RU2072373C1 - Способ получения полиимидного антифрикционного материала - Google Patents

Способ получения полиимидного антифрикционного материала Download PDF

Info

Publication number
RU2072373C1
RU2072373C1 RU93053012A RU93053012A RU2072373C1 RU 2072373 C1 RU2072373 C1 RU 2072373C1 RU 93053012 A RU93053012 A RU 93053012A RU 93053012 A RU93053012 A RU 93053012A RU 2072373 C1 RU2072373 C1 RU 2072373C1
Authority
RU
Russia
Prior art keywords
binder
tetracarboxylic acid
filler
water
composition
Prior art date
Application number
RU93053012A
Other languages
English (en)
Other versions
RU93053012A (ru
Inventor
Л.Б. Шумаева
Ю.Е. Дорошенко
З.Ф. Сайкина
Л.Л. Сусова
А.С. Москвин
Original Assignee
Российский химико-технологический университет им.Д.И.Менделеева
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российский химико-технологический университет им.Д.И.Менделеева filed Critical Российский химико-технологический университет им.Д.И.Менделеева
Priority to RU93053012A priority Critical patent/RU2072373C1/ru
Publication of RU93053012A publication Critical patent/RU93053012A/ru
Application granted granted Critical
Publication of RU2072373C1 publication Critical patent/RU2072373C1/ru

Links

Images

Landscapes

  • Lubricants (AREA)

Abstract

Изобретение: для изготовления деталей узлов трения, эксплуатируемых в жестких условиях: при температурах выше 300oС, а также при нагрузках выше 20 МПа в условиях сухого трения. Сущность изобретения: приготавливают связующее смешением следующих компонентов: активное азотсодержащее соединение, избыток диангидрида дифенилсульфон-3,3,4,4-тетракарбоновой кислоты или бензофенон-3,3,4,4-тетракарбоновой кислоты или дифенилоксид-3,3,4,4-тетракарбоновой кислоты, 4,4-диаминодифенилметан или 4,4-диаминодифенилоксид и аминобензойная кислота в среде низкокипящих алифатических спиртов или в воде или в смеси спирта с водой (при содержании спирта не менее 15 % от объема растворителя), а в качестве наполнителя используется смесь углеродного наполнителя и модифицирующей добавки (в качестве которой используют оксиды металлов, выбранные из группы: Y2O3, Al2O3, TiO2, TiO, CoO, CdO, CeO, Cr2O3, MgO в количестве 1- 3 % от веса композиции), причем перед смешением с наполнителем связующее подвергают предварительной сушке при 100 - 120oС и термообработке при 180 - 200o в течение 1 ч, прессование пресс-композиции проводят при 380 - 390oС. 3 табл. 5 з.п. ф-лы.

Description

Изобретение относится к конструкционных материалов, служащих для изготовления деталей узлов трения, эксплуатируемых в жестких условиях: при температурах выше 300oС, а также при нагрузках выше 20 МПа в условиях сухого трения, в частности, к способу получения полиимидного антифрикционного материала.
Известен способ получения композиции, включающей олигомерное связующее на основе полиаминофенилена и малеинового ангидрида и углеродный наполнитель (графит) и окись кадмия [1] Способ включает приготовление раствора связующего, выделение порошка связующего и смешение его с твердыми смазками (графит и окись кадмия), последующее прессование в присутствии свободно-радикальных инициаторов при 280 310oС и удельном давлении 100 МПа. Композиция, полученная по этому способу, характеризуется высокой теплостойкостью (до 350oС), однако материалы на ее основе имеют недостаточно высокие показатели физико-механические характеристик, которые ухудшаются в процессе длительной эксплуатации.
Известен также способ получения конструкционного материала, содержащего в качестве связующего ароматический полиамид и наполнитель: графит, дисульфид молибдена, фторопласт, окись иттрия [2] Способ включает следующие операции: смешение компонентов и прессование при 340oС и 50 МПа. Материал на основе этой композиции имеет нагрузочный интервал работоспособности до 40 МПа, однако обладает теплостойкостью в пределах 260oС [3] что не позволяет его использовать в условиях повышенных тепловых нагрузок, в области температур выше 300oС.
Наиболее близким по технической сущности является способ получения композиции для конструкционных материалов [4] включающий приготовление олигоамидокислоты, пропитку наполнителя смесью олигоамидокислоты с мочевиной, подсушивание пропитанного наполнителя, продолжительную термообработку пресс-композиции и ее последующее измельчение и прессование при 340oС и 90 МПа.
Такой способ достаточно сложен при налаживании массового производства изделий из этого материала. Кроме того, для получения полиимидного связующего используются высокополярные апротонные растворители (типа диметилформамид, диметилацетамид и др.). Высокая температура кипения апротонных растворителей и их склонность к образованию комплексов вызывают значительные затруднения при удалении этих растворителей в процессе переработки композиций. Более того, комплексообразование может осложнять протекание процесса имидизации, что приводит к снижению термоокислительной стабильности полимера [5, 6] Остатки такого растворителя, являющегося пластификатором полимерной матрицы, снижают термостойкость материала [7]
Задача изобретения упрощение процесса получения полиимидного антифрикционного материала и улучшение экологической обстановки (по сравнению с использованием диметилформамида (ДМФА) в качестве растворителя при получении связующего).
Способ реализуют следующим образом.
Предварительно получают композицию, приготавливая связующее взаимодействием избытка диангидрида ароматической тетракарбоновой кислоты, ароматического диамина, аминобензойной кислоты и активного азотсодержащего соединения в растворителях типа: низкокипящие алифатические спирты (этанол, изопропанол), вода, смесь низкокипящих алифатических спиртов с водой (содержание спирта не менее 15 от объема растворителя). Первый компонент растворяется при кипении растворителя, далее раствор охлаждается, и добавляются все остальные компоненты.
Полученный раствор смеси компонентов связующего подвергают сушке до ее порошкообразного состояния при 100 120oC. Затем порошок связующего подвергают термообработке в течение 1 ч при 180 200oС. Далее порошок олигоимида (с концевыми амидными группами, полученными в результате термообработки) следующего строения
Figure 00000001

Figure 00000002

смешивают с наполнителем и перерабатывают в изделия методом горячего прессования при 380 390oС, давлении 50 90 МПа и выдержке при этих условиях в течение 1 1,5 мин на 1 мм толщины изделия. Такая совокупность признаков в литературе не известна.
Пример А.
В обогреваемый аппарат, снабженный мешалкой, загрузили 1,8 кг (7 моль) диангидрида бензофенон-3,3', 4,4'-тетракарбоновой кислоты и 10 л изопропилового спирта. Нагревали раствор при постоянном перемешивании до полного растворения компонента. Охлаждали раствор до 25oС и, не прекращая перемешивания в течение 15 мин добавляли 9,52 кг (6 моль) 4,4'-диаминодифенилметана. Затем вводили 2,2 кг (2 моль) n-аминобензойной кислоты и перемешивали еще 2 ч. К полученному таким способом раствору олигоамидокислоты добавляли 2,88 кг (4 моль) мочевины и перемешивали еще 1 ч. Раствор концентрировали путем удаления растворителя (улавливали до (75 80)% от начального количества).
Массу подвергали сушке в сушильном шкафу до порошкообразного состояния при 100oС, термообрабатывали при 190oС в течение 1 ч. Порошок связующего подвергали измельчению в шаровой мельнице до размера частиц 0,5 мм.
В смесильную машину (с Z-образными лопастями реверсивного типа) дозировали порошки: 4,0 кг (40 мас.) олигоимида, 5,8 кг (58 мас.) графита марки МГ (ТУ-20-86-76) и 2,0 кг (2 мас.) окиси иттрия (РЭТУ 1072-63). Указанные компоненты перемешивали в течение 30 мин, после чего перерабатывали в изделие методом горячего прессования при 380oС, давлении 90 МПа и выдержке при этих условиях в течение 1 мин на 1 мм толщины изделия.
Пример Б
В обогреваемый аппарат, снабженный мешалкой, загружали 1,6 кг (7 моль) диангидрида дифенилоксид 3,3',4,4'-тетракарбоновой кислоты и 15 л дистиллированной воды. Нагревали раствор при постоянном перемешивания до полного растворения компонента. Охлаждали раствор до 25oС и не прекращая перемешивания в течение 15 мин добавляли 10,0 кг (6 моль) 4,4'-диаминодифенилоксида. Затем вводили 2,2 кг (2 моль) м-аминобензойной кислоты и перемешивали еще 2 ч. К полученному таким способом раствору олигоамидокислоты добавляли 2,5 л 25 -ного водного раствора аммиака и перемешивали еще 1 ч. Раствор концентрировали путем удаления растворителя (до (75 80)% от начального количества.
Массу подвергали сушке в сушильном шкафу до порошкообразного состояния при 120oС, термообрабатывали при 200oС в течение 1 ч. Порошок связующего подвергали измельчению в шаровой мельнице до размера частиц 0,5 мм.
В смесильную машину (с Z-образными лопастями реверсивного типа) дозировали порошки: 4,0 кг (40 мас.) олигоимида, 5,7 кг (57 мас.) мелочи коксовой (ГОСТ 11255 75) и 3,0 кг (3 мас.) окиси кобальта (МРТУ 6 09 - 714 63). Указанные компоненты перемешивали (в течение 30 мин), после чего перерабатывали в изделия методом горячего прессования при 390oС, давлении 80 МПа и выдержке при этих условиях в течение 1,5 мин на 1 мм толщины изделия.
Пример В.
В обогреваемый аппарат, снабженный мешалкой загружали 2,4 кг (7 моль) диангидрида дифенилсульфон-3,3', 4,4'-тетракарбоновой кислоты и 12 л смеси этилового спирта с водой (в соотношении 1:3). Нагревали раствор при постоянном перемешивании до полного растворения компонента. Охлаждали раствор при постоянном перемешивании до 25oС и не прекращая перемешивания в течение 15 мин добавляли 9,52 кг (6 моль) 4,4'-диаминодифенилметана. Затем вводили 2,2 кг (2 моль) а-аминобензойной кислоты и перемешивали еще 2 ч. К полученному таким способом раствору олигоамидокислоты добавляли 2,88 кг (4 моль) мочевины и перемешивали еще 1 ч. Раствор концентрировали путем удаления растворителя (до (75 80) от начального количества).
Массу подвергали сушке в сушильном шкафу до порошкообразного состояния при 110oС, термообрабатывали при 180oС в течение 1 ч. Порошок связующего подвергали измельчению в шаровой мельнице до размера частиц 0,5 мм.
В смесильную машину (с Z-образными лопастями реверсивного типа) дозировали порошки: 4,0 кг (40 мас.) олигоимида, 5,9 кг (59 мас.) орешка коксового (ГОСТ 8935-77) и 1,0 кг (1 мас.) оксида алюминия (ТУ 6 09 973 76). Указанные компоненты перемешивали (в течение 30 мин), после чего перерабатывали в изделия методом горячего прессования при 380oС, давлении 90 МПа и выдержке при этих условиях в течение 1 мин на 1 мм толщины изделия.
Были синтезированы олигоимиды, отличающиеся строением элементарного звена и используемым растворителем. Результаты синтезов представлены в табл. 1.
По предложенному способу были получены материалы, отличающиеся углеродным наполнителем, модифицирующей добавкой и олигоимидом, представленные в табл. 2.
Представленные в табл. 2 материалы подвергались испытаниям на определение показателей физико-механических характеристик, теплостойкости и трения.
Скорость изнашивания, коэффициенты трения и предельно-допустимые нагрузки материалов, полученных по предложенному и по известному способу, определяли на машине трения МИ 1М по схеме "вал-вкладыш" при скорости скольжения 0,5 м/с по контрпаре из стали 40Х13 с чистотой обработки поверхности 0,16 и твердостью НRC 48 в условиях сухого трения в воздушной среде.
Термофрикционные свойства определяли на машине трения вращательного движения МИ 1М, оборудованной нагревательной камерой. Температуру в камере поднимали внешним обогревом со скоростью 5 o/мин. Испытания проводили при скорости скольжения 0,5 м/с по стали 40Х13 в условиях сухого трения в воздушной среде при нагрузке 0,5 МПа.
Предельно-допустимые нагрузки, твердость, теплостойкость и термофрикционные свойства материалов, полученных по предложенному и по известному способу, представлены в табл. 3.
Приведенные в табл. 3 данные показывают, что полученный по предложенному способу антифрикционный полиимидный материал обладает более высокой предельно-допустимой нагрузкой в условиях сухого трения, более низким коэффициентом трения и скоростью изнашивания.
Упрощение технологии получения антифрикционного материала позволяет сократить технологический процесс за счет того, что термообработке подвергают не всю пресс-композицию, а только связующее, которое предварительно переводят в порошкообразное состояние. Продолжительность термообработки сокращается с 5-ти ч при 200 300oС до одного часа при 180 200oС. Это приводит к повышению производительности, экономии энергии и трудозатрат. Осуществление синтеза связующего в низкокипящих растворителях существенно улучшает экологическую обстановку (по сравнению с использованием токсичного ДМФА в качестве растворителя при получении связующего).

Claims (6)

1. Способ получения полиимидного антифрикционного материала, включающий предварительное приготовление связующего путем взаимодействия избытка диангидрида ароматической тетракарбоновой кислоты, ароматического диамина, аминобензойной кислоты и активного азотсодержащего соединения, смешение связующего с порошком углеродного наполнителя и последующее горячее прессование композиции, отличающийся тем, что перед смешением с наполнителем связующее переводят в порошкообразное состояние путем сушки и подвергают предварительной термообработке, причем в качестве диангидрида ароматической тетракарбоновой кислоты используют диангидрид бензофенон-3,3', 4,4' - тетракарбоновой кислоты, или диангидрид дифенилоксид-3,3', 4,4'-тетракарбоновой кислоты, или диангидрид дифенилсульфон -3,3', 4,4'-тетракарбоновой кислоты, в качестве ароматического диамина - 4,4'-диаминодифенилметан или 4,4'-диаминодифенилоксид, в качестве активного азотсодержащего соединения используют мочевину или водный раствор аммиака, синтез связующего проводят в среде низкокипящего алифатического спирта или в воде, или в смеси низкокипящего алифатического спирта с водой, а в качестве наполнителя используют смесь углеродного наполнителя и модифицирующей добавки с микротвердостью 6850 6900 МПа и дисперсностью менее 2 мкм.
2. Способ по п.1, отличающийся тем, что в качестве азотсодержащего соединения используют 5 40 мас.-ный водный раствор аммиака.
3. Способ по п.1, отличающийся тем, что содержание низкокипящего алифатического спирта в смеси с водой должно быть не менее 15 мас. от количества растворителя.
4. Способ по п.1, отличающийся тем, что термообработку связующего проводят при 180 200oС в течение часа.
5. Способ по п. 1, отличающийся тем, что прессование пресс-композиции проводят при 380 390oС.
6. Способ по п.1, отличающийся тем, что в качестве модифицирующей добавки используют оксиды, выбранные из группы: Y2O3, Al2O3, TiO2, TiO, CoO, CdO, CeO, Cr2O3, MgO в количестве 1 3% от массы композиции.
RU93053012A 1993-11-24 1993-11-24 Способ получения полиимидного антифрикционного материала RU2072373C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU93053012A RU2072373C1 (ru) 1993-11-24 1993-11-24 Способ получения полиимидного антифрикционного материала

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU93053012A RU2072373C1 (ru) 1993-11-24 1993-11-24 Способ получения полиимидного антифрикционного материала

Publications (2)

Publication Number Publication Date
RU93053012A RU93053012A (ru) 1996-08-10
RU2072373C1 true RU2072373C1 (ru) 1997-01-27

Family

ID=20149569

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93053012A RU2072373C1 (ru) 1993-11-24 1993-11-24 Способ получения полиимидного антифрикционного материала

Country Status (1)

Country Link
RU (1) RU2072373C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Авторское свидетельство СССР N 523917, кл. C 08L 79/08, опубл.1976 г. 2. Авторское сивдетельство СССР N 235880, кл. C 08J 5/16, опубл.1988 г. 3. Соколов Л.Б., Герасимов В.Д., Савина В.М., Беляков ВН. Термостойкие ароматические полиамиды, М.: 1975, с.193. 4. Авторское свидетельство СССР N 1675307, кл. C 08L 79/08, C 08K 3/04, опубл.1991 г. 5. Справочник по композиционным материалам. Под ред. Дж.Любика, М., 1988, с.127. 6. Углеродные волокна и композиты. Под ред. Эрик Фитцер, М., Мир, 1988, с.142-167. 7. Белый В.А., Свирденок А.И., Петраковец М., Савкин В.Г. Трение и износ материалов на основе полимеров. Минск: Наука и техника, 1976. 8. Сайкина З.Ф. Автореферат канд. дис. Термостойкие полиароиленхиназалоны, полиимидоксиды и материалы на их основе. М.н, 1986 г. *

Similar Documents

Publication Publication Date Title
EP2886583B1 (de) Polyimidpulver mit hoher thermooxidativer Beständigkeit
EP2531564B1 (en) A process for the preparation of carbon black pellets
US4016140A (en) Amide-imide copolymer moldings and method of preparation
EP0677080B1 (de) Verfahren zur herstellung von polymerisaten der asparaginsäure
DE69026297T2 (de) Polyamid-Polyimid- und Polybenzoxazol-Polyimid-Polymere
RU2072373C1 (ru) Способ получения полиимидного антифрикционного материала
DE4310503A1 (de) Verfahren zur Herstellung von Polyasparaginsäure und ihre Salze
US4225686A (en) Blends of copolyimides with copolyamideimides
JPS57200453A (en) Preparation of polyimide powder
DE2441020C3 (de) Verfahren zur Herstellung von viskositätsstabilen Polyamidimid-Lösungen
US4018736A (en) Manufacture of polyester-imide powders
US3817927A (en) Production of soluble polyimides
CN115260491A (zh) 一种耐碱解型聚酰亚胺工程塑料及其制备方法
CN112375315B (zh) 基于芳氰基树脂的高温自润滑复合材料及其制备方法
DE2366399C2 (de) Polyamid-Polyimid-Copolymere und deren Verwendung zur Herstellung von industriellen Erzeugnissen
JPH0569765B2 (ru)
US20230109481A1 (en) Aromatic polyimide powder for molded body, molded body using same, method for improving mechanical strength of molded body
JPH0611798B2 (ja) ポリイミド成型品の製造方法
EP0171707A2 (de) Verfahren zur Herstellung von Polyimidestern der Trimellitsäure
GB1590464A (en) Aqueous polyimide dispersions
EP0388394B1 (de) Verfahren zur Herstellung von schwer entflammbaren, thermostabilen Homopolyimiden
RU2016017C1 (ru) Композиция для изготовления конструкционного материала
CN111118237A (zh) 一种耐光型加脂剂中间体
GB1558616A (en) Aqueous wire enamel dispersions and their manufacture
Ahmedova et al. Electroconductive polymer materials on the basis of oligo4-aminophenol