функция времени - несущая частоты имеет ненулевые производные высокого порядка. Следовательно, помимо случайных ошибок (шумовых) реальный следящий контур с астатизмом конечного порядка будет иметь динамические ошибки, обусловленные наличием производных входного воздействия более высокого порядка, чем порядок астатизма системы. Уменьшение случайной ошибки системы фазовой автоподстройки частоты (ФАПЧ) ССН требует применения более инерционного контура обратной связи (сужение полосы пропускания фильтра низкой частоты), но при этом возрастают динамические ошибки ССР и наоборот.
Выражая дальности через координаты прямоугольной геоцентрической системы координат, навигационное уравнение примет вид
Figure 00000004
,
где
x1, y1, z1, x2, y2, z2 - координаты фазового центра антенны спутника в моменты времени t2 и t1 соответственно;
x0, y0, z0 -неизвестные координаты фазового центра антенны определяющегося объекта.
Как видно, три измерения разностей дальностей в четырех последовательных положениях спутника на орбите позволяют определить координаты объекта x0, y0, z0. В процессе измерений необходимо ждать, пока дальность до НИСЗ изменится на достаточную величину.
Разностно-дальномерный способ проявляет свои достоинства на таких расстояниях (базах) между положениями НИСЗ на орбите, когда они соизмеримы с расстояниями между НКА и определяющимся объектом.
В соответствии с изложенным недостатками известного способа являются
ошибки, обусловленные ССР;
ошибки за счет нестабильности частоты излучения НКА и опорного генератора;
ошибки, обусловленные условиями распространения радиоволн в ионосфере, тропосфере и другими факторами;
систематические и случайные ошибки;
низкая точность определения координат местоположения и составляющих вектора скорости объектов при использовании НИСЗ на средневысоких и высоких орбитах.
Известен также дальномерный способ, который принят в качестве прототипа. Практической реализацией этого способа являются СРНС второго поколения - российская Global Orbiting Navigation Sattellite System (ГЛОНАСС) и американская Global Positioning System (GPS). Геометрическим эквивалентом конечного алгоритма этого способа решения навигационной задачи является построение относительно используемых навигационных искусственных спутников Земли (НИСЗ) совокупности поверхностей положения, точка пересечения которых и является искомым положением объекта (Бортовые устройства спутниковой радионавигации. /Под ред. В.С. Шебшаевича. М.: Транспорт, 1988).
Для решения навигационной задачи минимально необходимый объем функциональных зависимостей должен быть равен числу оцениваемых параметров. Определение координат местоположения объекта сводится к решению системы уравнений
Figure 00000005

где
R1, . . . , R4 - результаты измерений наклонных дальностей, полученные с помощью следящей системы за задержкой (ССЗ);
x, y, z - координаты объекта в геометрической прямоугольной системе координат;
x1, y1, z1 .... x4, y4, z4 - координаты четырех путников, передаваемые в навигационном сообщении;
ΔRт - разница между истинной дальностью объекта-спутника и измеренной, обусловленной сдвигом шкалы времени объекта относительно шкалы времени НИСЗ;
ΔR1,...,ΔR4 - погрешности измерений, обусловленные атмосферой, ионосферой, другими факторами.
Для определения координат местоположения объекта необходимо, чтобы в поле зрения объекта находились одновременно четыре спутника. В результате решения этой системы уравнений определяются четыре известные: три координаты местоположения объекта (x, y, z) и поправка ΔRт к его шкале времени (поправка к часам).
Аналогичным образом, с использованием результатов измерений с помощью ССН, определяются три составляющие вектора скорости
Figure 00000006
и поправки
Figure 00000007
к частоте эталона частоты объекта, используемого для формирования шкалы времени:
Figure 00000008
,
где
Figure 00000009
- скорости изменения дальностей (радиальные скорости), измеренные с помощью ССН;
Figure 00000010
- составляющие вектора скорости объекта;
Figure 00000011
- составляющие вектора скорости четырех спутников;
Figure 00000012
- разница между истинной скоростью и измеренной, обусловленная расхождением частот эталонов частоты НИСЗ и объекта;
Figure 00000013
- погрешности измерений, обусловленные условиями распространения радиоволн и другими факторами.
Измерение дальности в аппаратуре объекта осуществляется путем измерения временного интервала между временными отметками принимаемого от спутника кода и местного кода объекта.
Эффективность данного метода определяется в основном шумовой погрешностью измерения РНП, поскольку именно шумовая погрешность ограничивает эффект компенсации сильнокоррелированных погрешностей. Для оценки шумовой погрешности используется (Бортовые устройства спутниковой радионавигации. /Под ред. В.С. Шебшаевича. М.: Транспорт, 1988) выражение
Figure 00000014

где
ε 2 ш - дисперсия шума измерения;
Δ - длительность элемента дальномерного кода;
c/N0 - отношение мощности сигнала к спектральной плотности мощности шума на входе приемника;
ΔBССЗ - односторонняя ширина полосы ССЗ;
ΔBПЧ - односторонняя ширина полосы УПЧ дискриминатора;
K1, K2 - постоянные параметры, зависящие от выбранного технического решения.
Измерение доплеровского сдвига частоты основано на измерении приращения дальности на частоте несущей с использованием ССН.
Оценка точности измерения приращения дальности определяется выражением для дисперсии фазы ε 2 ф схемы слежения за несущей, имеющим вид
Figure 00000015

где
λ - длина волны несущей;
BССН - ширина полосы схемы слежения за несущей.
Шумовая погрешность измерений приращений дальностей на частоте несущей практически на порядок меньше шумовой погрешности измерений дальностей с использованием дальномерных кодов.
Дальномерный способ не позволяет, например, из-за различий в СРНС ГЛОНАСС и GPS совместно их использовать.
Таким образом, недостатками известного способа, прототипа, являются
ошибки следящей системы за задержкой от отношения сигнал/шум;
ошибки следящей системы за несущей от отношения сигнал/шум;
ошибки, обусловленные условиями распространения радиоволн в ионосфере, тропосфере и другими факторами;
ошибки, обусловленные сдвигом шкалы времени объекта относительно шкал времени НИСЗ за счет нестабильности частот генераторов спутников и опорного генератора объекта;
невозможность совместного использования источников радиоизлучений систем различного назначения.
Для устранения ионосферной задержки в известных способах используется аппаратурная компенсация с помощью двухчастотных измерений и компенсация с помощью поправок, рассчитываемых по априорным данным.
Известный способ (прототип) характеризуется следующей совокупностью действий над принимаемыми спутниковыми радионавигационными сигналами:
прием N-канальным приемным устройством двухчастотных радиосигналов N НИСЗ;
определение дальностей от объекта до каждого спутника путем измерения временных сдвигов кодовых последовательностей, формируемых генераторами спутников относительно кодовой последовательности, формируемой генератором объекта;
измерение приращений дальностей путем измерения приращений фаз несущих;
определение координат местоположения объекта;
определение составляющих вектора скорости объекта.
Целью изобретения является повышение точности определения координат местоположения, составляющих вектора скорости определяющегося объекта по навигационным радиосигналам КА СРНС и с использованием радиосигналов наземных воздушных источников радиоизлучений, а также с использованием радиоизлучений КА других систем и их имитаторов.
Цель достигается тем, что по предлагаемому способу в N-канальном приемном устройстве, один из которых является ведущим, а другие - ведомыми каналами, производят определение разности дальностей между дальностями, измеренными ведомыми приемными устройствами, и дальностью, измеренной ведущим приемным устройством, а также определение разностей скоростей изменения дальностей между скоростями изменения дальностей, вычисленными по измерениям доплеровских сдвигов частоты ведомыми приемными устройствами, и скоростью изменения дальности, вычисленной по измерению доплеровского сдвига частоты ведущим приемным устройством, затем производят определение двойных разностей дальностей и двойных разностей скоростей изменения дальностей путем взаимного вычитания друг из друга разностей дальностей и разностей скоростей изменения дальностей.
Дополнительными отличиями предлагаемого способа являются следующие.
Ведущим и приемным устройствами определение разностей дальностей производят между объектом и двумя положениями спутников, определяемыми мерным интервалом путем измерения приращений фаз несущих с использованием фазовых автоподстроек частот систем слежения за несущими навигационных радиосигналов спутников.
Определение двойных разностей дальностей производят между объектом и двумя положениями спутников, определяемыми мерным интервалом, путем измерения разностей частот Доплера, принятых приемными устройствами с использованием квадратурных фазовых детекторов, умножив их средние значения на мерный интервал.
Приемное устройство ведущего канала принимает сигналы имитатора спутниковых сигналов.
Выделение сигналов с частотами Доплера производят путем возведения принимаемых сигналов в квадрат с последующим возвратом частот на искомые с использованием делителей частот.
Геометрическая интерпретация предлагаемого способа поясняется на примере созвездия четырех КА ГЛОНАСС и одного КА GPS, фиг. 1.
Принимаемый приемным устройством навигационный радиосигнал КА GPS является ведущим сигналом, а канал приема приемным устройством сигналов КА ГЛОНАСС - ведомым. Соответственно навигационные сигналы КА ГЛОНАСС, приемное устройство КА являются ведомыми.
В соответствии с вышеизложенным
Figure 00000016

где
Figure 00000017
- разность измеренных дальностей между каждым ведомым КА ГЛОНАСС - пользователь и между ведущим КА GPS - пользователь с использованием дальномерных кодов;
Figure 00000018
- двойные разности дальностей.
Геометрическая интерпретация определения координат и составляющих вектора скорости по разностям приращений дальностей и двойных разностям приращений, измеренных с использованием приращений фаз несущих, поясняется на примере двух КА: ведущего КА и одного ведомого КА ГЛОНАСС, фиг. 2.
Точками t1, t*, t2 обозначены положения НИСЗ на орбите, являющиеся границами отсчетов навигационного параметра (мерный интервал).
Разности приращений дальностей запишутся следующим образом соответственно:
Figure 00000019

Двойные разности приращений дальностей примут вид
Figure 00000020

Разности дальностей в квадратных скобках системы уравнений (1) проявляют свои достоинства, как это было показано выше на таких расстояниях (базах) между положениями НИСЗ на орбите, когда они соизмеримы с расстоянием между НКА и определяющимся объектом. В нашем примере базы незначительны. Для выполнения этого условия систему уравнений (2) преобразуют в тождественную систему уравнений, у которой данное условие выполняется:
Figure 00000021

Таким образом, из системы разностей дальностей для орбит НКА с тождественными параметрами орбит для созвездия из 5 НКА один GPS - ведущий, четыре ГЛОНАСС - ведомые.
Окончательные системы уравнений для двойных разностей дальностей (1) и для двойных разностей приращений дальностей (3), выраженные через координаты в геометрической прямоугольной системе координат, примут вид
для двойных разностей дальностей
Figure 00000022
,
Для двойных разностей приращений дальностей
Figure 00000023
;
Figure 00000024
;
Figure 00000025
,
где
Figure 00000026
- координаты ведомых НИСЗ, передаваемые в навигационных сообщениях в моменты времени t1, t2 соответственно.
Аналогично с использованием результатов измерений с помощью ССН определяются составляющие вектора скорости:
Figure 00000027
;
Figure 00000028
;
Figure 00000029
,
где
Figure 00000030
- составляющие вектора скорости НИСЗ, передаваемые в навигационных сообщениях в моменты времени t1, t2 соответственно.
Анализируя системы навигационных уравнений двойных разностей дальностей (4), двойных разностей приращений дальностей (5) и скоростей (6) с использованием ведущего, ведомых радиосигналов НИСЗ и соответствующих приемных устройств, каналов, видим, что в уравнениях компенсируются координаты ведущего НИСЗ GPS, компенсируются также погрешности, обусловленные расхождением шкал времени и частот GPS, ГЛОНАСС относительно шкалы времени, частоты объекта.
Если в навигационных уравнениях известного способа присутствуют погрешности, обусловленные ионосферой, тропосферой, то в уравнениях предлагаемого способа с использованием двойных разностей дальностей присутствуют их разности.
Для обеспечения высокой точности решения навигационной задачи, обусловленной геометрическим фактором определения положения в пространстве, положение КА в пространстве выбирается таким, при котором один КА находится в зените (обеспечивая высокую точности определения положения по вертикали), а остальные КА - в горизонтальной плоскости в направлениях, отличающихся друг от друга на 120 - 180o (обеспечивая высокую точность определения положения по горизонтали) в зависимости от количества используемых КА.
Таким образом, предлагаемый способ, несмотря, например, на серьезные различия в ГЛОНАСС и GPS, в способах задания эфемерид, в компоновке суперкадров и структур кадров служебной информации, в неидентичности используемых систем отсчета пространственных координат и различии шкал времени, формируемые от различных эталонов частоты и времени, позволяет совместное их использование, не проводя их в требуемое соответствие, т.е. без всяких организационных материальных доработок и доработок математического обеспечения систем.
Принимая радионавигационные сигналы КА ГЛОНАСС и GPS параллельно или последовательно, используя мультиплексное приемное устройство или многоканальное, а также беря в одной серии измерений в качестве ведущих КА GPS, а в качестве ведомого КА ГЛОНАСС и наоборот в другой серии, можно определить координаты и составляющие вектора скорости объекта как в координатно-временной системе GPS, так и в координатно-временной системе ГЛОНАСС, не приводя их в соответствие.
Совместное использование систем обеспечит определенную универсальность навигационных определений, надежность и достоверную обсервацию за счет сравнения результатов определений по разным системам для выявления случаев нарушения функционирования одной из систем.
Под надежностью навигационного обеспечения понимается способность навигационной системы в любой момент времени обеспечить объект информацией для определения местоположения с точностью, гарантированной для рабочей зоны.
Под достоверностью понимается способность навигационной системы выявлять отклонения в своем функционировании, приводящие к ухудшению точности определения координат и составляющих вектора скорости объекта за пределы заданных допустимых значений.
Если система навигационных уравнений двойных разностей предлагаемого способа с использованием измерений с помощью дальномерных кодов (1) является по сути системой уравнений разностей дальностей, то система навигационных уравнений двойных разностей приращений дальностей, измеренных с помощью приращений фаз несущих на мерном интервале (2), является системой уравнений двойных разностей дальностей и также позволяет решить навигационную задачу - определить координаты местоположения и составляющие вектора скорости объекта. Поскольку, как это было показано выше, точность измерений двойных разностей приращений фаз на несущих частотах на порядок выше точности измерений разностей временных сдвигов кодовых последовательностей, то и точность решения навигационной задачи с использованием приращений фаз также выше точности решения с использованием разностей дальностей.
В целях дальнейшего повышения точности решения навигационной задачи с использованием приращений фаз на несущих частотах за счет исключений из измерений погрешности, обусловленной ССН, двойные разности приращений дальностей производятся путем выделения из принятых сигналов с частотами, равными разностям частот Доплера, с использованием квадратурных фазовых детекторов, на первые выходы которых поступают сигнал ведущего, а на вторые входы - сигналы ведомых приемных устройств, затем производятся определение разностей приращений фаз путем умножения средних значений разностей частот Доплера на мерный интервал и определения двойных разностей приращений фаз путем их взаимного вычитания.
Изложенное соответствует аппаратурной реализации, блок-схема которой приведена на фиг. 3. Выделение сигналов с частотами Доплера при приеме фазомодулированных сигналов с подавленными несущими производится путем возведения их в квадрат и фильтрации с последующим возвратом частот на искомые с использованием делителей частот.
Сигналы с выходов устройств свертки, которые поступают на системы ФАПЧ ССН приемных устройств фиг. 3, в режиме синхронизма по задержкам дальномерных кодов являются значительно узкополосными сигналами - восстановленные несущие, промодулированные цифровой информацией. Диапазоны изменения значений несущих определяются в основном доплеровским смещением (≈ ± 50 кГц на частотах КА GPS, ГЛОНАСС), а ширина спектра сигнала - спектром цифровой информации (≈ 100 Гц).
Сигналы ФАПЧ могут отслеживать сигналы, соответствующие только одной из двух боковых полос, и, следовательно, обладают энергетическими потерями, равными 3 дБ. Поэтому подключение устройств выделения из принятых навигационных сигналов, равных разностям частот Доплера предлагаемого способа фиг. 3, исключающих вторые боковые полосы, не вносит дополнительные энергетические потери.
Принятые и преобразованные спутниковые навигационные радиосигналы, поступающие на квадратурные фазовые детекторы, несут уже в себе сдвиги частот, обусловленные нестабильностями генераторов КА, объекта, обусловленные условиями распространения радиоволн (ионосфера, тропосфера), сдвиги, обусловленные приемными трактами и другими факторами. Поэтому в процессе выделений колебаний с частотами, равными разностям частот Доплера предлагаемого способа, перечисленные частотные отклонения частично компенсируют друг друга. И уже при тройных разностях вклад их в точность навигационных определений будет незначительным.
При использовании для решений навигационной задачи приращения фаз влияния приращений фаз на точность за счет ионосферы, тропосферы для крайних точек мерного интервала отличаются мало и при образовании вторых разностей практически устраняются. Особым отличительным признаком предлагаемого способа является то, что при измерениях разностей приращений фаз с использованием колебаний, равных разностям частот Доплера, в качестве ведущего сигнала можно использовать сигнал любого источника излучения: наземного, воздушного базирования или излучения КА других систем. В этом случае основное требование к приемному устройству определяющегося объекта это возможность принять сигнал и преобразовать его таким образом, чтобы он обеспечил работу блока квадратурных фазовых детекторов. Причем координаты источников излучения, их временные системы, нестабильности частот и приращения частот за счет распространения радиоволн знать не требуется. Они компенсируются в процессе навигационных измерений.
Самым оптимальным вариантов аппаратурной реализации предлагаемого способа является вариант, когда в качестве ведущего сигнала приемного устройства объекта используются сигналы несущих, промодулированные дальномерными кодами имитаторов. Имитаторы позволяют оптимизировать скорость изменения частот конкретно для каждого типа навигационных систем и тем самым обеспечить их оптимальную работу с точки зрения получения потенциально возможной точности определения координат местоположения и составляющие вектора скорости объекта.
Отличительные признаки предложенного способа:
прием N-канальным приемным устройством навигационных радиосигналов N спутников, один из каналов которого является ведущим, а другие - ведомыми;
определение разностей приращений дальностей и разностей дальностей путем вычитания из измеренных приращений фаз несущих и временных сдвигов кодовых последовательностей ведомыми приемными устройствами приращения фазы несущих и временного сдвига кодовой последовательности, измеренных ведущим приемным устройством;
определение двойных разностей дальностей приращений дальностей и дальностей путем взаимного вычитания разностей двойных разностей приращений фаз несущих и разностей временных сдвигов кодовых последовательностей в последовательности, определяемой геометрическим фактором определения положения в пространстве;
использование разностей двойных разностей приращений фаз несущих для определения координат и составляющих вектора скорости объекта;
измерение двойных разностей приращений дальностей путем выделения сигналов с частотами, равными разностям частот Доплера, принятых ведущим и каждым ведомым каналами приемного устройства с использованием квадратурных фазовых детекторов, на первые входы которых поступают сигналы ведущего канала, а на вторые входы - сигналы ведомых, и умножением их средних значений на мерный интервал;
прием ведущим каналом приемного устройства радиосигналов наземных, воздушных источников радиоизлучений и радиоизлучения космических аппаратов других систем;
использование ведущими каналами приемного устройства в качестве сигнала имитаторов;
выделение сигналов с частотами Доплера при приеме фазомоделированных сигналов с подавленными несущими путем возведения их в квадрат и фильтрации с последующим возвратом частот на искомые с использованием делителей частот.
Таким образом, предложенный способ определения координат местоположения и составляющих вектора скорости объектов по радиосигналам КА СРНС обладает новизной, существенными отличиями и дает при использовании положительный эффект, заключающийся в повышении точности, надежности и достоверности навигационных определений спутниковых и наземных радионавигационных систем.

Claims (5)

1. Дальномерный способ определения местоположения и составляющих вектора скорости объектов по радиосигналам космических аппаратов спутниковых радионавигационных систем, в котором N-канальным приемным устройством, установленным на объекте, принимают навигационные радиосигналы спутников, определяют дальности от объектов до каждого спутника путем измерения временных сдвигов кодовых последовательностей, формируемых генераторами спутников относительно кодовой последовательности, формируемой генераторами объекта, а также составляющие вектора скорости путем измерения принимаемых доплеровских сдвигов частоты с использованием систем слежения за несущими, отличающийся тем, что в N-канальном приемном устройстве, один из которых является ведущим, а другие ведомыми каналами, производят определение разности дальностей между дальностями, измеренными ведомыми приемными устройствами, и дальностью, измеренной ведущим приемным устройством, а также определение разностей скоростей изменения дальностей между скоростями изменения дальностей, вычисленными по измерениям доплеровских сдвигов частоты ведомыми приемными устройствами и скоростью изменения дальности, вычисленной по измерению доплеровского сдвига частоты ведущим приемным устройством, затем производят определение двойных разностей дальностей и двойных разностей скоростей изменения дальностей путем взаимного вычитания друг из друга разностей дальностей и разностей скоростей изменения дальностей.
2. Способ по п. 1, отличающийся тем, что ведущим и ведомым приемными устройствами определение разностей дальностей производят между объектом и двумя положениями спутников, определяемыми мерным интервалом путем измерения приращений фаз несущих с использованием фазовых автоподстроек частот систем слежения за несущими навигационных радиосигналов спутников.
3. Способ по п.1, отличающийся тем, что определение двойных разностей дальностей производят между объектом и двумя положениями спутников, определяемыми мерным интервалом, путем измерения разностей частот Доплера, принятых приемными устройствами с использованием квадратурных фазовых детекторов, умножив их средние значения на мерный интервал.
4. Способ по пп.1 - 3, отличающийся тем, что приемное устройство ведущего канала принимает сигналы имитатора спутниковых сигналов.
5. Способ по п.3, отличающийся тем, что выделение сигналов с частотами Доплера производят путем возведения принимаемых сигналов в квадрат с последующим возвратом частот на искомые использованием делителей частот.
RU94018148A 1994-05-11 1994-05-11 Дальномерный способ определения местоположения и составляющих вектора скорости объектов по радиосигналам космических аппаратов спутниковых радионавигационных систем RU2115137C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94018148A RU2115137C1 (ru) 1994-05-11 1994-05-11 Дальномерный способ определения местоположения и составляющих вектора скорости объектов по радиосигналам космических аппаратов спутниковых радионавигационных систем

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94018148A RU2115137C1 (ru) 1994-05-11 1994-05-11 Дальномерный способ определения местоположения и составляющих вектора скорости объектов по радиосигналам космических аппаратов спутниковых радионавигационных систем

Publications (2)

Publication Number Publication Date
RU94018148A RU94018148A (ru) 1996-03-20
RU2115137C1 true RU2115137C1 (ru) 1998-07-10

Family

ID=20156058

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94018148A RU2115137C1 (ru) 1994-05-11 1994-05-11 Дальномерный способ определения местоположения и составляющих вектора скорости объектов по радиосигналам космических аппаратов спутниковых радионавигационных систем

Country Status (1)

Country Link
RU (1) RU2115137C1 (ru)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153438A1 (ru) * 2008-03-03 2008-12-18 Viktor Leonidovich Sorokin Способ определения расстояний между космическим аппаратом и станциями
US7746272B2 (en) 2003-10-28 2010-06-29 Trimble Navigation Limited Ambiguity estimation of GNSS signals for three or more carriers
RU2453996C1 (ru) * 2011-02-18 2012-06-20 Михаил Иванович Иващенко Система приема радиосигналов на объектах
RU2453999C1 (ru) * 2010-12-24 2012-06-20 Михаил Иванович Иващенко Способ приема радиосигналов на объектах
RU2453995C1 (ru) * 2010-12-24 2012-06-20 Михаил Иванович Иващенко Способ приема радиосигналов от источников радиоизлучений
RU2453997C1 (ru) * 2011-02-18 2012-06-20 Михаил Иванович Иващенко Система приема радиосигналов от источников радиоизлучений
RU2465728C1 (ru) * 2011-06-15 2012-10-27 Михаил Иванович Иващенко Система приема радиосигналов на объекте
RU2465614C1 (ru) * 2011-06-15 2012-10-27 Михаил Иванович Иващенко Способ приема радиосигналов от источников радиоизлучений
RU2468513C1 (ru) * 2011-06-15 2012-11-27 Михаил Иванович Иващенко Способ приема радиосигналов на объектах
RU2468380C1 (ru) * 2011-06-15 2012-11-27 Михаил Иванович Иващенко Система приема радиосигналов от источников радиоизлучений
RU2478979C1 (ru) * 2011-11-11 2013-04-10 Закрытое акционерное общество "ВНИИРА-Навигатор" Дальномерная радиотехническая система ближней навигации летательных аппаратов
RU2484604C1 (ru) * 2011-12-14 2013-06-10 Владимир Петрович Панов Радиотехнический способ извлечения информации
RU2484605C1 (ru) * 2011-12-14 2013-06-10 Владимир Петрович Панов Радиотехническая информационная система
RU2517176C1 (ru) * 2013-04-11 2014-05-27 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт авиационных систем" Способ определения положения потребителей навигационной информации спутниковых навигационных систем
RU2559648C2 (ru) * 2013-09-10 2015-08-10 Открытое акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (ОАО "Российские космические системы") Способ и устройство контроля целостности спутниковой навигационной системы
RU2603126C2 (ru) * 2011-09-27 2016-11-20 Роузмаунт Танк Радар Аб Система для определения уровня налива, основанная на оценке расстояния многочастотным импульсным радаром
RU2706636C1 (ru) * 2018-10-17 2019-11-19 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва" Способ определения координат космического аппарата по сигналам навигационных спутников и устройство определения координат космического аппарата по сигналам навигационных спутников
RU2712365C1 (ru) * 2019-05-28 2020-01-28 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва" Способ определения координат космического аппарата по сигналам навигационных спутников и устройство определения координат космического аппарата по сигналам навигационных спутников
RU2781379C1 (ru) * 2021-10-28 2022-10-11 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Военный Учебно-Научный Центр Сухопутных Войск "Общевойсковая Ордена Жукова Академия Вооруженных Сил Российской Федерации" Способ привязки минно-взрывных заграждений с применением навигационной аппаратуры потребителя индивидуального пользования спутниковых навигационных систем относительным методом определения координат

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Шебшаевич В.С. и др. Сетевые спутниковые радионавигационные системы.-М.: Радио и связь, 1993, с.305-309. Шебшаевич В.С. и др. Сетевые спутников ые р адионавигационные системы.-М.: Радио и связь, 1993, с.295-296. *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7746272B2 (en) 2003-10-28 2010-06-29 Trimble Navigation Limited Ambiguity estimation of GNSS signals for three or more carriers
WO2008153438A1 (ru) * 2008-03-03 2008-12-18 Viktor Leonidovich Sorokin Способ определения расстояний между космическим аппаратом и станциями
RU2453999C1 (ru) * 2010-12-24 2012-06-20 Михаил Иванович Иващенко Способ приема радиосигналов на объектах
RU2453995C1 (ru) * 2010-12-24 2012-06-20 Михаил Иванович Иващенко Способ приема радиосигналов от источников радиоизлучений
RU2453996C1 (ru) * 2011-02-18 2012-06-20 Михаил Иванович Иващенко Система приема радиосигналов на объектах
RU2453997C1 (ru) * 2011-02-18 2012-06-20 Михаил Иванович Иващенко Система приема радиосигналов от источников радиоизлучений
RU2468513C1 (ru) * 2011-06-15 2012-11-27 Михаил Иванович Иващенко Способ приема радиосигналов на объектах
RU2465614C1 (ru) * 2011-06-15 2012-10-27 Михаил Иванович Иващенко Способ приема радиосигналов от источников радиоизлучений
RU2465728C1 (ru) * 2011-06-15 2012-10-27 Михаил Иванович Иващенко Система приема радиосигналов на объекте
RU2468380C1 (ru) * 2011-06-15 2012-11-27 Михаил Иванович Иващенко Система приема радиосигналов от источников радиоизлучений
RU2603126C2 (ru) * 2011-09-27 2016-11-20 Роузмаунт Танк Радар Аб Система для определения уровня налива, основанная на оценке расстояния многочастотным импульсным радаром
RU2478979C1 (ru) * 2011-11-11 2013-04-10 Закрытое акционерное общество "ВНИИРА-Навигатор" Дальномерная радиотехническая система ближней навигации летательных аппаратов
RU2484604C1 (ru) * 2011-12-14 2013-06-10 Владимир Петрович Панов Радиотехнический способ извлечения информации
RU2484605C1 (ru) * 2011-12-14 2013-06-10 Владимир Петрович Панов Радиотехническая информационная система
RU2517176C1 (ru) * 2013-04-11 2014-05-27 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт авиационных систем" Способ определения положения потребителей навигационной информации спутниковых навигационных систем
RU2559648C2 (ru) * 2013-09-10 2015-08-10 Открытое акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (ОАО "Российские космические системы") Способ и устройство контроля целостности спутниковой навигационной системы
RU2706636C1 (ru) * 2018-10-17 2019-11-19 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва" Способ определения координат космического аппарата по сигналам навигационных спутников и устройство определения координат космического аппарата по сигналам навигационных спутников
RU2712365C1 (ru) * 2019-05-28 2020-01-28 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва" Способ определения координат космического аппарата по сигналам навигационных спутников и устройство определения координат космического аппарата по сигналам навигационных спутников
RU2781379C1 (ru) * 2021-10-28 2022-10-11 Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования "Военный Учебно-Научный Центр Сухопутных Войск "Общевойсковая Ордена Жукова Академия Вооруженных Сил Российской Федерации" Способ привязки минно-взрывных заграждений с применением навигационной аппаратуры потребителя индивидуального пользования спутниковых навигационных систем относительным методом определения координат

Similar Documents

Publication Publication Date Title
RU2115137C1 (ru) Дальномерный способ определения местоположения и составляющих вектора скорости объектов по радиосигналам космических аппаратов спутниковых радионавигационных систем
US7466264B2 (en) System and method for providing assistance data within a location network
US5148179A (en) Differential position determination using satellites
US5805108A (en) Apparatus and method for processing multiple frequencies in satellite navigation systems
US5438337A (en) Navigation system using re-transmitted GPS
US5467282A (en) GPS and satellite navigation system
US7570204B1 (en) Generalized divergence-free carrier smoothing and dual frequency differential GPS architecture implementing the same
US4797677A (en) Method and apparatus for deriving pseudo range from earth-orbiting satellites
US6198430B1 (en) Enhanced differential GNSS carrier-smoothed code processing using dual frequency measurements
US20120050103A1 (en) Synthetic aperture device for receiving signals of a system comprising a carrier and means for determining its trajectory
Lestarquit et al. Reflectometry with an open-source software GNSS receiver: Use case with carrier phase altimetry
Renga et al. Relative navigation in LEO by carrier‐phase differential GPS with intersatellite ranging augmentation
US8373593B2 (en) Navigation receiver for processing signals from a set of antenna units
Rabinowitz et al. A system using LEO telecommunication satellites for rapid acquisition of integer cycle ambiguities
EP0283302A2 (en) Techniques for determining orbital data
RU2286584C2 (ru) Способ автономного мгновенного определения пользователями-абонентами координат местоположения, составляющих вектора скорости, угловой ориентации в пространстве и пеленга по фазе несущей радиосигналов наземных радиомаяков, ретранслируемых спутниками
RU2367910C1 (ru) Способ построения функционального дополнения орбитального базирования к глобальной навигационной спутниковой системе
Reckeweg Integer ambiguity resolution for multi-GNSS and multi-signal raw phase observations
JPH0242374A (ja) 地球軌道衛星からの擬レンジを求める方法
RU2383914C1 (ru) Способ синхронизации часов и устройство для его реализации
KR102350689B1 (ko) 위성 신호 처리를 위한 방법 및 시스템
RU2402786C1 (ru) Способ определения местоположения объектов-потребителей навигационной информации и устройство для его реализации
RU2110077C1 (ru) Способ определения курсового угла и координат местоположения объектов по радиосигналам космических аппаратов спутниковых радионавигационных систем
Border et al. Deep space tracking and frequency standards
RU2613865C2 (ru) Способ синхронизации часов и устройство для его реализации