WO2022105355A1 - 一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理系统和方法 - Google Patents
一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理系统和方法 Download PDFInfo
- Publication number
- WO2022105355A1 WO2022105355A1 PCT/CN2021/115635 CN2021115635W WO2022105355A1 WO 2022105355 A1 WO2022105355 A1 WO 2022105355A1 CN 2021115635 W CN2021115635 W CN 2021115635W WO 2022105355 A1 WO2022105355 A1 WO 2022105355A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- waste incineration
- coal
- slag
- incineration ash
- power station
- Prior art date
Links
- 239000002893 slag Substances 0.000 title claims abstract description 100
- 238000004056 waste incineration Methods 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims abstract description 16
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 52
- 239000003546 flue gas Substances 0.000 claims abstract description 52
- 239000003245 coal Substances 0.000 claims abstract description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 25
- 238000005469 granulation Methods 0.000 claims description 22
- 230000003179 granulation Effects 0.000 claims description 22
- 239000007788 liquid Substances 0.000 claims description 22
- 238000002485 combustion reaction Methods 0.000 claims description 11
- 239000011521 glass Substances 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 4
- 238000000746 purification Methods 0.000 claims description 3
- 239000002956 ash Substances 0.000 description 54
- 239000010881 fly ash Substances 0.000 description 12
- 229910001385 heavy metal Inorganic materials 0.000 description 11
- 231100000331 toxic Toxicity 0.000 description 8
- 230000002588 toxic effect Effects 0.000 description 8
- 150000002013 dioxins Chemical class 0.000 description 6
- 239000002957 persistent organic pollutant Substances 0.000 description 6
- 238000002386 leaching Methods 0.000 description 5
- 239000004568 cement Substances 0.000 description 4
- 239000010813 municipal solid waste Substances 0.000 description 4
- 231100000252 nontoxic Toxicity 0.000 description 4
- 230000003000 nontoxic effect Effects 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000002920 hazardous waste Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- KVGZZAHHUNAVKZ-UHFFFAOYSA-N 1,4-Dioxin Chemical compound O1C=COC=C1 KVGZZAHHUNAVKZ-UHFFFAOYSA-N 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000010908 plant waste Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/44—Details; Accessories
- F23G5/442—Waste feed arrangements
- F23G5/444—Waste feed arrangements for solid waste
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/44—Details; Accessories
- F23G5/46—Recuperation of heat
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/12—Heat utilisation in combustion or incineration of waste
Definitions
- the invention relates to the fields of environmental protection and hazardous waste treatment, in particular to a waste incineration ash treatment system and method based on a solid-state slag discharge boiler of a large-scale coal-fired power station.
- waste incineration fly ash contains high concentrations of heavy metals such as Zn, Pb, Cu, Cr, and highly toxic organic pollutants such as dioxins, it is extremely harmful to human health and the ecological environment, and belongs to hazardous solid waste. Direct landfill will cause serious secondary pollution to the surrounding environment, so it is necessary to carry out harmless treatment of waste incineration fly ash.
- the present invention provides a waste incineration ash treatment system and method based on a large-scale coal-fired power station solid-state slag discharge boiler, with reasonable design, ingenious structure, and simple system composition, which can effectively remove waste incineration ash from waste incineration ash. Harmless and non-toxic treatment of heavy metal components and highly toxic organic components such as dioxins,
- the power station coal-fired boiler system includes a furnace, and a high-temperature flue gas nozzle arranged on the top of the furnace;
- the cyclone burner system includes a cyclone burner body, a waste incineration ash inlet, an oil gun, a primary air inlet for pulverized coal, a slag drop port, a granulation water tank, a slag catcher screen and a connecting flue, and the cyclone burner body.
- the input end is provided with a waste incineration ash inlet and an oil gun, several coal powder primary air inlets are respectively arranged on both sides of the input end along the tangential direction, and a slag drop port is arranged at the bottom of the output end, and the output end is connected with the high-temperature flue gas nozzle through the connecting flue. ;
- a granulating water tank is communicated with the slag drop port; the cyclone burner body and the connecting part of the flue are arranged at an inclination, and the connecting flue outlet is higher than the flue gas outlet of the cyclone burner body; The joint part of the device body and the connecting flue.
- the cyclone burner system also includes a number of secondary air inlets; the secondary air inlets are respectively arranged on both sides of the input end of the cyclone burner body along the tangential direction, and are located downstream of the pulverized coal primary air inlet. .
- the cyclone burner body is arranged vertically, the bottom of the cyclone burner body and the joint connecting the flue are arranged in a U-shape or a V-shape, and the bottom of the output end of the cyclone burner body is located at the lowest level of the U-shape or V-shape. point.
- the input end of the waste incineration ash inlet is connected to the ash conveying pipeline.
- the input end of the primary air inlet of the pulverized coal is connected to the primary air and the pulverized coal.
- part of the nozzles of the secondary air inlet is connected to oxygen-enriched air.
- a method for treating waste incineration ash based on a large-scale coal-fired power station solid-state slagging boiler comprising the following steps:
- the primary air carries pulverized coal from the primary air inlet of the pulverized coal into the cyclone burner body tangentially, forming a rotating high-speed airflow, which is ignited by the oil gun and burns violently inside the cyclone burner body, forming a high temperature environment above 1400 °C ;
- waste incineration ash is introduced into the cyclone burner body from the waste incineration ash inlet, and is carried by the high-speed airflow formed by the primary air, and melted in a high temperature environment to form a slag liquid;
- the high-temperature flue gas enters the furnace of the coal-fired boiler through the slag catcher screen and the connecting flue.
- the slag liquid particles in the flue gas are captured and fall into the slag drop port.
- the flue gas is purified by the flue gas purification equipment of the coal-fired boiler of the large power station and discharged into the atmosphere;
- the slag liquid falls into the granulation water tank from the slag drop port, and is quickly granulated into a granular glass body after the rapid cooling of the granulation water.
- the secondary air required to achieve complete combustion is tangentially fed into the cyclone burner body from the secondary tuyere.
- oxygen-enriched air is fed from part of the nozzle of the secondary air inlet to increase the oxygen concentration in the cyclone burner and the ambient temperature for slag smelting.
- the present invention has the following beneficial technical effects:
- the waste incineration ash is melted at high temperature in the cyclone burner and then rapidly cooled to form glass particles, which effectively fixes the heavy metal components in the waste incineration ash and greatly reduces the leaching degree of the heavy metal components.
- the high temperature can ensure that the highly toxic organic pollutants such as dioxins in the waste incineration ash are completely decomposed harmlessly, and then the existing coal-fired power station boiler is used for heat recovery and subsequent smoke recovery of the high-temperature flue gas generated by the cyclone burner.
- Gas treatment relying on the flue gas treatment equipment of coal-fired boilers in large power plants, does not need to build a separate waste incineration ash flue gas treatment equipment, saves investment, has great economic and social benefits, not only can improve heat utilization, but also It will not cause secondary pollution to the environment, ensure the complete harmless and non-toxic treatment of waste incineration ash, effectively solve the current problem of waste incineration ash treatment in waste incineration power plants, ensure the city's biochemical waste treatment capacity, and eliminate solid hazards. The harm of waste to the surrounding environment and human body has great social security benefits.
- FIG. 1 is a schematic structural diagram of the system described in the example of the present invention.
- waste incineration ash inlet 1 oil gun 2
- pulverized coal primary air inlet 3 secondary air inlet 4
- cyclone burner body 5 slag drop port 6
- granulation water tank 7 slag catcher screen 8
- connecting smoke Road 9 high temperature flue gas nozzle 10
- furnace 11 of coal-fired boiler
- the present invention is a waste incineration ash treatment system and method based on a large-scale coal-fired power station solid-state slag discharge boiler, which adopts the combination of a cyclone burner system and a conventional large-scale coal-fired solid-state slag discharge boiler to achieve solid-state slag discharge in a large-scale coal-fired power station.
- a cyclone burner is added, and the high temperature characteristic of the cyclone burner is used to melt the waste incineration fly ash to a liquid state, and the slag liquid enters the granulation pool and is rapidly cooled to a glass state, so that the large-scale coal-fired power station solid-state slag discharge boiler has no The ability to harm the waste incineration fly ash, and the generated slag liquid enters the granulation pool.
- the glassy waste residue reduces the leaching toxicity of heavy metals in the waste incineration fly ash, and eliminates the highly toxic organic pollutants such as dioxins in the waste incineration fly ash. gas treatment.
- the system of the present invention specifically includes a power station coal-fired boiler system and a cyclone burner system; the cyclone burner system is independently added on the power station coal-fired boiler system,
- the power station coal-fired boiler system includes a furnace 11 and a high-temperature flue gas nozzle 10 arranged on the furnace 11;
- the cyclone burner system includes a cyclone burner body 5, a waste incineration ash inlet 1, an oil gun 2, a primary air inlet 3 for pulverized coal, a secondary air inlet 4, a slag drop port 6, a granulation water tank 7, and a catcher.
- the granulating water tank 7 is located under the cyclone burner body 5;
- the connecting flue 9 is located at the bottom of the cyclone burner body 5 and communicates with the high temperature flue gas nozzle 10;
- the slag catcher screen 8 is located at the cyclone burner body 5
- the furnace 11 is provided with a high temperature flue gas nozzle 10, which is connected with the cyclone burner body 5 through the connecting flue 9, and the hot flue gas generated by the cyclone burner is introduced into the combustion zone of the furnace 11 of the coal-fired boiler.
- the cyclone burner body 5 is provided with a garbage incineration ash inlet 1, an oil gun 2, a coal powder primary air inlet 3, a secondary air inlet 4, and a slag drop port 6, and the garbage incineration ash inlet 1 and the oil gun 2 are located in the cyclone.
- the coal primary air inlet 3 and the secondary air inlet 4 are respectively located on both sides of the upper part of the cyclone barrel burner body 5, and the slag drop port 6 is arranged on the cyclone barrel burner body 5.
- the cyclone barrel burner The side wall of the main body 5 is provided with a connecting flue 9 which communicates with the period.
- the waste incineration ash inlet 1 is arranged on the top of the cyclone burner, and the waste incineration ash enters the cyclone burner body 5 from here.
- the pulverized coal primary air inlets 3 are arranged on both sides of the top of the cyclone burner body 5 , where the primary air enters the cyclone burner body 5 to drive the pulverized coal airflow to rotate and burn in the cyclone burner body 5 .
- the secondary air inlet 4 is arranged below the primary air inlet 3 of the pulverized coal, and the secondary air enters the cyclone burner body 5 from here.
- the slag dropping port 6 is arranged at the bottom of the cyclone burner body 5 , and the molten slag liquid falls into the granulation water tank 7 through the slag dropping port 6 .
- the granulation water tank 7 is arranged below the cyclone burner body 5, the molten slag liquid falls into the granulation water tank 7 through the slag drop port 6, and the high temperature slag liquid is granulated into a glass body under the rapid cooling of the granulation water.
- the connecting flue 9 is arranged between the bottom of the cyclone burner body 5 and the high temperature flue gas nozzle 10 of the pulverized coal boiler, and connects the bottom body 5 of the cyclone burner and the high temperature flue gas nozzle 10 of the pulverized coal boiler.
- the gas is introduced into the furnace 11 from the bottom of the cyclone burner body 5 through the connecting flue 9 to the high temperature flue gas nozzle 10 .
- the slag trapping screen 8 is arranged at the junction of the bottom of the cyclone burner body 5 and the connecting flue 9. When the high temperature flue gas passes through the slag trapping screen 8, the slag liquid in the high temperature flue gas is captured and falls into the slag drop port. 6. Increase the ash trapping rate.
- the high temperature flue gas nozzle 10 is arranged on the furnace chamber 11 of the coal-fired boiler, and introduces the high temperature flue gas generated by the cyclone burner into the furnace chamber 11 .
- the method for treating waste incineration ash of a coal-fired boiler of the present invention combines a cyclone burner with a large-scale power station coal-fired boiler to effectively decompose dioxin and other highly toxic organic components in the waste incineration ash by high-temperature melting.
- the molten slag liquid is rapidly cooled to form a glass body, and the heavy metal components in the waste incineration ash are solidified in the glass body, so as to achieve the harmless and non-toxic treatment of solid hazardous waste - waste incineration ash.
- the present invention includes a power station coal-fired boiler system and a cyclone burner system;
- the power station coal-fired boiler system includes a furnace 11 of the coal-fired boiler, and a high-temperature flue gas disposed on the furnace 11 Nozzle 10;
- the cyclone burner system includes a cyclone burner body 5, a waste incineration ash inlet 1, an oil gun 2, a primary air inlet 3 for pulverized coal, a secondary air inlet 4, a slag drop port 6, and a granulation water tank 7.
- Slag catching screen 8 Connecting flue 9.
- the top of the cyclone burner body 5 is provided with a garbage ash inlet 1 and an oil gun 2, and a primary air inlet 3 and a secondary air inlet 4 for pulverized coal are arranged on both sides downward.
- the waste incineration ash is fed into the cyclone burner body 5 from the waste incineration ash inlet 1 using an ash conveying pipeline.
- the primary air carries pulverized coal from the pulverized coal primary air inlet 3 and enters the cyclone burner body 5 tangentially, forming a high-speed rotating airflow, which carries the garbage incineration ash for vigorous combustion, and its function is to maintain the internal temperature of the burner body 5 at a At a certain level, a layer of slag film is formed on the inner wall of the cyclone burner, and the waste incineration ash is rapidly melted in a high temperature environment to form a flowing slag liquid.
- the secondary air required to achieve complete combustion is tangentially fed into the cyclone burner body 5 from the secondary air port 4, and the secondary air inlet 4 can use part of the nozzle to send oxygen-enriched air to make the oxygen in the cyclone burner.
- the concentration is greatly increased, and the ambient temperature is raised, which is beneficial to the slag.
- a slag catcher screen 8 is arranged at the interface connecting the cyclone burner body 5 and the connection flue 9, and the droplets in the captured flue gas fall into the slag drop port 6, and the combusted flue gas is sent into the combustion chamber by the connection flue 9.
- the formed slag liquid falls into the granulation water tank 7 from the slag drop port 6 and is rapidly cooled by the granulation water to form a glass body.
- the present invention is a method for treating waste incineration ash based on a large-scale coal-fired power station solid-state slag discharge boiler, comprising:
- the primary air carries pulverized coal from the pulverized coal primary air inlet 3 and enters the cyclone burner body 5 tangentially to form a rotating high-speed airflow, which is ignited by an oil gun and burns violently inside the cyclone burner body 5 to form a temperature of 1400°C above high temperature environment;
- the waste incineration ash is introduced into the cyclone burner body 5 from the waste incineration ash inlet 1, and is carried by the high-speed airflow formed by the primary air, and melted in a high temperature environment to form a slag liquid;
- Steps 1) and 2) make the coal-fired and the waste incineration ash mixed into the cyclone burner, and the waste incineration ash is melted to form a slag liquid by the high temperature of the cyclone burner above 1400 DEG C, and flows out from the slag flow port at the bottom of the cyclone burner.
- the high-temperature slag liquid produced after the waste incineration ash is melted at high temperature in the cyclone burner through the granulation water tank is rapidly cooled to form glass particles, which effectively fix the heavy metal components in the waste incineration ash, greatly reduce the leaching degree of heavy metal components, and reduce the leaching toxicity.
- the high temperature of the cyclone burner above 1400 °C can ensure that the highly toxic organic pollutants such as dioxins in the waste incineration ash are completely decomposed harmlessly.
- the high-temperature flue gas enters the furnace 11 of the coal-fired boiler through the slag catcher screen 8 and the connecting flue 9.
- the slag liquid particles in the flue gas are captured and fall into the slag drop port;
- a slag trapping screen is arranged at the connection between the barrel burner system and the coal-fired boiler of the power station.
- the molten slag droplets adhere to the slag trapping screen and form a thermal insulation layer.
- the slag pool is formed on the surface of the thermal insulation layer and falls to the bottom of the cyclone burner and flows out from the slag flow port.
- the flue gas is purified by the flue gas purification equipment of the large-scale power station coal-fired boiler and discharged into the atmosphere; the high-temperature flue gas generated by the cyclone burner is treated by the existing coal-fired power station boiler.
- the slag liquid is dropped into the granulation water tank 7 by the slag drop port 6, and is rapidly granulated into a granular glass body through the rapid cooling of the granulated water; the slag drop port and the granulation water tank are set at the lower part of the cyclone burner, when coal and The waste incineration fly ash is melted into a slag liquid in the burner of the combustion cylinder and then aggregates at the bottom, and flows out of the burner through the slag drop port and falls into the granulation water tank.
- the internal stress of the slag increases rapidly, which causes the slag to break and form vitreous slag particles .
- the invention is a waste incineration ash treatment system based on a solid-state slag discharge boiler of a large coal-fired power station.
- the waste incineration ash is melted at a high temperature in a cyclone burner and then rapidly cooled to form vitreous particles, thereby effectively removing the heavy metal components in the waste incineration ash.
- Fixed, greatly reducing the leaching degree of heavy metal components, and the high temperature of 1400 °C of the cyclone burner can ensure that the highly toxic organic pollutants such as dioxin in the waste incineration ash are completely decomposed harmlessly, and then use the existing power station.
- the coal-fired boiler performs heat recovery and subsequent flue gas treatment on the high-temperature flue gas generated by the cyclone burner.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Processing Of Solid Wastes (AREA)
- Gasification And Melting Of Waste (AREA)
Abstract
一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理系统和方法,系统包括电站燃煤锅炉系统和旋风筒燃烧器系统;电站燃煤锅炉系统包括炉膛(11),以及设在炉膛(11)炉顶的高温烟气喷口(10);旋风筒燃烧器系统包括旋风筒燃烧器本体(5)、垃圾焚烧灰入口(1)、油枪(2)、煤粉一次风入口(3)、落渣口(6)、粒化水槽(7)、捕渣屏(8)和连接烟道(9),旋风筒燃烧器本体(5)输入端设置垃圾焚烧灰入口(1)和油枪(2),输入端两侧位置沿切线方向分别设置若干煤粉一次风入口(3),输出端底部设落渣口(6),输出端经连接烟道(9)与高温烟气喷口(10)连通;落渣口(6)下方连通设有粒化水槽(7);旋风筒燃烧器本体(5)与连接烟道(9)结合部位呈倾斜设置,连接烟道(9)出口高于旋风筒燃烧器本体(5)的烟气出口;捕渣屏(8)设在旋风筒燃烧器本体(5)与连接烟道(9)结合部位。
Description
本发明涉及环境保护及危废处理领域,具体为一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理系统和方法。
近年来,随着我国垃圾焚烧处理技术的迅猛发展,焚烧飞灰产量巨大,焚烧飞灰处理技术成为环保领域研究的热点之一。由于垃圾焚烧飞灰中含有较高浓度的Zn、Pb、Cu、Cr等重金属和二噁英等剧毒有机污染物,对人体健康和生态环境具有极大的危害性,属于危险固体废弃物,将其直接填埋会对周边环境造成严重的二次污染,因此需要对垃圾焚烧飞灰进行无害化处理。
目前我国对于垃圾焚烧飞灰一般采取水泥固化与螯合剂稳定后填埋的处理方法。水泥固化法易受到飞灰性质影响,存在将飞灰中通过多重复杂过程富集浓缩的重金属等污染物最终又重新分散在水泥熟料以及填埋料中,形成“逆向污染”的风险。而且不论水泥固化与螯合剂稳定填埋方法,都无法将垃圾焚烧灰中的二噁英等剧毒有机污染物进行无害化处理。
针对现有技术中存在的问题,本发明提供一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理系统和方法,设计合理,结构巧妙,系统组成简单,可有效将垃圾焚烧灰中的重金属成分以及二噁英等剧毒有机物成分进行无害化、无毒化处理,
本发明是通过以下技术方案来实现:
一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理系统,包 括电站燃煤锅炉系统和旋风筒燃烧器系统;
所述的电站燃煤锅炉系统包括炉膛,以及设置在炉膛炉顶的高温烟气喷口;
所述的旋风筒燃烧器系统包括旋风筒燃烧器本体、垃圾焚烧灰入口、油枪、煤粉一次风入口、落渣口、粒化水槽、捕渣屏和连接烟道,旋风筒燃烧器本体的输入端设置垃圾焚烧灰入口和油枪,输入端两侧位置沿切线方向分别设置若干煤粉一次风入口,输出端底部设置有落渣口,输出端经连接烟道与高温烟气喷口连通;
落渣口下方连通设置有粒化水槽;旋风筒燃烧器本体与连接烟道结合部位呈倾斜设置,连接烟道出口高于旋风筒燃烧器本体的烟气出口;捕渣屏设置在旋风筒燃烧器本体与连接烟道结合部位。
进一步的,所述的旋风筒燃烧器系统还包括若干二次风入口;所述的二次风入口沿切线方向分别设置旋风筒燃烧器本体的输入端两侧,且位于煤粉一次风入口下游。
进一步的,旋风筒燃烧器本体呈竖直设置,旋风筒燃烧器本体底部和连接烟道的结合部呈U型或V型设置,旋风筒燃烧器本体输出端底部位于U型或V型的最低点。
进一步的,所述的垃圾焚烧灰入口的输入端连接输灰管道。
进一步的,所述的煤粉一次风入口的输入端接入一次风和煤粉。
进一步的,所述的二次风进口的部分喷口接入富氧空气。
一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理方法,包括如下步骤,
1)一次风携带煤粉从煤粉一次风入口中由切向进入旋风筒燃烧器本体,形成旋转的高速气流,通过油枪点燃在旋风筒燃烧器本体内 部剧烈燃烧,形成1400℃以上高温环境;
2)将垃圾焚烧灰从垃圾焚烧灰入口导入旋风筒燃烧器本体,由一次风形成的高速气流裹挟,在高温环境下熔融,形成渣液;
3)高温烟气经过捕渣屏和连接烟道进入燃煤锅炉炉膛,高温烟气在经过捕渣屏时烟气中渣液颗粒被捕集下来落入落渣口,高温烟气在燃煤锅炉的炉膛内辅助燃烧后通过大型电站燃煤锅炉的烟气净化设备将烟气净化,排入大气;
4)渣液由落渣口掉入粒化水槽,经过粒化水急速降温迅速粒化为颗粒状玻璃体。
进一步的,达到完全燃烧所需的二次风从二次风口以切线方式送入旋风筒燃烧器本体内。
更进一步的,富氧空气从二次风进口的部分喷口送入使旋风筒燃烧器内提高氧浓度,提升环境温度,用于熔渣。
与现有技术相比,本发明具有以下有益的技术效果:
本发明将垃圾焚烧灰在旋风筒燃烧器中高温熔融后迅速冷却形成玻璃体颗粒,有效将垃圾焚烧灰中的重金属成分固定,大幅降低重金属成分的浸出度,同时旋风筒燃烧器的1400℃以上的高温可以确保垃圾焚烧灰中的二噁英等剧毒有机污染物被完全无害化分解掉,然后利用现有燃煤电站锅炉对旋风筒燃烧器产生的高温烟气进行热量回收和后续的烟气处理,依托大型电站燃煤锅炉的烟气处理设备,不需要建立单独的垃圾焚烧灰烟气处理设备,节省了投资,具有极大的经济效益和社会效益,不仅能够提高热量利用率,而且不会对环境产生二次污染,保证了垃圾焚烧灰的完全无害化、无毒化处理,有效解 决了当前垃圾焚烧电厂垃圾焚烧灰处理难题,保障了城市的生化垃圾处理能力,消除了固体危险废弃物对周围环境以及人体的危害,具有极大的社会安全效益。
图1为本发明实例中所述系统的结构示意图。
图中:垃圾焚烧灰入口1,油枪2,煤粉一次风入口3,二次风入口4,旋风筒燃烧器本体5,落渣口6,粒化水槽7,捕渣屏8,连接烟道9,高温烟气喷口10,燃煤锅炉炉膛11。
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
本发明一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理系统和方法,采用旋风筒燃烧器系统与常规大型燃煤固态排渣锅炉相结合的方式,在大型燃煤电站固态排渣锅炉的基础上增设旋风筒燃烧器,利用旋风筒燃烧器的高温特性将垃圾焚烧飞灰熔融至液态,渣液进入粒化水池迅速冷却为玻璃态,使大型燃煤电站固态排渣锅炉具备无害化处理垃圾焚烧飞灰的能力,同时所产生的渣液进入粒化水池。玻璃态的废渣降低垃圾焚烧飞灰的重金属浸出毒性,消除垃圾焚烧飞灰中的二噁英等剧毒有机污染物成分,其产生的高温烟气进入固态排渣锅炉对热量进行回收和后续烟气的处理。
本发明所述的系统具体包括电站燃煤锅炉系统和旋风筒燃烧器系统;旋风筒燃烧器系统是独立增加在电站燃煤锅炉系统之上的,
所述的电站燃煤锅炉系统包括炉膛11,以及设置在炉膛11上的高温烟气喷口10;
所述的旋风筒燃烧器系统包括旋风筒燃烧器本体5、垃圾焚烧灰入口1、油枪2、煤粉一次风入口3、二次风入口4、落渣口6、粒化水槽7、捕渣屏8和连接烟道9,其中垃圾焚烧灰入口1、油枪2、煤粉一次风入口3、二次风入口4均位于旋风筒燃烧器本体5顶部;落渣口6位于旋风筒燃烧器本体5底部;粒化水槽7位于旋风筒燃烧器本体5下方;连接烟道9位于旋风筒燃烧器本体5底部与高温烟气喷口10相连通;捕渣屏8位于旋风筒燃烧器本体5与连接烟道9结合部位。
所述的炉膛11上设置有高温烟气喷口10,与旋风筒燃烧器本体5通过连接烟道9连接,将旋风筒燃烧器产生的热烟气导入燃煤锅炉的炉膛11的燃烧区。
所述的旋风筒燃烧器本体5设置有垃圾焚烧灰入口1、油枪2、煤粉一次风入口3、二次风入口4、落渣口6,垃圾焚烧灰入口1、油枪2位于旋风筒燃烧器本体5正上方,煤粉一次风入口3、二次风入口4分别位于旋风筒燃烧器本体5上部两侧位置,落渣口6设置在旋风筒燃烧器本体5,旋风筒燃烧器本体5侧壁设置有与期相通的连接烟道9。
所述的垃圾焚烧灰入口1设置在旋风筒燃烧器顶部,垃圾焚烧灰从此处进入旋风筒燃烧器本体5。
所述的煤粉一次风入口3设置在旋风筒燃烧器本体5的顶部两侧位置,一次风由此处进入旋风筒燃烧器本体5带动煤粉气流在旋风筒燃烧器本体5内旋转燃烧。
所述的二次风入口4设置在煤粉一次风入口3下方,二次风由此处进入旋风筒燃烧器本体5。
所述的落渣口6设置在旋风筒燃烧器本体5底部位置,熔融的渣液经落渣口6落入粒化水槽7。
所述的粒化水槽7设置在旋风筒燃烧器本体5下方位置,熔融的渣液经由落渣口6落入粒化水槽7,高温渣液在粒化水急速冷却下粒化为玻璃体。
所述的连接烟道9设置在旋风筒燃烧器本体5底部与煤粉锅炉的高温烟气喷口10之间,连接旋风筒燃烧器底部本体5与煤粉锅炉的高温烟气喷口10,高温烟气由旋风筒燃烧器本体5底部经连接烟道9至高温烟气喷口10,导入至炉膛11。
所述的捕渣屏8设置在旋风筒燃烧器本体5底部与连接烟道9结合处,当高温烟气经过捕渣屏8时将高温烟气中的渣液捕集,落入落渣口6,增大灰渣捕集率。
所述的高温烟气喷口10设置在燃煤锅炉的炉膛11上,将旋风筒燃烧器产生的高温烟气导入炉膛11。
本发明燃煤锅炉的垃圾焚烧灰处理方法,将旋风筒燃烧器与大型电站燃煤锅炉相结合,有效通过高温熔融手段分解掉垃圾焚烧灰中的二噁英等剧毒有机物成分,同时通过将熔融渣液急速冷却形成玻璃体,将垃圾焚烧灰中的重金属成分固化在玻璃体内,从而达到固体危险废弃物-垃圾焚烧灰的无害化、无毒化处理。
具体的,如图1所示,本发明包括电站燃煤锅炉系统和旋风筒燃烧器系统;所述的电站燃煤锅炉系统包括燃煤锅炉的炉膛11,以及设置在炉膛11上的高温烟气喷口10;所述的旋风筒燃烧器系统包括旋风筒燃烧器本体5、垃圾焚烧灰入口1、油枪2、煤粉一次风入口3、二次风入口4、落渣口6、粒化水槽7、捕渣屏8、连接烟道9。
所述的旋风筒燃烧器本体5顶部设置有垃圾灰入口1与油枪2,往下在两侧依此设置有煤粉一次风入口3、二次风入口4。
所述的垃圾焚烧灰采用输灰管道由垃圾焚烧灰入口1投送入旋风筒燃烧器本体5内。一次风携带煤粉从煤粉一次风入口3由切向进入旋风筒燃烧器本体5,形成一股高速旋转气流,裹挟垃圾焚烧灰进行剧烈燃烧,其作用是使燃烧器本体5内部温度维持在一定的水平,在旋风筒燃烧器内壁上形成一层渣膜,垃圾焚烧灰在高温环境中迅速熔融,形成流动的渣液。
达到完全燃烧所需的二次风从二次风口4以切线方式送入旋风筒燃烧器本体5内,二次风进口4可根据需要采用部分喷口送入富氧空气使旋风筒燃烧器内氧浓度大大提高,提升环境温度,利于熔渣。
连接旋风筒燃烧器本体5与连接烟道9的接口处布置有捕渣屏8,捕集烟气中的液滴掉入落渣口6,燃烧后的烟气由连接烟道9送入燃煤锅炉的炉膛11。形成的渣液由落渣口6掉入粒化水槽7中通过粒化水急速冷却形成玻璃体。
本发明一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理方法,包括,
1)一次风携带煤粉从煤粉一次风入口3中由切向进入旋风筒燃烧器本体5,形成旋转的高速气流,通过油枪点燃在旋风筒燃烧器本体5内部剧烈燃烧,形成1400℃以上高温环境;
2)将垃圾焚烧灰从垃圾焚烧灰入口1导入旋风筒燃烧器本体5,由一次风形成的高速气流裹挟,在高温环境下熔融,形成渣液;
步骤1)和2)使得燃煤与垃圾焚烧灰混和进入旋风筒燃烧器,通过旋风筒燃烧器1400℃以上的高温使垃圾焚烧灰熔融形成渣液并 从旋风筒燃烧器底部流渣口流出。通过粒化水槽将垃圾焚烧灰在旋风筒燃烧器中高温熔融后产生的高温渣液迅速冷却形成玻璃体颗粒,有效将垃圾焚烧灰中的重金属成分固定,大幅降低重金属成分的浸出度,降低浸出毒性,同时旋风筒燃烧器的1400℃以上的高温可以确保垃圾焚烧灰中的二噁英等剧毒有机污染物被完全无害化分解掉。
3)高温烟气经过捕渣屏8、连接烟道9进入燃煤锅炉炉膛11,高温烟气在经过捕渣屏8时烟气中渣液颗粒被捕集下来落入落渣口;在旋风筒燃烧器系统与电站燃煤锅炉的连接处布设有捕渣屏,带有熔渣液滴的高温烟气通过捕渣屏时,熔渣液滴黏附在捕渣屏上并形成绝热层,最终在绝热层表面汇集掉落至旋风筒燃烧器底部形成渣池并从流渣口处流出。
烟气在燃煤锅炉炉膛11内辅助燃烧后通过大型电站燃煤锅炉的烟气净化设备将烟气净化,排入大气;利用现有燃煤电站锅炉对旋风筒燃烧器产生的高温烟气进行热量回收,并依托大型电站燃煤锅炉的烟气处理设备对高温烟气中的各类污染物进行有效脱除,使烟气达到超净排放标准。
4)渣液由落渣口6掉入粒化水槽7,经过粒化水急速降温迅速粒化为颗粒状玻璃体;在旋风筒燃烧器下部设置落渣口、粒化水
槽,
当燃煤及垃圾焚烧飞灰在燃烧筒燃烧器内熔融成渣液后在底部聚集
并经落渣口流出燃烧器落入粒化水槽,高温渣液在粒化水槽内骤冷凝
固形成固体渣块,迅速冷却的过程中渣块内部应力迅速增大导致渣块
破碎形成玻璃体渣粒。
本发明是一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理系统,通过将垃圾焚烧灰在旋风筒燃烧器中高温熔融后迅速冷却形 成玻璃体颗粒,有效将垃圾焚烧灰中的重金属成分固定,大幅降低重金属成分的浸出度,同时旋风筒燃烧器的1400℃以上的高温可以确保垃圾焚烧灰中的二噁英等剧毒有机污染物被完全无害化分解掉,然后利用现有电站燃煤锅炉对旋风筒燃烧器产生的高温烟气进行热量回收和后续的烟气处理,依托大型电站燃煤锅炉的烟气处理设备,不需要建立单独的垃圾焚烧灰烟气处理设备,节省了投资,具有极大的经济效益和社会效益,不仅能够提高热量利用率,而且不会对环境产生二次污染,保证了垃圾焚烧灰的完全无害化、无毒化处理,有效解决了当前垃圾焚烧电厂垃圾焚烧灰处理难题,保障了城市的生化垃圾处理能力,消除了固体危险废弃物对周围环境以及人体的危害,具有极大的社会安全效益。
Claims (9)
- 一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理系统,其特征在于,包括电站燃煤锅炉系统和旋风筒燃烧器系统;所述的电站燃煤锅炉系统包括炉膛(11),以及设置在炉膛(11)炉顶的高温烟气喷口(10);所述的旋风筒燃烧器系统包括旋风筒燃烧器本体(5)、垃圾焚烧灰入口(1)、油枪(2)、煤粉一次风入口(3)、落渣口(6)、粒化水槽(7)、捕渣屏(8)和连接烟道(9),旋风筒燃烧器本体(5)的输入端设置垃圾焚烧灰入口(1)和油枪(2),输入端两侧位置沿切线方向分别设置若干煤粉一次风入口(3),输出端底部设置有落渣口(6),输出端经连接烟道(9)与高温烟气喷口(10)连通;落渣口(6)下方连通设置有粒化水槽(7);旋风筒燃烧器本体(5)与连接烟道(9)结合部位呈倾斜设置,连接烟道(9)出口高于旋风筒燃烧器本体(5)的烟气出口;捕渣屏(8)设置在旋风筒燃烧器本体(5)与连接烟道(9)结合部位。
- 根据权利要求1所述的一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理系统,其特征在于,所述的旋风筒燃烧器系统还包括若干二次风入口(4);所述的二次风入口(4)沿切线方向分别设置旋风筒燃烧器本体(5)的输入端两侧,且位于煤粉一次风入口(3)下游。
- 根据权利要求1所述的一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理系统,其特征在于,旋风筒燃烧器本体(5)呈竖直设置,旋风筒燃烧器本体(5)底部和连接烟道(9)的结合部呈U型或V型设置,旋风筒燃烧器本体(5)输出端底部位于U型或V型 的最低点。
- 根据权利要求1所述的一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理系统,其特征在于,所述的垃圾焚烧灰入口(1)的输入端连接输灰管道。
- 根据权利要求1所述的一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理系统,其特征在于,所述的煤粉一次风入口(3)的输入端接入一次风和煤粉。
- 根据权利要求1所述的一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理系统,其特征在于,所述的二次风进口(4)的部分喷口接入富氧空气。
- 一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理方法,其特征在于,采用如权利要求1-6任意一项所述的一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理系统,包括如下步骤,1)一次风携带煤粉从煤粉一次风入口(3)中由切向进入旋风筒燃烧器本体(5),形成旋转的高速气流,通过油枪(2)点燃在旋风筒燃烧器本体(5)内部剧烈燃烧,形成1400℃以上高温环境;2)将垃圾焚烧灰从垃圾焚烧灰入口(1)导入旋风筒燃烧器本体(5),由一次风形成的高速气流裹挟,在高温环境下熔融,形成渣液;3)高温烟气经过捕渣屏(8)和连接烟道(9)进入燃煤锅炉炉膛(11),高温烟气在经过捕渣屏(8)时烟气中渣液颗粒被捕集下来落入落渣口(6),高温烟气在燃煤锅炉的炉膛(11)内辅助燃烧后通过大型电站燃煤锅炉的烟气净化设备将烟气净化,排入大气;4)渣液由落渣口(6)掉入粒化水槽(7),经过粒化水急速降温迅速粒化为颗粒状玻璃体。
- 根据权利要求7所述的一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理方法,其特征在于,达到完全燃烧所需的二次风从二次风口(4)以切线方式送入旋风筒燃烧器本体(5)内。
- 根据权利要求8所述的一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理方法,其特征在于,富氧空气从二次风进口(4)的部分喷口送入使旋风筒燃烧器内提高氧浓度,提升环境温度,用于熔渣。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011326252.5 | 2020-11-23 | ||
CN202011326252.5A CN112325292A (zh) | 2020-11-23 | 2020-11-23 | 一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理系统和方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022105355A1 true WO2022105355A1 (zh) | 2022-05-27 |
Family
ID=74321140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/115635 WO2022105355A1 (zh) | 2020-11-23 | 2021-08-31 | 一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理系统和方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112325292A (zh) |
WO (1) | WO2022105355A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115493150A (zh) * | 2022-09-15 | 2022-12-20 | 西安西热锅炉环保工程有限公司 | 一种基于燃煤电厂煤粉锅炉处置城市废弃物的系统及方法 |
CN115493149A (zh) * | 2022-09-15 | 2022-12-20 | 西安西热锅炉环保工程有限公司 | 基于燃煤电厂煤粉锅炉及制粉处置废弃物的系统和方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112325292A (zh) * | 2020-11-23 | 2021-02-05 | 西安热工研究院有限公司 | 一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理系统和方法 |
CN114713592B (zh) * | 2022-03-31 | 2023-06-27 | 天津华能杨柳青热电有限责任公司 | 一种利用垃圾焚烧电厂废弃灰渣制取矿物棉的装置和方法 |
CN115143476A (zh) * | 2022-06-30 | 2022-10-04 | 西安西热锅炉环保工程有限公司 | 一种焚烧垃圾的绝热燃烧双排渣锅炉及其工作方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5022329A (en) * | 1989-09-12 | 1991-06-11 | The Babcock & Wilcox Company | Cyclone furnace for hazardous waste incineration and ash vitrification |
US5052312A (en) * | 1989-09-12 | 1991-10-01 | The Babcock & Wilcox Company | Cyclone furnace for hazardous waste incineration and ash vitrification |
CN1632376A (zh) * | 2004-12-30 | 2005-06-29 | 哈尔滨工业大学 | 垃圾焚烧飞灰的旋风炉高温熔融处理方法 |
CN202328277U (zh) * | 2011-11-08 | 2012-07-11 | 东南大学 | 飞灰熔融的复合式旋风炉燃烧装置 |
CN108278617A (zh) * | 2018-03-06 | 2018-07-13 | 上海发电设备成套设计研究院有限责任公司 | 城市垃圾旋风燃烧系统及其耦合燃煤电站发电系统及方法 |
CN109579014A (zh) * | 2018-12-29 | 2019-04-05 | 义马环保电力有限公司 | 城市垃圾处理系统及方法 |
CN112325292A (zh) * | 2020-11-23 | 2021-02-05 | 西安热工研究院有限公司 | 一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理系统和方法 |
-
2020
- 2020-11-23 CN CN202011326252.5A patent/CN112325292A/zh active Pending
-
2021
- 2021-08-31 WO PCT/CN2021/115635 patent/WO2022105355A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5022329A (en) * | 1989-09-12 | 1991-06-11 | The Babcock & Wilcox Company | Cyclone furnace for hazardous waste incineration and ash vitrification |
US5052312A (en) * | 1989-09-12 | 1991-10-01 | The Babcock & Wilcox Company | Cyclone furnace for hazardous waste incineration and ash vitrification |
CN1632376A (zh) * | 2004-12-30 | 2005-06-29 | 哈尔滨工业大学 | 垃圾焚烧飞灰的旋风炉高温熔融处理方法 |
CN202328277U (zh) * | 2011-11-08 | 2012-07-11 | 东南大学 | 飞灰熔融的复合式旋风炉燃烧装置 |
CN108278617A (zh) * | 2018-03-06 | 2018-07-13 | 上海发电设备成套设计研究院有限责任公司 | 城市垃圾旋风燃烧系统及其耦合燃煤电站发电系统及方法 |
CN109579014A (zh) * | 2018-12-29 | 2019-04-05 | 义马环保电力有限公司 | 城市垃圾处理系统及方法 |
CN112325292A (zh) * | 2020-11-23 | 2021-02-05 | 西安热工研究院有限公司 | 一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理系统和方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115493150A (zh) * | 2022-09-15 | 2022-12-20 | 西安西热锅炉环保工程有限公司 | 一种基于燃煤电厂煤粉锅炉处置城市废弃物的系统及方法 |
CN115493149A (zh) * | 2022-09-15 | 2022-12-20 | 西安西热锅炉环保工程有限公司 | 基于燃煤电厂煤粉锅炉及制粉处置废弃物的系统和方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112325292A (zh) | 2021-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022105355A1 (zh) | 一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理系统和方法 | |
CN211247720U (zh) | 等离子体熔融玻璃化的装置和垃圾焚烧飞灰处理系统 | |
CN101797572B (zh) | 等离子体处理垃圾焚烧飞灰的方法 | |
CN204735529U (zh) | 一种基于等离子体熔融的飞灰无害化处置系统 | |
CN113182311B (zh) | 基于中温热解与等离子高温熔融的危废处理系统 | |
CN101564731B (zh) | 一种垃圾焚烧飞灰无害化处理装置 | |
WO2022082889A1 (zh) | 新型危险废物燃烧在线耦合等离子体熔融的一体化系统 | |
CN100526716C (zh) | 等离子医疗垃圾焚烧方法 | |
CN202382255U (zh) | 含盐废液焚烧装置 | |
CN107363072B (zh) | 废物的熔池熔炼方法 | |
CN201916909U (zh) | 一种处理危险垃圾的热等离子体装置 | |
CN109140461A (zh) | 危废高温熔融微晶净化装置及尾气净化方法 | |
CN205473605U (zh) | 一种有机危险废物等离子体熔融气化处理系统 | |
CN104807341A (zh) | 一种电炉烟气净化并同时利用余热的系统与工艺 | |
CN113310056A (zh) | 危险废物焚烧处理系统及方法 | |
CN112414132B (zh) | 一种垃圾焚烧飞灰资源化处理方法及系统 | |
CN113441536B (zh) | 一种飞灰处理系统和飞灰处理方法 | |
CN113503543A (zh) | 一种垃圾飞灰协同垃圾渗滤液的在线处置系统及其工艺 | |
CN114420336B (zh) | 一种等离子体高温热解熔融处理放射性废物的系统及方法 | |
CN213930935U (zh) | 一种基于大型燃煤电站固态排渣锅炉的垃圾焚烧灰处理系统 | |
CN215745447U (zh) | 一种分布式飞灰高温熔融玻璃化利用的系统 | |
CN112555850B (zh) | 利用液态高炉渣余热对垃圾焚烧飞灰熔融处理系统 | |
CN112355033B (zh) | 一种热等离子体炬高温熔融系统 | |
CN211232880U (zh) | 一种高、低热值危险废弃物协同焚烧熔融无害化处理系统 | |
CN111076180A (zh) | 一种高低温变气速废弃物焚烧系统及其方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21893506 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21893506 Country of ref document: EP Kind code of ref document: A1 |