RU2112247C1 - Цифровой фазометр с синхронной дискретизацией входных сигналов - Google Patents

Цифровой фазометр с синхронной дискретизацией входных сигналов Download PDF

Info

Publication number
RU2112247C1
RU2112247C1 RU95102886A RU95102886A RU2112247C1 RU 2112247 C1 RU2112247 C1 RU 2112247C1 RU 95102886 A RU95102886 A RU 95102886A RU 95102886 A RU95102886 A RU 95102886A RU 2112247 C1 RU2112247 C1 RU 2112247C1
Authority
RU
Russia
Prior art keywords
analog
microprocessor
digital converters
value
inputs
Prior art date
Application number
RU95102886A
Other languages
English (en)
Other versions
RU95102886A (ru
Inventor
В.В. Подольский
Original Assignee
32 Научно-исследовательский центр МО РФ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 32 Научно-исследовательский центр МО РФ filed Critical 32 Научно-исследовательский центр МО РФ
Priority to RU95102886A priority Critical patent/RU2112247C1/ru
Publication of RU95102886A publication Critical patent/RU95102886A/ru
Application granted granted Critical
Publication of RU2112247C1 publication Critical patent/RU2112247C1/ru

Links

Images

Landscapes

  • Measuring Phase Differences (AREA)

Abstract

Изобретение относится к фазоизмерительной технике и может быть использовано для определения угла сдвига. Целью изобретения является повышение точности. Фазометр содержит генератор стробирующих импульсов, микропроцессор, индикатор измеренных значений угла фазового сдвига и два канала, каждый из которых состоит из трех аналого-цифровых преобразователей и двух линий задержки 6 ил., 3 табл.

Description

Изобретение относится к фазоизмерительной технике и может быть использовано для определения угла фазового сдвига (УФС) между двумя электрическими напряжениями синусоидальной формы.
Существует цифровой фазометр с постоянным измерительным временем [2]. Сущность работы устройства заключается в измерении среднего значения относительной величины временного сдвига между исследуемыми напряжениями за некоторое время, не зависящее от частоты исследуемого процесса.
Недостатками устройства являются: низкочастотная и высокочастотная погрешность дискретного преобразования; амплитудно-фазовая погрешность, обусловленная несовершенством формирующих устройств.
Существует цифровой фазометр [1]. Сущность работы устройства заключается в измерении интервала времени между переходами исследуемых напряжений через нуль с последующим или одновременным определением фазового сдвига между этими напряжениями.
Недостатками устройства являются: сложность процедуры измерения и схемной реализации; узкий диапазон измеряемых частот; амплитудно-фазовая погрешность, обусловленная несовершенством формирующих устройств.
Существует также цифровой фазометр [3] - прототип. Этот цифровой фазометр состоит из генератора стробирующих импульсов, микропроцессора, индикатора измеренных значений угла фазового сдвига, а также двух аналогово-цифровых преобразователей в каждом из каналов, при этом выход генератора соединен с АЦП, на входе которых подаются измерительные сигналы, а выходы соединены с микропроцессором (фиг. 1).
Принцип работы предложенного устройства заключается в следующем.
Поскольку величина угла фазового сдвига пропорциональна разности времен пересечения входными сигналами нулевого уровня, то определить ее можно, вычитая время, прошедшее от момента пересечения нулевого уровня для первого и второго входного сигнала (фиг. 2), при этом длительность интервалов будет определяться как
Figure 00000002

где
n1 и n2 - число выборок сигнала, поступивших с момента начала измерений до момента смены выборки в первом и во втором каналах соответственно;
ΔT - период дискретизации;
Δtp1 и Δtp2 - интервал времени между последней выборкой перед сменой знака и точкой пересечения нулевого уровня.
Figure 00000003

Для устройства, в котором предусмотрен метод сокращения погрешности, интервалы времени для каждого канала будут определяться по формуле
Figure 00000004

в зависимости от последовательности поступления выборок перед моментом пересечения сигналом нулевого уровня (фиг. 3).
Недостатки прототипа: существенное возрастание составляющей погрешности измерения УФС, обусловленной линейной аппроксимацией входящих сигналов при приближении значения их частоты к частоте дискретизации.
Целью изобретения является повышение точности измерения угла фазового сдвига (УФС).
Существенным, на наш взгляд, отличием предлагаемого нами фазометра от прототипа является наличие в схеме измерителя угла фазового сдвига дополнительно двух АЦП и двух линий задержки стробирующих импульсов дискретизации, сдвигающих их на определенный интервал времени и управляемых с помощью микропроцессора, а также выбор микропроцессором наименьшей из трех выборок до пересечения сигналом нулевого уровня и после в каждом из каналов.
На фиг. 1 - представлена структурная схема измерителя фазы; на фиг.2 - графики, поясняющие принцип определения УФС для фазометров с синхронной дискретизацией входных сигналов; на фиг. 3 - положение выборок дискретизации при наличии дополнительных АЦП; на фиг. 4 - графическое отображение погрешности, обусловленной линейной аппроксимацией; на фиг. 5 - зависимость значения погрешности, обусловленной линейной аппроксимацией от положения выборки относительно перехода сигнала через нулевое значение; на фиг. 6 - временные диаграммы, поясняющие вопрос определения максимального значения погрешности аппроксимации.
Цифровой фазометр (фиг.1) содержит микропроцессор 1, устройство отображения результатов измерений 2, аналогово-цифровые преобразователи 3, линии задержки 4 и генератор стробирующих импульсов 5.
Фиг. 4 показывает синусоидальное колебание с максимальным значением Vp и периодом дискретизации α между двумя последовательными выборками, θ - положение выборки относительно перехода сигнала через нуль, V1 и V2 - значения выборок до и после пересечения нулевого уровня синусоидальным колебанием соответственно. Если выборки интерполируются линейно, то погрешность фазы Φe1 обусловленная неточным определением точки пересечения нулевого уровня, согласно (1) будет определяться выражением
Figure 00000005

Расчетные значения Φe1 для некоторых заданных значений α и θ приведены в табл. 1, согласно которым построен график на фиг. 5 зависимости Φe1 от θ при α = 50° , откуда следует, что погрешность, обусловленная смещением точки пересечения нулевого уровня, имеет максимальное значение Φe1max , при значении угла θ = θmax . Это значение можно определить, взяв первую производную по θ от выражения (1) и приравнивая ее нулю, откуда получим
Figure 00000006

Для снижения погрешности, обусловленной сдвигом точки пересечения нулевого уровня, вызванного линейной аппроксимацией, входной сигнал каждого из каналов дополнительно дискретизируется через промежутки времени 2θmax и 3θmax. С помощью временных диаграмм (фиг. 6) проведем анализ возможных значений Φe1 от θ , причем полагая, что для определения погрешности аппроксимации выбираются минимальные значения выборок до и после пересечения нулевого уровня, либо принимается Φe1= 0 при равенстве одной из них нулю
а) при θ = 0 значение Φe1= 0, поскольку значение выборки на выходе АЦП1 равно нулю;
б) при 0 < θ < 2θmax значение Φe1 определяется из формулы (1), однако значение для данного случая будет равно 2θmax;
в) при θ = 2θmax, Φe1= 0, так как значение выборки на выходе АЦП2 равно нулю;
г) при 2θmax< θ < 3θmax значение Φe1 определяется из формулы (1) для α = θmax
д) при θ = 3θmax Φe1= 0 так как значение выборки на выходе АЦП3 равно нулю;
е) при 3θmax< θ < α значение Φe1 находится аналогично варианту (б);
ж) при θ = α значение Φe1= 0 поскольку значение выборки на выходе АЦП опять становится равным нулю.
Из предыдущих рассуждений следует, что максимальное значение погрешности из-за линейной аппроксимации функции сигнала будет определяться ее значением для α = 2θmax например, для α = 50° максимальное значение Φe1 будет соответствовать значению α = α1= 2θmax= 2•10,213 = 20°. Из табл.1 находим, что Φe1max= 0,6345° для α = 50° и Φe1max= 0,03924 для α = α1= 20° откуда получаем
Figure 00000007

С помощью ЭВМ по формуле (2) определены значения θmax для различных значений α (см. табл.2).
Аппроксимируя функцию (см. табл. 2) отрезком прямой, получим:
θmax= 0,19113•α (4)
В табл. 3 приведены значения Φe1 рассчитанные по формулам (3) и (4) - точное и аппроксимированное выражение функции соответственно, а также их разность Δ.
Из таблицы следует, что, если требуемая точность определения погрешности, вызванная линейной аппроксимацией, не превышает 0,0020, то в этом случае можно использовать приближенную формулу (4), что существенно упрощает определение θmax.
Из вышеизложенного следует, что повышение точности измерения угла фазового сдвига достигается тем, что в цифровой фазометр, содержащий генератор стробирующих импульсов, микропроцессор, индикатор измеренных значений угла фазового сдвига, а также двух аналогово-цифровых преобразователей в каждом из каналов, при этом выход генератора соединения с АЦП, на выходы которых подаются измеряемые сигналы, а выходы соединены с микропроцессором, введены два АЦП и две линии задержки в каждый из каналов, причем вход каждого дополнительного АЦП соединен с входом первого АЦП, а выходы - с микропроцессором, выход генератора подсоединен к входу линий задержки, выходы которых в свою очередь поданы на тактовый вход АЦП, а управляющие входы соединены с микропроцессором.
Наличие в схеме цифрового фазометра в каждом из каналов дополнительно двух АЦП и линий задержки, управляемых от микропроцессора, позволяет дополнительно осуществлять дискретизацию входных сигналов и соответственно определить значения выборов в точках дискретизации. Последовательность переключения АЦП не зависит от выбранных значений θ и Φ , а определяется номером АЦП. При запуске устройства стробирующие импульсы, поступающие от генератора, подаются на первое, затем на второе и третье АЦП, причем включение второго и третьего будет задержано на интервал времени τл32 и τл33, , соответственно. Значения τл32 и τл33 определяются по формулам (см. описание устройства)
Figure 00000008

где
f - частота входного сигнала.
Выборки от каждого из трех АЦП поступают на микропроцессор, который выбирает из этих значений наименьшие, до и после пересечения каждым из сигналов нулевого уровня.
Выбор наименьших значений выборок до и после пересечения сигналом нулевого уровня осуществляется следующим образом. Выборки всех трех АЦП записываются путем прямого доступа к памяти в буфер, работающий по принципу "первый пришел - первый вышел", причем знаковый разряд используется для инициализации прерывания микропроцессора и считывания им информации из буфера. Таким образом текущее и предыдущее значения АЦП подвергаются обработке, причем находятся они на ближайшем расстоянии от точки пересечения сигналом нулевого уровня, а потому имеют минимальные значения. Так как дополнительная дискретизация уменьшает расстояние между выборками, то уменьшится и значение погрешности определения точки пересечения нулевого уровня сигналами за счет их линейной аппроксимации - Φe1x и Φe1y .
Поскольку общая погрешность определения точки пересечения нулевого уровня одним сигналом Φe определяется суммой двух составляющих ±Φe1x ±Φe2x - для первого и ±Φe1y ±Φe2y - для второго канала ( Φe2x и Φe2y - погрешность, обусловленная квантованием сигналов в первом канале), то с уменьшением первой составляющей (значение Φe для каждого из сигналов также незначительно уменьшится) уменьшается и погрешность измерения угла фазового сдвига между самими сигналами, равная
Φ = ±Φe1x ±Φe2x ±Φe1y ±Φe2yю

Claims (1)

  1. Цифровой фазометр с синхронной дискретизацией входных сигналов, состоящий из генератора стробирующих импульсов, микропроцессора, индикатора измеренных значений угла фазового сдвига и двух каналов, каждый из которых содержит аналого-цифровой преобразователь, причем на входы аналого-цифровых преобразователей подаются измеряемые сигналы, а их выходы подключены к микропроцессору, выход генератора стробирующих импульсов подключен к тактовым входам аналого-цифровых преобразователей, отличающийся тем, что в каждый из каналов введены второй и третий аналого-цифровые преобразователи и две линии задержки, на входы вторых и третьих аналого-цифровых преобразователей подаются измеряемые сигналы, выходы вторых и третьих аналого-цифровых преобразователей подключены к микропроцессору, соединенному с управляющими входами линий задержки, входы которых подключены к выходу генератора стробирующих импульсов, выходы линий задержки соединены с тактовыми входами соответствующих аналого-цифровых преобразователей.
RU95102886A 1995-02-28 1995-02-28 Цифровой фазометр с синхронной дискретизацией входных сигналов RU2112247C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU95102886A RU2112247C1 (ru) 1995-02-28 1995-02-28 Цифровой фазометр с синхронной дискретизацией входных сигналов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU95102886A RU2112247C1 (ru) 1995-02-28 1995-02-28 Цифровой фазометр с синхронной дискретизацией входных сигналов

Publications (2)

Publication Number Publication Date
RU95102886A RU95102886A (ru) 1996-11-27
RU2112247C1 true RU2112247C1 (ru) 1998-05-27

Family

ID=20165215

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95102886A RU2112247C1 (ru) 1995-02-28 1995-02-28 Цифровой фазометр с синхронной дискретизацией входных сигналов

Country Status (1)

Country Link
RU (1) RU2112247C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3. M.F.Wagdy, M.S.P.Lucas "Evvrors in Simpled Data Phase Measurement" IEEE Transactions on Instrumentation and Measurement, V.I, M-34, N 4, December, 1985, p.507-509. *

Also Published As

Publication number Publication date
RU95102886A (ru) 1996-11-27

Similar Documents

Publication Publication Date Title
US5886660A (en) Time-to-digital converter using time stamp extrapolation
USRE32845E (en) Period and frequency measuring instrument
KR960009424A (ko) 미지 또는 변화하는 주파수의 교류 신호를 디지탈화하는 장치
RU2112247C1 (ru) Цифровой фазометр с синхронной дискретизацией входных сигналов
JPH0455273B2 (ru)
US4598375A (en) Time measuring circuit
JPH0454198B2 (ru)
JPH06273194A (ja) 測定装置の出力補間回路
SU1150577A1 (ru) Способ измерени времени переключени
SU1022077A1 (ru) Датчик электростатического пол
RU1795419C (ru) Система экстремального регулировани квадрупольного масс-спектрометра
RU1790801C (ru) Устройство дл измерени перемещени
JPH0654331B2 (ja) 電力変換装置の電圧,電流検出方式
SU1049836A1 (ru) Цифровой вихретоковой измеритель электропроводности
SU1705801A1 (ru) Способ измерени времени задержки импульсов
SU928237A1 (ru) Устройство дл измерени мгновенных значений напр жени
SU1709233A1 (ru) Цифровой фазометр среднего сдвига фаз между сигналами с известным частотным сдвигом
JP2550987B2 (ja) 信号勾配測定器
JP2879452B2 (ja) ディジタル電力計
SU771554A1 (ru) След щее цифровое измерительное стробоскопическое устройство
RU2020579C1 (ru) Измеритель отношения значений амплитуд квазисинусоидальных сигналов
RU2071062C1 (ru) Осциллограф
SU1030747A1 (ru) Устройство дл измерени характеристик МДП-структур
SU1596269A1 (ru) Цифровой низкочастотный фазометр
JPH0646199B2 (ja) 力率計