RU2113636C1 - Насосно-эжекторная установка (варианты) - Google Patents

Насосно-эжекторная установка (варианты) Download PDF

Info

Publication number
RU2113636C1
RU2113636C1 RU97109382/06A RU97109382A RU2113636C1 RU 2113636 C1 RU2113636 C1 RU 2113636C1 RU 97109382/06 A RU97109382/06 A RU 97109382/06A RU 97109382 A RU97109382 A RU 97109382A RU 2113636 C1 RU2113636 C1 RU 2113636C1
Authority
RU
Russia
Prior art keywords
ejector
medium
receiving chamber
separator
pump
Prior art date
Application number
RU97109382/06A
Other languages
English (en)
Other versions
RU97109382A (ru
Inventor
Сергей Анатольевич Попов
Анатолий Моисеевич Дубинский
Original Assignee
Сергей Анатольевич Попов
Анатолий Моисеевич Дубинский
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сергей Анатольевич Попов, Анатолий Моисеевич Дубинский filed Critical Сергей Анатольевич Попов
Priority to RU97109382/06A priority Critical patent/RU2113636C1/ru
Priority to US09/242,403 priority patent/US6234760B1/en
Priority to PCT/IB1998/000890 priority patent/WO1998058176A1/ru
Application granted granted Critical
Publication of RU2113636C1 publication Critical patent/RU2113636C1/ru
Publication of RU97109382A publication Critical patent/RU97109382A/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/54Installations characterised by use of jet pumps, e.g. combinations of two or more jet pumps of different type

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

Установка предназначена для создания вакуума. Установка снабжена конденсатором. Устройство подвода пассивной среды выполнено в виде приемной камеры, причем с противоположных сторон приемной камеры соосно размещены сопло и камера смешения. Последняя установлена с образованием стенкой ее входного участка со стенками приемной камеры полости, которая сообщена при помощи сливной магистрали с сепаратором. Выходное сечение сливной магистрали расположено ниже уровня жидкости в сепараторе с образованием гидрозатвора. Эжектор выходом подключен к конденсатору и к последнему входом подключен сепаратор. Другой вариант установки отличается от описанного выше тем, что полость приемной камеры подключена к входу в насос. Выполнение установки описанным образом позволяет повысить ее КПД. 2 с. и 5 з.п.ф-лы, 1 ил.

Description

Изобретение относится к струйной технике, преимущественно к установкам для создания вакуума, преимущественно в вакуумных ректификационных колоннах, и для сжатия различных газообразных сред.
Известна насосно-эжекторная установка, содержащая эжектор, насос рабочей жидкости и сепаратор, при этом насос подключен к эжектору патрубок подвода пассивной среды которого подключен к газовой магистрали, а сепаратор связан с выходом эжектора и входом насоса [1].
Данная установка позволяет откачивать различные газы, используя замкнутый контур циркуляции рабочей жидкости, однако в данной установке не в полной мере используется энергия рабочей жидкости при откачке газообразной среды, что снижает эффективность работы данной установки.
Наиболее близкой к описываемой по технической сущности является насосно-эжекторная установка, содержащая жидкостно-газовый эжектор, включающий устройство подвода пассивной среды, камеру смешения и сопло, насос, подключенный выходом к соплу эжектора и сепаратор, подключенный выходом жидкости к входу в насос, при этом устройство подвода пассивной среды эжектора подключено входом к источнику откачиваемой газообразной среды [2].
В данной установке путем оптимизации работы жидкостно-газового струйного аппарата достигается возможность откачивать различные газообразные среды, создавая в откачиваемом объеме вакуум, и сжимать откачиваемую газообразную среду. Тем не менее при работе описанного жидкостно-газового струйного аппарата имеют место достаточно большие потери энергии жидкой рабочей среды, что связано нерациональным перераспределением энергии жидкой рабочей среды на начальном этапе ее взаимодействия с откачиваемой газообразной средой.
Задачей, на решение которой направлено изобретение является повышение КПД работы насосно-эжекторной установки путем снижения потерь энергии жидкой рабочей среды в жидкостно-газовом эжекторе.
Задача решается тем, что в насосно-эжекторной установке, содержащей жидкостно-газовый эжектор, включающий устройство подвода пассивной среды, камеру смешения и сопло, насос, подключенный выходом к соплу эжектора и сепаратор, подключенный выходом жидкости к входу в насос, при этом устройство подвода пассивной среды эжектора подключено входом к источнику откачиваемой газообразной среды, а установка снабжена конденсатором, устройство подвода пассивной среды выполнено в виде приемной камеры, причем с противоположных сторон приемной камеры соосно размещены сопло и камера смешения, последняя установлена с образованием стенкой ее входного участка со стенками приемной камеры полости, например кольцевой полости, которая сообщена при помощи сливной магистрали с сепаратором, выходное сечение сливной магистрали расположено ниже уровня жидкости в сепараторе с образованием гидрозатвора, а эжектор выходом подключен к конденсатору и к последнему входом подключен сепаратор.
Возможен и другой вариант выполнения насосно-эжекторной установки, содержащей жидкостно-газовый эжектор, включающий устройство подвода пассивной среды, камеру смешения и сопло, насос подключенный выходом к соплу эжектора, и сепаратор, подключенный выходом жидкости к входу в насос, при этом устройство подвода пассивной среды эжектора подключено входом к источнику откачиваемой газообразной среды, а установка снабжена конденсатором, устройство подвода пассивной среды выполнено в виде приемной камеры, причем с противоположных сторон приемной камеры соосно размещены сопло и камера смешения, последняя установлена с образованием стенкой ее входного участка со стенками приемной камеры полости, например кольцевой полости, которая подключена к входу в насос, а эжектор выходом подключен к конденсатору и к последнему входом подключен сепаратор.
Кроме того, входной участок камеры смешения, посредством которого образована полость в приемной камере, может быть выполнен в виде сужающейся по ходу потока среды обечайки, полость приемной камеры может быть расположена над сепаратором не ниже высоты барометрического столба жидкости в сливной магистрали, а входное сечение сливной магистрали расположено ниже входа откачиваемой среды в приемную камеру.
При проведении исследования работы жидкостно-газового эжектора было выяснено, что в процессе истечения жидкой рабочей среды из сопла эжектора (как одноствольного, так и многоствольного) периферийная часть потока жидкой рабочей среды, образованная в большей мере мелкодисперсными каплями, при контакте с откачиваемым газом значительно больше, чем остальная часть потока жидкой рабочей среды, теряет кинетическую энергию, причем в процессе соударения с частицами, образующими газ, распыляется в приемной камере и скапливается в зоне входного участка камеры смешения. Потоком газа и за счет градиента давления в приемной камере эта часть потока жидкой рабочей среды начинает стекать в камеру смешения, сужая проходное сечение последней. Как следствие, энергия не распыленной части потока жидкой рабочей среды тратится как на откачку газообразной среды, так и на откачку распыленной части потока жидкой рабочей среды, что снижает в конечном итоге эффективность работы жидкостно-газового эжектора и, соответственно, всей насосно-эжекторной установки.
Выполнение в приемной камере жидкостно-газового эжектора полости, например кольцевой полости, со сливной магистралью позволяет собирать в приемной камере распыленную часть потока жидкой рабочей среды и отводить ее из приемной камеры, в зависимости от условий работы установки, либо в сепаратор, либо на вход насоса с последующим смешением этой части жидкой рабочей среды с основной массой жидкой рабочей среды. Таким образом, энергия жидкой рабочей среды в большей мере используется на откачку и сжатие откачиваемой газообразной среды, причем исключаются потери жидкой рабочей среды, поскольку после отвода распыленной части жидкой рабочей среды из эжектора она возвращается в контур ее циркуляции.
Целесообразно выполнение входного участка камеры смешения, образующего в приемной камере полость, в виде сужающейся по ходу потока среды конической обечайки. Это предотвращает, в случае расположения эжектора наклонно или горизонтально, стекание распыленной части жидкой рабочей среды в камеру смешения. Это же предотвращает расположение входного сечения сливной магистрали ниже входа откачиваемой газообразной среды в приемную камеру.
В случае, если позволяют условия, например вертикальная компоновка насосно-эжекторной установки, целесообразна организация отвода распыленной части потока жидкой рабочей среды самотеком. В этом случае полость приемной камеры должна быть расположена над сепаратором не ниже высоты барометрического столба жидкости в сливной магистрали.
В варианте использования насосно-эжекторной установки в качестве компрессорной установки, независимо от того создает или нет она вакуум в откачиваемом объеме, целесообразен отвод распыленной части потока жидкой рабочей среды из приемной камеры на вход насоса, который фактически будет откачивать ее из полости приемной камеры.
Таким образом, достигается выполнение поставленной в изобретении задачи.
На чертеже представлена схема насосно-эжекторной установки в которой реализованы оба варианта выполнения насосно-эжекторной установки.
Насосно-эжекторная установка содержит жидкостно-газовый эжектор 1, включающий устройство 2 подвода пассивной среды, камеру 3 смешения и сопло 4, насос 5, подключенный выходом к соплу 4 эжектора 1 и сепаратор 6, подключенный выходом жидкости к входу в насос 5, при этом устройство 2 подвода пассивной среды эжектора 1 подключено входом к источнику откачиваемой газообразной среды. Установка снабжена конденсатором 7, устройство 2 подвода пассивной среды выполнено в виде приемной камеры, причем с противоположных сторон приемной камеры 2 соосно размещены сопло 4 и камера 3 смешения последняя установлена с образованием стенкой 8 ее входного участка со стенками приемной камеры 2 полости 9, например кольцевой полости, которая сообщена при помощи сливной магистрали 10 с сепаратором 6, выходное сечение сливной магистрали 10 расположено ниже уровня жидкости в сепараторе 6 с образованием гидрозатвора, а эжектор 1 выходом подключен к конденсатору 7 и к последнему входом подключен сепаратор 6.
Полость 9 приемной камеры 2 подключена к входу в насос 5, стенка 8 входного участка камеры 3 смешения выполнена в виде сужающейся по ходу потока среды, например, конической обечайки. Тем не менее, в зависимости от режима работы эжектора и его пространственного положения данный входной участок может быть цилиндрическим или расширяющимся по ходу потока среды.
Полость 9 приемной камеры 2 расположена над сепаратором 6, преимущественно не ниже высоты барометрического столба жидкости в сливной магистрали 10, а входное сечение сливной магистрали 10 расположено преимущественно ниже входа откачиваемой газообразной среды в приемную камеру 2.
Установка работает следующим образом.
Насосом 5 из сепаратора 6 в сопло 4 жидкостно-газового эжектора 1 подают жидкую рабочую среду, которая, истекая из сопла 2, увлекает из приемной камеры 2 откачиваемую газообразную среду в камеру 3 смешения. Одновременно в процессе истечения из сопла 4 жидкой рабочей среды и в процессе ее смешения с откачиваемой газообразной средой периферийная часть потока жидкой рабочей среды распыляется в приемной камере 2 и, в случае установки эжектора 1 вертикально, стекает по стенкам приемной камеры 2, либо оседает под собственным весом в полости 9, из которой она по сливной магистрали 10 стекает в сепаратор 6. В это же время в камере 3 смешения за счет кинетической энергии жидкой рабочей среды откачиваемая газообразная среда сжимается и смешивается с жидкой рабочей средой с образованием газожидкостной смеси. Полученная в камере 3 смешения газожидкостная смесь из эжектора 1 поступает в конденсатор 7, где организуют процесс перевода в жидкое состояние легко конденсируемых компонентов откачиваемой и сжимаемой газообразной среды. При необходимости интенсификации процесса конденсации в конденсатор 7 возможна подача части жидкой рабочей среды с выхода насоса 5. Организация процесса конденсации в конденсаторе 7 позволяет уменьшить содержание газовой фазы в газожидкостной смеси и тем самым снизить потери энергии в процессе подачи газожидкостной смеси из эжектора 1 в сепаратор 6. В ряде случаев, например при откачке углеводородных газов, организация процесса конденсации позволяет увеличить выход жидких углеводородов и, следовательно, повысить эффективность использования данной установки. В сепараторе 6 газожидкостная смесь разделяется на жидкую рабочую среду и сжатый газ. Последний из сепаратора 6 отводится потребителю по назначению, а жидкая рабочая среда из сепаратора 6 отводится на вход насоса 5 для подачи ее в сопло 4 эжектора 1.
В ряде случаев, например при использовании установки в качестве компрессорной установки, не удается в силу большого перепада давления, организовать процесс отвода распыленной части жидкой рабочей среды из приемной камеры 2 самотеком. В этом случае полость 9 приемной камеры 2 подключают на вход насоса 5. В данном варианте работы установки насос 5 одновременно откачивает жидкую рабочую среду как из приемной камеры 2, так и из сепаратора 6 и далее подает жидкую рабочую среду в сопло 4 эжектора 1. В остальном работа установки в данном варианте ничем не отличается от описанной выше.
При установке эжектора 1 наклонно или горизонтально целесообразно выполнение стенки 8 входного участка камеры смешения 3 в виде сужающейся по ходу потока обечайки. Одновременно желательно расположить входное сечение сливной магистрали в самой низкой точке полости 9 и ниже входа откачиваемой газообразной среды в приемную камеру 2. Такое выполнение эжектора 1 предотвращает попадание в камеру 3 смешения жидкой рабочей среды, стекающей по торцевой стенке приемной камеры 2 в зоне входного участка камеры 3 смешения.
Данное изобретение может быть использовано в химической, нефтехимической и ряде других отраслей.

Claims (7)

1. Насосно-эжекторная установка, содержащая жидкостно-газовый эжектор, включающий устройство подвода пассивной среды, камеру смешения и сопло, насос, подключенный выходом к соплу эжектора, и сепаратор, подключенный выходом жидкости к выходу в насос, при этом устройство подвода пассивной среды эжектора подключено входом к источнику откачиваемой газообразной среды, отличающаяся тем, что установка снабжена конденсатором, устройство подвода пассивной среды выполнено в виде приемной камеры, причем с противоположных сторон приемной камеры соосно размещены сопло и камера смешения, последняя установлена с образованием стенкой ее входного участка со стенками приемной камеры полости, которая сообщена при помощи сливной магистрали с сепаратором, выходное сечение сливной магистрали расположено ниже уровня жидкости в сепараторе с образованием гидрозатвора, а эжектор выходом подключен к конденсатору и к последнему входом подключен сепаратор.
2. Установка по п.1, отличающаяся тем, что входной участок камеры смещения, посредством которого образована полость в приемной камере, выполнен в виде конической, сужающейся по ходу потока среды обечайки.
3. Установка по п.1, отличающаяся тем, что полость приемной камеры расположена над сепаратором не ниже высоты барометрического столба жидкости в сливной магистрали.
4. Установка по п.1, отличающаяся тем, что входное сечение сливной магистрали расположено ниже входа откачиваемой среды в приемную камеру.
5. Насосно-эжекторная установка, содержащая жидкостно-газовый эжектор, включающий устройство подвода пассивной среды, камеру смешения и сопло, насос, подключенный выходом к соплу эжектора, и сепаратор, подключенный выходом жидкости к входу в насос, при этом устройство подвода пассивной среды эжектора подключено к источнику откачиваемой газообразной среды, отличающаяся тем, что установка снабжена конденсатором, устройство подвода пассивной среды выполнено в виде приемной камеры, с противоположных сторон приемной камеры соосно размещены сопло и камера смешения, последняя установлена с образованием стенкой ее входного участка со стенками приемной камеры полости, которая подключена к входу в насос, а эжектор выходом подключен к конденсатору и к последнему входом подключен сепаратор.
6. Установка по п.5, отличающаяся тем, что входной участок камеры смешения, расположенный в приемной камере эжектора, выполнен сужающимся по ходу потока среды.
7. Установка по п.5, отличающаяся тем, что входное сечение сливной магистрали расположено ниже входа откачиваемой среды в приемную камеру.
RU97109382/06A 1997-06-16 1997-06-16 Насосно-эжекторная установка (варианты) RU2113636C1 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU97109382/06A RU2113636C1 (ru) 1997-06-16 1997-06-16 Насосно-эжекторная установка (варианты)
US09/242,403 US6234760B1 (en) 1997-06-16 1998-06-08 Pumping-ejection apparatus and variants
PCT/IB1998/000890 WO1998058176A1 (fr) 1997-06-16 1998-06-08 Appareil de pompage et d'ejection et variantes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU97109382/06A RU2113636C1 (ru) 1997-06-16 1997-06-16 Насосно-эжекторная установка (варианты)

Publications (2)

Publication Number Publication Date
RU2113636C1 true RU2113636C1 (ru) 1998-06-20
RU97109382A RU97109382A (ru) 1998-11-10

Family

ID=20193803

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97109382/06A RU2113636C1 (ru) 1997-06-16 1997-06-16 Насосно-эжекторная установка (варианты)

Country Status (3)

Country Link
US (1) US6234760B1 (ru)
RU (1) RU2113636C1 (ru)
WO (1) WO1998058176A1 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1384898B1 (en) * 1999-08-31 2005-07-27 DCT Double-Cone Technology AG Separating arrangement for treatment of fluids
WO2001016493A1 (en) * 1999-08-31 2001-03-08 Dct Double-Cone Technology Ag Double cone for generation of a pressure difference
RU2310678C1 (ru) * 2006-03-07 2007-11-20 Валерий Григорьевич Цегельский Способ вакуумной перегонки сырья, преимущественно нефтяного сырья, и установка для осуществления способа (варианты)
US8945398B2 (en) 2010-08-24 2015-02-03 1nSite Technologies, Ltd. Water recovery system SAGD system utilizing a flash drum
US9095784B2 (en) 2010-08-24 2015-08-04 1Nsite Technologies Ltd. Vapour recovery unit for steam assisted gravity drainage (SAGD) system
RU2550196C2 (ru) 2010-08-24 2015-05-10 Кемекс Лтд. Система контроля загрязнений в системе очистки парообразующей воды
US10435307B2 (en) 2010-08-24 2019-10-08 Private Equity Oak Lp Evaporator for SAGD process
US9062690B2 (en) * 2010-11-30 2015-06-23 General Electric Company Carbon dioxide compression systems
PL406241A1 (pl) 2011-01-27 2014-05-12 1Nsite Technologies Ltd. Kompaktowy odparowalnik do przenośnego modułowego procesu SAGD
CA2879257C (en) 2014-01-21 2022-11-15 Kemex Ltd. Evaporator sump and process for separating contaminants resulting in high quality steam

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1050498B (ru) * 1959-02-12
US3898017A (en) * 1973-04-16 1975-08-05 Harold Mandroian Pump
US3884660A (en) * 1973-12-07 1975-05-20 Perry Equipment Corp Gas-liquid separator
US3965123A (en) * 1974-06-10 1976-06-22 Chevron Research Company Maleic anhydride recovery
AR206244A1 (es) * 1975-05-06 1976-07-07 Mitsui Toatsu Chemicals Procedimiento para tratar vapor de agua generado al concentrar una solucion acuosa de urea
SE407904B (sv) * 1975-12-23 1979-04-30 Atlas Copco Ab Anordning vid separering av vetska fran vetskebemengd komprimerad gas
DE2826346C2 (de) * 1978-06-16 1985-02-07 Davy McKee AG, 6000 Frankfurt Verfahren zur Absaugung von Gasen und Dämpfen aus Vakuum-Destillationskolonnen
US4354805A (en) * 1979-06-01 1982-10-19 Peter Bauer Fluid dynamic energy exchanger
US4358249A (en) * 1980-10-14 1982-11-09 The United States Of America As Represented By The United States Department Of Energy Vacuum chamber with a supersonic flow aerodynamic window
US4449862A (en) * 1980-12-22 1984-05-22 Conoco Inc. Vortex injection method and apparatus
US4415443A (en) * 1981-07-10 1983-11-15 Exxon Research And Engineering Co. Distillation process
DE3204784A1 (de) * 1982-02-11 1983-08-25 Siemens AG, 1000 Berlin und 8000 München Fluessigkeitsringvakuumpumpe mit vorgeschaltetem vorverdichter
SU1195074A1 (ru) 1984-03-30 1985-11-30 Конструкторское бюро производственного объединения "Саратовнефтегаз" Насосно-эжекторна установка
US4701108A (en) * 1985-05-10 1987-10-20 Daniel Scampini Variable volume ejector with motive fluid pulser
DE3633379A1 (de) * 1986-10-01 1988-04-14 Kernforschungsz Karlsruhe Entgaser
US4761970A (en) * 1987-06-11 1988-08-09 Calmac Manufacturing Corporation Immiscible propellant and refrigerant pairs for ejector-type refrigeration systems
SU1588925A1 (ru) * 1988-10-27 1990-08-30 Ивано-Франковский Институт Нефти И Газа Насосно-эжекторна установка
US4932842A (en) * 1989-04-10 1990-06-12 Vagedes Industries, Inc. Suction generator
US5006046A (en) * 1989-09-22 1991-04-09 Buckman William G Method and apparatus for pumping liquid from a well using wellbore pressurized gas
SU1733714A1 (ru) 1990-02-05 1992-05-15 Научно-исследовательский институт энергетического машиностроения МГТУ им.Н.Э.Баумана Насосный агрегат
RU2048156C1 (ru) * 1992-04-29 1995-11-20 Цегельский Валерий Григорьевич Установка для вакуумной перегонки нефтяного сырья
JP3411280B2 (ja) * 1992-09-21 2003-05-26 協和醗酵工業株式会社 血小板減少症治療剤
RU2016268C1 (ru) * 1992-12-14 1994-07-15 Цегельский Валерий Григорьевич Эжекторная установка
DE19500823A1 (de) * 1995-01-13 1996-07-18 Sgi Prozess Technik Gmbh Vakuum-Pumpstand
RU2103561C1 (ru) * 1996-11-19 1998-01-27 Попов Сергей Анатольевич Жидкостно-газовый вакуумный струйный аппарат

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
2. RU, па тент, 2016268, кл. F 07 F 5/54, 1994. *

Also Published As

Publication number Publication date
US6234760B1 (en) 2001-05-22
WO1998058176A1 (fr) 1998-12-23

Similar Documents

Publication Publication Date Title
RU2113636C1 (ru) Насосно-эжекторная установка (варианты)
RU2113635C1 (ru) Способ работы жидкостно-газового эжектора
RU97106392A (ru) Способ работы насосно-эжекторной установки для перегонки жидкого продукта
RU97109381A (ru) Способ работы жидкостно-газового эжектора
RU2142074C1 (ru) Насосно-эжекторная компрессорная установка (варианты)
GB2197221A (en) Degasifier
RU95121523A (ru) Установка перегонки жидкого продукта
RU97109382A (ru) Насосно-эжекторная установка (варианты)
RU2115029C1 (ru) Способ создания вакуума и насосно-эжекторная установка для осуществления способа
RU2113633C1 (ru) Насосно-эжекторная установка для создания вакуума при перегонке жидкого продукта
RU2094070C1 (ru) Способ создания вакуума в промышленных аппаратах
RU2133385C1 (ru) Насосно-эжекторная установка
RU2146778C1 (ru) Способ работы насосно-эжекторной установки и насосно-эжекторная установка для реализации способа ее работы
RU2073123C1 (ru) Насосно-эжекторная установка
RU2124147C1 (ru) Способ работы насосно-эжекторной установки и установка для его осуществления
RU98102482A (ru) Способ струйной деаэрации и струйная установка для его реализации
SU1550115A1 (ru) Устройство дл сепарации газа при откачке жидкости из скважины погружным электроцентробежным насосом
SU1574920A1 (ru) Насосно-эжекторна установка
US5246633A (en) Device for collecting used steam
SU866298A1 (ru) Насосна установка
RU2135841C1 (ru) Способ работы вакуумсоздающей насосно-эжекторной установки и устройства для его реализации
RU2083638C1 (ru) Способ вакуумной перегонки жидкого продукта и установка для его осуществления
RU2103561C1 (ru) Жидкостно-газовый вакуумный струйный аппарат
SU1573238A1 (ru) Насосно-эжекторна установка
SU1546131A1 (ru) Газожидкостный реактор

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20040617