RU2109697C1 - Способ работы промышленного стекловаренного печного устройства и промышленное стекловаренное печное устройство - Google Patents

Способ работы промышленного стекловаренного печного устройства и промышленное стекловаренное печное устройство Download PDF

Info

Publication number
RU2109697C1
RU2109697C1 RU94046421A RU94046421A RU2109697C1 RU 2109697 C1 RU2109697 C1 RU 2109697C1 RU 94046421 A RU94046421 A RU 94046421A RU 94046421 A RU94046421 A RU 94046421A RU 2109697 C1 RU2109697 C1 RU 2109697C1
Authority
RU
Russia
Prior art keywords
gas
gas stream
furnace
remaining
stream
Prior art date
Application number
RU94046421A
Other languages
English (en)
Other versions
RU94046421A (ru
Inventor
Кейт Рассел Макнейлл
Original Assignee
Верт Инвестментс Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Верт Инвестментс Лимитед filed Critical Верт Инвестментс Лимитед
Publication of RU94046421A publication Critical patent/RU94046421A/ru
Application granted granted Critical
Publication of RU2109697C1 publication Critical patent/RU2109697C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • C03B3/026Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet by charging the ingredients into a flame, through a burner or equivalent heating means used to heat the melting furnace
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/2353Heating the glass by combustion with pure oxygen or oxygen-enriched air, e.g. using oxy-fuel burners or oxygen lances
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/237Regenerators or recuperators specially adapted for glass-melting furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Furnace Details (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Air Supply (AREA)

Abstract

Способ работы промышленного стекловаренного печного устройства, обеспечивающий снижение количества загрязнений в отходящих газах, включает следующие операции: подачу в печь первого газового потока А, содержащего окружающий воздух, удаление компонентов из первого газового потока А для увеличения относительного содержания кислорода в оставшемся первом газовом потоке А', при этом удаленные из первого газового потока компоненты образуют второй газовый поток В, горение печи с использованием по меньшей мере части оставшегося первого газового потока А' в качестве окислительной среды, отвод из печи отработанного газа в виде третьего газового потока С, объединение второго газового потока В и третьего газового потока С и выпуск из печи объединенного второго В и третьего С газового потока. 2 с. и 7 з.п. ф-лы, 2 ил.

Description

Изобретение относится к промышленной печи и способу ее работы. Промышленная печь представляет собой оборудование или устройство, в котором выполняется производственный процесс, включающий в качестве составной части операцию сжигания в кислороде. Изобретение, в особенности, относится к стекловаренным печам, хотя и не ограничивается ими.
В области стекловарения возрастает необходимость контролировать уровень выделяемых загрязнений. Эта необходимость усугубляется увеличением количества различных предписаний, регламентирующих указанные загрязнения, и ужесточением предъявляемых к ним требований. В этих предписаниях проводится сравнение между содержанием загрязнений во входящем газе и газе, выпускаемом в атмосферу. Процесс в целом рассматривается, как "черный ящик" между соответствующими значениями входных и выходных параметров.
В литературе (GB, заявка 2243674, кл. C 03 B 5/12, 1991) [1] описано воздействие инфразвука на вертикально движущийся поток нагретого воздуха, в который вводят порошкообразную стекольную шихту. Инфразвук, имеющий частоту менее 20 Гц, вызывает вибрацию нагретого воздушного потока и передачу тепла от воздушного потока частицам стекольной шихты, которые при этом нагреваются, а температура потока нагретого воздуха понижается до величины, меньшей 700oC. Это уменьшает тенденцию образования из воздуха окислов NOx. По мере продвижения нагретых частиц стекольной шихты и охлажденного воздушного потока вниз, к своду печи, в печь подают топливо. Отработанный газ регенеративно используют в теплообменнике для нагревания исходного воздушного потока.
Тем не менее, желательно снизить количество загрязнений, выходящих из печи, до их уровня в окружающем воздухе, поступающем в печь (что является стандартом, который используется в вышеуказанных предписаниях).
Предложен способ работы промышленного стекловаренного печного устройства, который в общем случае применим к промышленным печам.
Сформулированная техническая задача решается согласно первому аспекту настоящего изобретения за счет того, что в способе работы промышленного стекловаренного печного устройства с подачей в печь первого газового потока, содержащего окружающий воздух, осуществляют:
а) удаление компонентов из первого газового потока для увеличения относительного содержания кислорода в первом газовом потоке в канале оставшегося газа, при этом из удаленных из первого газового потока компонентов образуют второй газовый поток, который подают во второй газовый канал,
б) процесс горения печи с использованием по меньшей мере части оставшегося первого газового потока в качестве окислительной среды,
в) отвод из печи отработанного газа в виде третьего газового потока,
г) объединение второго и третьего газовых потоков,
д) выпуск из печи объединенного второго и третьего газового потока в атмосферу.
Предпочтительно, чтобы обогащенный кислородом оставшийся первый газовый поток, используемый для горения печи, имел содержание кислорода не менее 40% по объему, причем содержание 40% является наиболее предпочтительным.
Третий газовый поток предпочтительно подают в теплообменник, чтобы использовать его тепловую энергию. Тепловая энергия может быть использована в комбинированной силовой и отопительной системе на заводе или в офисе.
Альтернативно второй газовой поток до поступления в третий газовый поток можно нагревать тепловой энергией третьего газового потока (отработанного газа) с использованием, например, теплообменника со слоем гальки. Нагретый азот увеличивает тепловую энергию объединенного второго и третьего газового потока, ускоряя тем самым его рассеяние в атмосфере. Следует отметить, что применяемая технология для эффективной очистки третьего газового потока требует его предварительного охлаждения, что не дает возможности использовать тепловую энергию третьего газового потока непосредственно для ускорения рассеяния отработанного газа.
Обогащенный кислородом первый газовый поток предпочтительно вводить вместе со стекольной шихтой в потоке, окруженном горящим топливом при его прохождении вниз к своду печи. Это облегчает производство стекол с высокой температурой плавления. Смешивание стекольной шихты, топлива и оставшегося первого газового потока может быть улучшено путем воздействия инфразвука на оставшийся первый газовый поток, содержащий стекольную шихту и/или топливо.
Сформулированная техническая задача решается также за счет того, что промышленное стекловаренное печное устройство, включающее первое входное отверстие для газа, через которое первый газовый поток, содержащий окружающий воздух, подается в первый газовый канал, содержащий сепаратор, установленный в первом газовом канале ниже входного отверстия по ходу потока, для разделения потока на два газовых потока - оставшийся газовый поток с увеличенным содержанием кислорода и второй газовый поток так, что оставшийся газовый поток подается в канал оставшегося газа, а второй газовый поток подается во второй газовый канал, причем канал оставшегося газа проходит до входного отверстия печи для подачи в нее оставшегося газового потока в качестве окислительной атмосферы для обеспечения процесса горения печи, выходное отверстие печи для вывода из нее отработанного газа в третий газовый канал и объединитель, связанный с вторым и третьим газовыми каналами, для объединения второго и третьего газовых потоков и подачи объединенного газового потока в средство выпуска этого газового потока из устройства.
Промышленное стекловаренное печное устройство, работающее по описанному выше способу, снизит уровень загрязнений в выходящем газе относительно входящего газа, поскольку возврат второго газового потока в третий газовый поток уменьшает концентрацию загрязнений. Кроме того, энергия промышленной печи не затрачивается на очистку газа, который не требует никакой обработки.
Указанный газ может быть однокомпонентным или представлять собой смесь газов.
Увеличение содержания кислорода в окислительной среде повышает температуру пламени и тем самым эффективность печи. Отработанные газы при этом восстанавливаются и в меньшей степени требуют очистки.
Согласно второму аспекту настоящего изобретения в предложенном способе работы промышленного стекловаренного устройства в соответствии с первым аспектом изобретения процесс горения в печи осуществляют для плавки стекла. В этой области использование настоящего изобретения является особенно выгодным.
Согласно третьему аспекту настоящего изобретения предложена стекловаренная печь, работающая в соответствии со способом, указанным в третьем и первом аспектах изобретения.
Далее описывается пример осуществления изобретения со ссылками на прилагаемые чертежи, где на фиг. 1 изображен вид сбоку на устройство, включающее печь, для реализации способа согласно настоящему изобретению, на фиг. 2 - вид сверху на печь, показанную на фиг. 1.
На фиг. 1 и 2 показана стекловаренная печь 1 со сводом 2, в которой находится расплавленное стекло 3. На своде 2 печи 1 установлен цилиндр 4, по которому нагретая стекольная шихта и пламя подаются внутрь печи.
Первый газовый поток (схематично обозначенный A), содержащий воздух из окружающей атмосферы, подается вентилятором 5 в сепаратор 6. Сепаратор 6 представляет собой поворотный абсорбер известного типа. Сепаратор 6 извлекает отдельные компоненты из первого газового потока для увеличения относительного содержания кислорода в остатке первого газового потока (схематично обозначенном A'). Удаленные из первого газового потока компоненты образуют второй газовый поток (схематично обозначенный B). Например, приблизительное отношение содержания кислорода к некислородным газам (в первую очередь, к азоту) в воздухе составляет 1:4. Если удалить 50% некислородных газов, то приблизительное отношение становится равным 1:2. Второй газовый поток B отводится по трубопроводу 7, образующему второй газовый канал, вентилятором 8.
Оставшийся первый газовый поток A' направляют из сепаратора 6 по трубопроводу 9, являющемуся каналом оставшегося газа, к своду 2 через вертикальный цилиндр 10, который расположен концентрично с цилиндром 4 над сводом печи 1.
Стекольную шихту 11 в виде порошка вводят из бункера 12 по трубопроводу 13 в оставшийся первый газовый поток A' в цилиндре 14, который имеет больший диаметр, чем цилиндр 10, и сообщается с цилиндром 10.
Инфразвуковой генератор 27 вырабатывает звуковые волны с частотой 15-20 Гц около 140 децибел. Эти звуковые волны проходят непосредственно по цилиндру 10, по цилиндру 14 большего диаметра и далее по цилиндру 4 внутрь печи 1, где звуковые волны отражаются от поверхности расплавленного стекла 3.
Инфразвук помогает смешивать оставшийся первый газовый поток A' со стекольной шихтой 11 и топливом. Применение инфразвука аналогично описанному в [1] . Однако в настоящем изобретении не допускается перегрев оставшегося первого газового потока A', как это описано в [1], из-за опасности, связанной с высоким содержанием кислорода.
Поток стекольной шихты 11 и оставшегося первого газового потока A поступает вниз из цилиндра 10 в цилиндр 4, в который вертикально вдувается топливо, например газ или нефть, через вертикальные входные отверстия в элементе 15, расположенном вокруг основания цилиндра 10 и обеспечивающем смешивание вдуваемого топлива с оставшимся первым газовым потоком A' происхождение стекольной шихты 11 через цилиндр 4, где топливо зажигается согласно (WO, заявка 90/13522, кл. C 03 B 3/00, 1990). При прохождении стекольной шихты 11 через цилиндр 4 горящее в нем топливо повышает температуру шихты 11 практически до температуры плавления ее компонентов, при этом пламя и раскаленная шихта контактируют с поверхностью расплавленного стекла 3 в печи 1. Непосредственный контакт пламени с мелкодисперсной шихтой на поверхности горячего расплава в печи способствует плавлению шихты с образованием расплавленного стекла.
Отработанные газы, образующие третий газовый поток (схематично обозначенный C), выводятся из печи 1 по вертикальному трубопроводу 16, служащему третьим газовым каналом, и поступают в верхнюю часть теплообменника 17, затем по трубопроводу 18 проходят в верхнюю часть теплообменника 19 и далее по трубопроводу 20 подаются вентилятором 21 к основанию дымовой трубы 22, где производится фильтрация остаточных загрязнений.
Каждый из теплообменников 17 и 19 содержит регенератор с подвижным слоем гальки и выполнен по принципу теплообменника, описанного в Journal of the American Ceramic Society, vol. 29, 1946, N 7, p.187-193). Регенераторы 17 и 19 со слоем гальки при добавлении аммиачной воды и щелочи могут также использоваться для удаления соответственно окислов азота (NOx) и серы (SOx), как это описано в [1]. Однако при использовании предпочтительного способа согласно настоящему изобретению количество NOx, образующееся при сгорании, может быть таким незначительным, что специальной обработки аммиачной водой для удаления NOx из отработанных газов не потребуется.
Второй газовый поток B (представляющий собой компоненты, удаленные из первого, входящего газового потока A) выводят по трубопроводу 7, т.е. второму газовому каналу, через нижнюю часть регенератора 19 и далее через часть регенератора 17 так, что второй газовый поток B получает тепло от регенераторов 19 и 17 со слоем гальки. Второй газовый поток B нагревается при прохождении через регенераторы 19 и 17 до температуры примерно 1200oC, получая тепло от нагретой гальки, которая перемещается в регенераторах под действием силы тяжести. Затем нагретый второй газовый поток B по трубопроводам 25 и 26 вводят в третий газовый поток C (состоящий из отработанных газов) после его фильтрации.
Таким образом, как показано на фиг. 1 и 2, изобретение обеспечивает способ работы промышленной печи 1, включающий подачу первого газового потока A, состоящего из атмосферного воздуха, в печь 1. Из первого газового потока A удаляют компоненты для увеличения в нем относительного содержания кислорода. Компоненты, удаленные из первого газового потока A, образуют второй газовый поток B. Осуществляют процесс горения печи 1, используя в качестве окислительной среды по меньшей мере часть оставшегося первого газового потока A'. Отработанные газы выводят из печи в виде третьего газового потока C. Второй газовый поток B объединяют с третьим газовым потоком C и удаляют из печи.
Если бы третий газовый поток C выходил из дымовой трубы 22 непосредственно после фильтрации, он имел бы температуру всего около 60oC. Это создавало бы недостаточный подъем температуры для рассеивания отработанных газов, в особенности, когда эти газы пересыщены водой, что могло бы привести к концентрированию загрязняющих веществ в отдельных участках атмосферы.
Выпуск в атмосферу объединенного потока, состоящего из второго и третьего газовых потоков B и C соответственно, позволяет использовать тепло отработанных газов третьего газового потока для улучшения рассеивания за счет дополнительного повышения температуры.
Возврат второго газового потока B разбавляет третий газовый поток C, уменьшая тем самым объемную концентрацию загрязняющих веществ, выходящих из дымовой трубы 22, и способствует достижению допустимых концентраций указанных веществ, сравнимых с их концентрациями в окружающем воздухе в данной местности.
Альтернативно тепловая энергия третьего газового потока C может быть использована для привода турбины и/или для комбинированной силовой и отопительной системы на заводе или в офисе. Если третий газовый поток C используется в комбинированной отопительной системе, то в имеющие слой гальки теплообменники 17 и 19 вводят другой газ, образующий дополнительный поток, который подают на подлежащий отоплению участок. Если же третий газовый поток используется для получения энергии, то теплообменники 17 и 19 могут быть заменены, например, паровой турбиной, вырабатывающей электроэнергию для данного оборудования или другого участка. В обоих указанных случаях второй газовый поток B объединяют с третьим газовым потоком C, не используя предварительно тепловую энергию третьего газового потока C. При этом достигается разбавление третьего газового потока C вторым газовым потоком B, что является весьма выгодным.

Claims (9)

1. Способ работы промышленного стекловаренного печного устройства, включающий подачу в него первого газового потока, содержащего окружающий воздух, в первый газовый канал, отличающийся тем, что из первого газового потока удаляют компоненты для увеличения относительного содержания кислорода в первом газовом потоке в канале оставшегося газа, при этом из удаленных из первого газового потока компонентов образуют второй газовый поток, который подают во второй газовый канал, осуществляют процесс горения печи с использованием по меньшей мере части оставшегося первого газового потока из канала оставшегося газа в качестве окислительной среды, отводят из печи отработанный газ в виде третьего газового потока, объединяют второй и третий газовые потоки и выпускают объединенные второй и третий газовые потоки из печного устройства в атмосферу.
2. Способ по п.1, отличающийся тем, что обогащенный кислородом оставшийся первый газовый поток, используемый для горения печи, имеет содержание кислорода не менее 40 об.%.
3. Способ по п.2, отличающийся тем, что содержание кислорода в обогащенном оставшемся первом газовом потоке, используемом для горения печи, составляет 40 об.%.
4. Способ по пп.1 - 3, отличающийся тем, что третий газовый поток подают в теплообменник для использования его тепловой энергии.
5. Способ по пп.1 - 3, отличающийся тем, что второй газовый поток нагревают тепловой энергией третьего газового потока до его введения в третий газовый поток.
6. Способ по п.5, отличающийся тем, что второй газовый поток нагревают, используя теплообменник со слоем гальки.
7. Способ по п.6, отличающийся тем, что обогащенный кислородом первый газовый поток вводят вместе со стекольной шихтой в потоке, окруженном горящим топливом при его прохождении вниз к своду печи.
8. Способ по п.6 или 7, отличающийся тем, что смешивание стекольной шихты, топлива и оставшегося первого газового потока улучшают путем воздействия инфразвука на оставшийся первый газовый поток, содержащий стекольную шихту и/или топливо.
9. Промышленное стекловаренное печное устройство, содержащее первое входное отверстие для газа, через которое первый газовый поток, содержащий окружающий воздух, подается в первый газовый канал, отличающееся тем, что оно содержит сепаратор, установленный в первом газовом канале ниже входного отверстия по ходу потока, для разделения потока на два газовых потока - оставшийся газовый поток с увеличенным содержанием кислорода и второй газовый поток так, что оставшийся газовый поток подается в канал оставшегося газа, а второй газовый поток подается во второй газовый канал, причем канал оставшегося газа проходит до входного отверстия печи для подачи в нее оставшегося газового потока в качестве окислительной атмосферы для обеспечения процесса горения печи, выходное отверстие печи для вывода из нее отработанного газа в третий газовый канал, и объединитель, связанный с вторым и третьим газовыми каналами для объединения второго и третьего газовых потоков и подачи объединенного газового потока в средство выпуска этого газового потока из устройства.
RU94046421A 1992-06-13 1993-06-08 Способ работы промышленного стекловаренного печного устройства и промышленное стекловаренное печное устройство RU2109697C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB929212581A GB9212581D0 (en) 1992-06-13 1992-06-13 Glass melting furnace and method of operating the same
GB9212581.4 1992-06-13
PCT/GB1993/001215 WO1993025486A1 (en) 1992-06-13 1993-06-08 Industrial furnace and method of operating the same

Publications (2)

Publication Number Publication Date
RU94046421A RU94046421A (ru) 1996-10-10
RU2109697C1 true RU2109697C1 (ru) 1998-04-27

Family

ID=10717041

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94046421A RU2109697C1 (ru) 1992-06-13 1993-06-08 Способ работы промышленного стекловаренного печного устройства и промышленное стекловаренное печное устройство

Country Status (14)

Country Link
US (1) US5488915A (ru)
EP (1) EP0662071B1 (ru)
JP (1) JPH07507759A (ru)
CN (1) CN1081761A (ru)
AU (1) AU665258B2 (ru)
CZ (1) CZ312594A3 (ru)
DE (1) DE69305528T2 (ru)
ES (1) ES2092828T3 (ru)
GB (1) GB9212581D0 (ru)
HU (1) HUT69899A (ru)
RU (1) RU2109697C1 (ru)
SG (1) SG49145A1 (ru)
WO (1) WO1993025486A1 (ru)
ZA (1) ZA934089B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2699505C2 (ru) * 2015-10-29 2019-09-05 Праксайр Текнолоджи, Инк. Термохимическая регенерация и рекуперация тепла в стекловаренных печах

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200128B1 (en) * 1997-06-09 2001-03-13 Praxair Technology, Inc. Method and apparatus for recovering sensible heat from a hot exhaust gas
US6519973B1 (en) * 2000-03-23 2003-02-18 Air Products And Chemicals, Inc. Glass melting process and furnace therefor with oxy-fuel combustion over melting zone and air-fuel combustion over fining zone
DE10060728A1 (de) * 2000-12-07 2002-06-20 Messer Griesheim Gmbh Vorrichtung und Verfahren zum Einschmelzen von Glas
DE10361451A1 (de) * 2003-12-23 2005-07-28 Wiessner Gmbh Verfahren und Vorrichtung zum Konditionieren eines Prozessbereichs unter Ausnutzung von Abwärme
US7048008B2 (en) * 2004-04-13 2006-05-23 Ultra Clean Holdings, Inc. Gas-panel assembly
DE102005019147B4 (de) 2005-04-25 2009-01-15 Siemens Ag Verfahren zur Optimierung des Verbrennungsprozesses für einen Schmelzofen bei der Glasherstellung
US7299825B2 (en) * 2005-06-02 2007-11-27 Ultra Clean Holdings, Inc. Gas-panel assembly
US7320339B2 (en) * 2005-06-02 2008-01-22 Ultra Clean Holdings, Inc. Gas-panel assembly
US20070224708A1 (en) * 2006-03-21 2007-09-27 Sowmya Krishnan Mass pulse sensor and process-gas system and method
US20080009977A1 (en) * 2006-07-10 2008-01-10 Ultra Clean Holdings Apparatus and Method for Monitoring a Chemical-Supply System
WO2008030501A2 (en) * 2006-09-06 2008-03-13 Ultra Clean Holdings, Incorporated Pre-certified process chamber and method
US20090078324A1 (en) * 2007-09-21 2009-03-26 Ultra Clean Technology, Inc. Gas-panel system
US20090114295A1 (en) * 2007-11-06 2009-05-07 Ultra Clean Holdings, Inc. Gas-panel assembly
US8307854B1 (en) 2009-05-14 2012-11-13 Vistadeltek, Inc. Fluid delivery substrates for building removable standard fluid delivery sticks
WO2010144541A2 (en) * 2009-06-10 2010-12-16 Vistadeltek, Llc Extreme flow rate and/or high temperature fluid delivery substrates
CN105110603B (zh) * 2015-08-25 2017-06-16 广东华兴玻璃股份有限公司 一种用于玻璃窑炉和工作池的烤窑器
KR102308619B1 (ko) 2017-03-20 2021-10-06 코닝 인코포레이티드 유리 제품 제조 장치
CN109626013A (zh) * 2018-11-28 2019-04-16 中国恩菲工程技术有限公司 工业炉进料系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8910766D0 (en) * 1989-05-10 1989-06-28 Mcneill Keith R Method of firing glass melting furnace
US5006141A (en) * 1990-01-30 1991-04-09 Air Products And Chemicals, Inc. Thermally efficient melting for glass making
GB2243674B (en) * 1990-04-26 1993-09-29 Keith Russell Mcneill Method of feeding glass batch to a glass-melting furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2699505C2 (ru) * 2015-10-29 2019-09-05 Праксайр Текнолоджи, Инк. Термохимическая регенерация и рекуперация тепла в стекловаренных печах

Also Published As

Publication number Publication date
RU94046421A (ru) 1996-10-10
DE69305528D1 (de) 1996-11-21
CZ312594A3 (en) 1995-08-16
EP0662071A1 (en) 1995-07-12
US5488915A (en) 1996-02-06
AU4343393A (en) 1994-01-04
AU665258B2 (en) 1995-12-21
HUT69899A (en) 1995-09-28
ZA934089B (en) 1994-05-03
WO1993025486A1 (en) 1993-12-23
ES2092828T3 (es) 1996-12-01
DE69305528T2 (de) 1997-02-27
EP0662071B1 (en) 1996-10-16
JPH07507759A (ja) 1995-08-31
GB9212581D0 (en) 1992-07-29
CN1081761A (zh) 1994-02-09
SG49145A1 (en) 1998-05-18
HU9403564D0 (en) 1995-02-28

Similar Documents

Publication Publication Date Title
RU2109697C1 (ru) Способ работы промышленного стекловаренного печного устройства и промышленное стекловаренное печное устройство
EP0718554A2 (en) A combustion apparatus
EP0952393B1 (en) Method and apparatus for operating melting furnace in waste treatment facilities
CA2212152A1 (en) Tunable, self-powered integrated arc plasma-melter vitrification system for waste treatment and resource recovery
WO2022105355A1 (zh) 一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理系统和方法
CN111569623A (zh) 烧结烟气内外循环系统与循环方法
JPH0629566B2 (ja) 石炭燃焼形ボイラ
JPH0365211A (ja) 不均一系燃料の燃焼法
US4812117A (en) Method and device for pre-heating waste metal for furnaces
EP0482306A3 (en) Method and device for the combustion of wood chips generating fumes low in noxious substances under continuously controllable firing power
JPS6041008B2 (ja) ガラス等の溶融方法
JPH0849822A (ja) 廃棄物処理装置及び方法
CN218972677U (zh) 尾气焚烧装置
JP2002089813A (ja) 灰溶融炉の排ガス処理方法およびその装置
SU1665181A1 (ru) Способ сжигани пылевидного топлива в вертикальной топке с жидким шлакоудалением
CN115654513A (zh) 尾气焚烧装置和方法
JPH0942627A (ja) 廃棄物の焼却処理方法及び装置
KR100316668B1 (ko) 폐기물처리설비에있어서의용융로의운전방법및장치
JPS5691113A (en) Removing method of hydrogen chloride gas produced in stoker type waste matter incinerating furnace
JPS60106526A (ja) 粗大粒子および/または塊状材料を熱処理するための方法と装置
JPH07145924A (ja) 石炭灰処理方法
JP3571492B2 (ja) 廃棄物の焼却処理設備
JPH09243039A (ja) 廃棄物の焼却・溶融方法
CA1274085A (en) Method and device for pre-heating waste metal for furnaces
KR100203534B1 (ko) 복합형 폐기물 열처리 장치