RU2077409C1 - Устройство для непрерывной разливки заготовок - Google Patents

Устройство для непрерывной разливки заготовок Download PDF

Info

Publication number
RU2077409C1
RU2077409C1 RU94031258A RU94031258A RU2077409C1 RU 2077409 C1 RU2077409 C1 RU 2077409C1 RU 94031258 A RU94031258 A RU 94031258A RU 94031258 A RU94031258 A RU 94031258A RU 2077409 C1 RU2077409 C1 RU 2077409C1
Authority
RU
Russia
Prior art keywords
glass
mold
metal
angle
holes
Prior art date
Application number
RU94031258A
Other languages
English (en)
Other versions
RU94031258A (ru
Inventor
В.В. Стулов
В.И. Одиноков
Original Assignee
Институт машиноведения и металлургии Дальневосточного отделения РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт машиноведения и металлургии Дальневосточного отделения РАН filed Critical Институт машиноведения и металлургии Дальневосточного отделения РАН
Priority to RU94031258A priority Critical patent/RU2077409C1/ru
Publication of RU94031258A publication Critical patent/RU94031258A/ru
Application granted granted Critical
Publication of RU2077409C1 publication Critical patent/RU2077409C1/ru

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

Изобретение направлено на создание высокопроизводительного процесса получения непрерывно-литых заготовок. Это обеспечивается выполнением поверхности выходных отверстий стакана по закону y = 0,5 Хm (m = 2,3,4). Дополнительно к этому, угол установки оси выходного отверстия стакана к поверхности наклонной грани "β" и угол наклона оси вниз к горизонтали "α" равны β = 2-10° и α = 5-10° , причем выходные отверстия стакана расположены параллельно наклонной грани под углом γ к поверхности. Для улучшения перемешивания металла внутри стакана его донная часть выполнена сферической с радиусом R = (1,5-6,0)b при расстоянии между внутренними кромками щелевых отверстий в донной части стакана С = (1-10)b , где b - ширина выходного отверстия стакана. 2 з.п. ф-лы, 5 ил.

Description

Изобретение относится к металлургии, в частности к процессам непрерывной разливки металла в водоохлаждаемый кристаллизатор.
Прототипом заявляемого изобретения является устройство для непрерывной разливки плоских слитков [1] содержащее промежуточный ковш, кристаллизатор с широкими и узкими гранями и глуходонный погружной разливочный стакан с эксцентрично расположенными плоскими вертикальными выходными отверстиями для выпуска жидкого металла, причем параметры выходных отверстий, диаметры стакана, длина широкой и узкой грани связаны между собой установленными зависимостями.
Недостаток погружного разливочного стакана с эксцентричными плоскими вертикальными выходными отверстиями устройства [1] состоит в том, что не приемлем для разливки металла в кристаллизатор с подвижными вертикальными и наклонными стенками [2] Это обусловлено неравномерным омыванием жидким металлом образующейся корочки с ее оплавлением, что особенно проявляется в нижней части наклонных граней с жидким металлом. Неравномерное омывание корочки приводит к различной ее толщине по высоте кристаллизатора, а соответственно к перегреву стенок кристаллизатора. В связи с этим уменьшается эффективность работы системы водяного охлаждения кристаллизатора по причине местного (локального) перегрева граней кристаллизатора на ограниченном участке.
Кроме этого, использование стакана с эксцентричными выходными отверстиями в устройстве [1] позволяет лишь только выравнять поле скоростей и температур расплава, а также толщины корочки в направлении струи металла. Однако с противоположной стороны стакана в пристеночных слоях стенок температура металла остается неравномерной по причине незначительного перемешивания металла в горизонтальной плоскости по замкнутому контуру. Дополнительно к этому, разливка металла через стакан устройства [1] не позволяет регулировать интенсивность теплообмена и перемешивания при разливке металла через стакан с одними параметрами в кристаллизаторы различных поперечных сечений.
Заявляемое устройство направлено на создание высокопроизводительного процесса получения непрерывно-литых заготовок.
Технический результат, получаемый при осуществлении заявляемого устройства, заключается в повышении:
1) эффективности работы системы водяного охлаждения кристаллизатора;
2) надежности работы кристаллизатора;
3) производительности процесса получения непрерывно-литой заготовки;
Заявляемое устройство характеризуется следующими существенными признаками.
Ограничительные признаки: кристаллизатор с широкими и узкими стенками; стенки кристаллизатора выполнены с возможностью перемещения, две из них вертикальные, а две расположены под углом "γ" к вертикали; промежуточный ковш с глуходонным погружным разливочным стаканом с двумя сквозными отверстиями, расположенными напротив друг друга в нижней части боковой поверхности стакана.
Отличительные признаки: оси отверстий для выхода металла параллельны наклонным стенкам и составляют с горизонтальной плоскостью угол α = 5÷10°; внутренняя форма отверстий спрофилирована по закону
y 0,5xm,
где m=2,3,4; разливочный стакан установлен в кристаллизаторе с поворотом вокруг собственной оси на угол β = 2-10°; донная часть стакана выполнена сферической с радиусом R=(1,5-6,0)b при расстоянии между внутренними кромками отверстий в донной части стакана С=(1-10)b, где b ширина выходного отверстия стакана.
Причинно-следственная связь между совокупностью существенных признаков заявляемого устройства и достигаемым техническим результатом заключается в следующем.
Выполнение внутренней профилированной формы отверстия по закону y=0,5xm (m=2,3,4) приводит к перераспределению скоростей потока на ней, и соответственно к изменению направления истечения металла из отверстий. Увеличение кривизны поверхности кривой АВС на фиг.2 больше искривляет поток. При изменении профиля кривой АВС на фиг.2 из положения 1 в 3 значение показателя степени уменьшается (m1=4, m2=3, m3=2).
Для придания параллельного течения с наклонными гранями кристаллизатора разливочный стакан установлен в кристаллизаторе с поворотом вокруг собственной оси на угол β = 2-10° на фиг.4. При профилировании поверхности отверстий стакана по закону y=0,5xm поочередно со значением m=2;3;4 разливочный стакан устанавливается в кристаллизаторе с поворотом вокруг собственной оси соответственно на угол β = 10;5 и 2°..
Угол поворота стакана вокруг собственной оси β = 2-10° зависит от длины наклонной стенки, наружного диаметра стакана, вида разливаемого металла и для каждого конкретного случая устанавливается индивидуально. Уменьшение угла поворота β < 2° приводит к смещению потока металла, вытекающего из отверстия стакана, к противоположной по отношению к отверстию наклонной стенки кристаллизатора. В результате ухудшается перемешивание металла в горизонтальной плоскости и возрастает неравномерность распределения скоростей и температур расплава в пристеночных слоях стенок. Увеличение угла поворота β > 10° приводит к размыванию корочки на ограниченном участке, что увеличивает степень ее разнотолщинности по периметру кристаллизатора. Кроме этого, при угле β > 10° ухудшается перемешивание металла в области вертикальных стенок за счет потери энергии потока на трение с корочкой в районе наклонных граней.
При истечении металла из отверстий стакана движение расплава в кристаллизаторе происходит по спирали на фиг.4 с образованием двух вихрей и перемешиванием его в горизонтальной плоскости кристаллизатора.
Необходимость выполнения осей выходных отверстий стакана, параллельными наклонным отверстиям кристаллизатора на фиг.1 и 3, вытекает из следующих соображений.
Равномерное омывание корочки и создание ее одинаковой толщины по поверхности наклонной стенки выравнивает температуру металла и тепловой поток, передаваемый корочкой к стенке и охлаждающей воде, что следует из формулы
Figure 00000002

где λ коэффициент теплопроводности металла, d толщина корочки, t1 и t2 температура корочки соответственно со стороны жидкого металла и обращенная к стенке кристаллизатора.
Кроме этого, увеличение поверхности контакта струи с омываемой корочкой и скорости металла, приводит к увеличению поверхности теплообмена и коэффициента теплоотдачи расплава, что в итоге увеличивает количество передаваемого тепла стенке кристаллизатора и следует из формулы
Q = αмF(tм- t1), (2)
где αм = f(ω) коэффициент теплоотдачи жидкого металла, зависящий от скорости ω металла; F=la поверхность контакта струи с корочкой, l и а - соответственно длина поверхности контакта струи и ее фронт (ширина струи); tм и t1 соответственно температура жидкого металла и поверхности корочки.
Увеличение поверхности контакта струи с корочкой в продольном и поперечном направлениях наклонной стенки в итоге увеличивает эффективность работы системы охлаждения кристаллизатора за счет равномерного ее прогрева на большей поверхности. Увеличение эффективности системы охлаждения заключается в увеличении количества тепла, отводимого охлаждающей водой при постоянном ее расходе, что следует из формул
Q Cm(tвых tвх), (3)
Q = αвF(tс- tв), (4)
где αв соответственно удельная теплоемкость воды и коэффициент ее теплоотдачи; m массовый секундный расход воды; tвых и tвх - соответственно температура воды на выходе и входе в водоохлаждаемый канал; tc и tв соответственно температура внутренней поверхности водоохлаждаемого канала и воды в данном сечении; F = πdl площадь поверхности теплообмена одного канала; d внутренний диаметр канала, l длина канала.
Дополнительно к этому, равномерное омывание корочки металла и создание ее одинаковой толщины облегчает разрушение закристаллизовавшегося металла в процессе перемещения стенки и исключает забивание проходного сечения кристаллизатора обломки корочки различного размера, в результате повышается надежность и производительность работы заявляемого устройства.
При разливке металла в кристаллизатор с подвижными вертикальными и наклонными стенками значение угла наклона оси выходного отверстия под углом "α" к горизонтальной плоскости стакана на фиг.5 должно быть минимальным и составляет α = 5-10°. Это обусловлено тем, что глубина ванны жидкого металла в таком кристаллизаторе ограничена и заканчивается на наклонных стенках в области обжатия заготовки. При угле наклона оси выходного отверстия меньше 5o (α < 5°) возможно скачивание шлака с мениска жидкого металла, что особенно проявляется при недостаточной глубине погружения стакана в расплав. Увеличение угла наклона оси α > 10° приводит к соударению струи жидкого металла с заготовкой в зоне обжатия и создает область повышенного давления в месте взаимодействия струи и, как результат, образование колебательного движения металла (волны на поверхности мениска), увеличивающее окисление металла.
Изготовление донной части стакана сферической с радиусом R (1,5-6,0)b на фиг.1, где b ширина выходного отверстия, улучшает перемешивание металла внутри стакана с формированием струй. При R<1,5b возможно размывание внешних кромок отверстий в процессе заливки металла в стакан. Кроме этого, ухудшается перемешивание металла в донной части стакана и нарушаются необходимые условия формирования струи на внутренней поверхности за счет стесненности пространства стакана. При R>6,0b увеличиваются габариты стакана, а соответственно его вес. Кроме этого, увеличиваются потери на трение потенциальной энергии уровня металла в стакане, преобразуемой в кинетическую энергию истекающих струй.
Расстояние между внутренними кромками отверстий в донной части стакана составляет С=(1-10)b на фиг.1. Уменьшение расстояния С<b ухудшает истечение металла через отверстие стакана за счет нарушения сплошности струи. Кроме этого, в процессе работы стакана возможно размыкание внутренних кромок металлом с последующим их смыканием (отсутствует расстояние между кромками). По этой причине поток металла в недостаточной степени формируется на внутренней поверхности стакана, уменьшается кинетическая энергия истекающего металла, то есть его скорость. Дополнительно к этому, уменьшается вращательный момент струи, что в итоге ухудшает перемешивание расплава в горизонтальной плоскости кристаллизатора.
Увеличение расстояния между кромками отверстий С>10b увеличивает габариты стакана и его вес.
На фиг. 1 приведен внешний вид разливочного стакана заявляемого устройства в вертикальной плоскости; на фиг.2 сечение стакана в горизонтальной плоскости в районе выходных отверстий; на фиг.3 внешний вид заявляемого устройства в вертикальной плоскости; на фиг.4 расположение оси выходного отверстия стакана с поверхностью наклонной стенки и картина течения разливаемого металла в горизонтальной плоскости кристаллизатора; на фиг.5 - расположение оси выходного отверстия стакана к горизонтали.
На фиг.1 параметры h и h' соответственно обозначают действительную высоту выходного отверстия стакана и ее проекцию в вертикальной плоскости; dв и dн соответственно внутренний и наружный диаметры стакана.
Заявляемое устройство на фиг.3 и 4 состоит из промежуточного ковша 1 со стопорным механизмом, погружного глуходонного разливочного стакана 2 с двумя сквозными выходными отверстиями, кристаллизатора 3 с подвижными вертикальными 4 и наклонными стенками 5.
Предварительно перед разливкой металла нижняя часть кристаллизатора перекрывается специальным приспособлением (затравкой), предотвращающим выливание из него расплава. Стакан устанавливается в кристаллизаторе 3 с поворотом вокруг собственной оси на угол β = 2-10° и на необходимой глубине.
Работа устройства на фиг.3 и 4 заключается в следующем.
При помощи стопорного механизма жидкий металл из промежуточного ковша 1 через стакан 2 поступает в кристаллизатор 3 и заполняет его. По мере погружения выходных отверстий стакана в расплав включается привод наклонных 5 и вертикальных 4 стенок кристаллизатора. При этом стенки 4 совершают возвратно-поступательное движение, а наклонные стенки 5 сложное вращательное движение с обжатием металла и его выталкиванием на вертикальный калибровочный участок.
Промышленные испытания погружных разливочных стаканов спроектированной по закону y= 0,5xm формой отверстия и изготовленных из кварцевого стекла в процессе разливки через них различных марок металла на металлургическом комбинате "Азовсталь" показали: в пристеночных слоях кристаллизатора выравнивается поле скоростей и температур расплава, вымываются неметаллические включения из корковой зоны, повышается КПД кристаллизатора (увеличивается на 8-10% количество отводимого тепла), снижается балл по трещинам, перпендикулярным широким стенкам [3]
Источники информации
1. А. с. СССР N 1816530, кл. B 22 D 11/10. Устройство для непрерывной разливки плоских слитков. В.В.Стулов, Г.А.Николаев, О.В.Носоченко и др. Опубл. бюл. N 19, 1993.
2. Патент РФ N 2041011, кл. B 22 D 11/04. Устройство для непрерывного литья заготовок. В.И.Одиноков. Опубл. 09.08.95, бюл. N 22.
3. Совершенствование процесса непрерывной разливки стали за счет измерения способа подвода жидкого металла в кристаллизатор. Отчет ДГУ. Днепропетровск, 1991, Гос. рег. N 01.9.00017725, 52 с.

Claims (1)

1 1. Устройство для непрерывной разливки заготовок, содержащее кристаллизатор с широкими и узкими стенками, выполненными с возможностью перемещения, одна пара из которых расположена вертикально, а другая под углом к вертикали, промежуточный ковш с погружным разливочным глуходонным стаканом, в нижней части боковой поверхности которого выполнены напротив друг друга сквозные отверстия для выпуска металла, отличающееся тем, что оси отверстия для выпуска металла параллельны наклонным стенкам кристаллизатора и составляют с его горизонтальной плоскостью угол 5 10<198>, причем внутренняя форма отверстий спрофилирована по закону6 Y 0,5x<M^>m<D>,1 где m 2, 3, 4.2 2. Устройство по п. 1, отличающееся тем, что разливочный стакан установлен в кристаллизаторе с поворотом вокруг собственной оси на угол 2 10<198>.2 3. Устройство по п. 1, отличающееся тем, что донная часть стакана выполнена сферической радиусом R (1,5 6,0)b, а расстояние между внутренними кромками отверстий в донной части стакана С (1 10)b, где b ширина выходного отверстия стакана.
RU94031258A 1994-08-25 1994-08-25 Устройство для непрерывной разливки заготовок RU2077409C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94031258A RU2077409C1 (ru) 1994-08-25 1994-08-25 Устройство для непрерывной разливки заготовок

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94031258A RU2077409C1 (ru) 1994-08-25 1994-08-25 Устройство для непрерывной разливки заготовок

Publications (2)

Publication Number Publication Date
RU94031258A RU94031258A (ru) 1996-06-27
RU2077409C1 true RU2077409C1 (ru) 1997-04-20

Family

ID=20160014

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94031258A RU2077409C1 (ru) 1994-08-25 1994-08-25 Устройство для непрерывной разливки заготовок

Country Status (1)

Country Link
RU (1) RU2077409C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2741876C1 (ru) * 2020-07-19 2021-01-29 Акционерное общество «ЕВРАЗ Нижнетагильский металлургический комбинат» (АО «ЕВРАЗ НТМК») Способ непрерывного литья слябовых заготовок

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Патент РФ N 2041011, кл. B 22 D 11/04, 1995. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2741876C1 (ru) * 2020-07-19 2021-01-29 Акционерное общество «ЕВРАЗ Нижнетагильский металлургический комбинат» (АО «ЕВРАЗ НТМК») Способ непрерывного литья слябовых заготовок

Also Published As

Publication number Publication date
RU94031258A (ru) 1996-06-27

Similar Documents

Publication Publication Date Title
Thomas et al. Mathematical modeling of fluid flow in continuous casting
EP0925132A1 (en) Submerged nozzle for the continuous casting of thin slabs
Thomas Fluid flow in the mold
KR19990081822A (ko) 서브머즈드 입구 노즐
AU721266B2 (en) Strip casting apparatus
US6012508A (en) Strip casting
RU2240892C2 (ru) Охлаждаемый жидкостью кристаллизатор
RU2077409C1 (ru) Устройство для непрерывной разливки заготовок
JP3515762B2 (ja) 連続鋳造用浸漬ノズル並びに連続鋳造方法
JPH0852547A (ja) 浸漬鋳造管
JP2017177178A (ja) 連続鋳造用タンディッシュ、及びそのタンディッシュを用いた連続鋳造方法
Sowa et al. Numerical simulation of the molten steel flow in the tundish of CSC machine
CN201186346Y (zh) 一种用于双水口浇注宽板坯工艺的浸入式水口
ZA200604177B (en) Electromagnetic agitation method for continuous casting of metal products having an elongate section
RU2308353C2 (ru) Глуходонный погружной стакан
JP6668568B2 (ja) 連続鋳造用タンディッシュ、及びそのタンディッシュを用いた連続鋳造方法
RU2315681C2 (ru) Способ непрерывной разливки прямоугольных стальных слитков и устройство для его осуществления
SU588059A1 (ru) Стакан дл бокового подвода металла
KR101140608B1 (ko) 용강의 초기 비산 제어형 침지 노즐 및 그를 이용한 초기 비산 제어 방법
US5232046A (en) Strand casting apparatus and method
RU2152843C1 (ru) Гильзовый кристаллизатор для высокоскоростного непрерывного литья
JP6668567B2 (ja) 連続鋳造用タンディッシュ、及びそのタンディッシュを用いた連続鋳造方法
JP2001179403A (ja) 冷却長辺壁と短辺壁を備えた漏斗状先細鋳込み範囲を有する金属連続鋳造モールド
RU2381086C1 (ru) Способ непрерывной разливки прямоугольных стальных слитков
JP2017177177A (ja) 連続鋳造用タンディッシュ、及びそのタンディッシュを用いた連続鋳造方法