RU2066835C1 - Способ магнитно-импульсной раздачи проводящих оболочек и устройство для его реализации - Google Patents
Способ магнитно-импульсной раздачи проводящих оболочек и устройство для его реализации Download PDFInfo
- Publication number
- RU2066835C1 RU2066835C1 RU94001000A RU94001000A RU2066835C1 RU 2066835 C1 RU2066835 C1 RU 2066835C1 RU 94001000 A RU94001000 A RU 94001000A RU 94001000 A RU94001000 A RU 94001000A RU 2066835 C1 RU2066835 C1 RU 2066835C1
- Authority
- RU
- Russia
- Prior art keywords
- shell
- magnetic field
- magnetic
- induction
- time
- Prior art date
Links
Landscapes
- Magnetic Treatment Devices (AREA)
Abstract
Использование: магнитно-импульсная обработка материалов, в частности, при утилизации (расснаряжении) боеприпасов. Сущность изобретения: на наружной поверхности оболочки создают магнитное поле, сначала возрастающее до значений магнитной индукции B ≥ Bо, а затем - быстро исчезающее за время tс. Устройство содержит соленоид (индуктор) 4 с полостью 3 для размещения металлического корпуса 1 с взрывчатым веществом 2. Соленоид соединен с конденсаторной батареей 5 через коммутатор 6 и быстродействующий (например, взрывной) размыкатель 7. 2 с.п. ф-лы, 1 ил.
Description
Изобретение относится к технике магнитно-импульсной обработки материалов и может быть использовано при утилизации (расснаряжении) боеприпасов.
Известны способ расснаряжения боеприпасов посредством вымывания из корпуса взрывчатого вещества струей воды и установка для его осуществления, включающая насос, устройство повышения давления жидкости, головку с форсункой.
Недостатком такого способа является его малая производительность, экологическая вредность, невозможность использования извлеченного из корпуса взрывчатого вещества без дополнительных мероприятий по его выделению из образующейся суспензии.
Известны способ магнитно-импульсной раздачи проводящих оболочек и установка для его осуществления, являющиеся наиболее близкими к предлагаемому изобретению по технической сущности и принимаемые за прототип [1] Способ заключается в создании на внутренней поверхности оболочки импульсного магнитного поля со временем нарастания магнитной индукции до максимального значения, меньшим времени диффузии магнитного поля через оболочку. Следствием этого является расширение (раздача) оболочки. Установка включает последовательно электрически включенные конденсаторную батарею, коммутатор электрической цепи и индуктор для размещения во внутренней полости оболочки.
Недостатком известных способа и установки для его реализации является невозможность их использования при расснаряжении боеприпасов со взрывчатым веществом в связи с наличием в полости корпуса наполнителя, исключающего возможность размещения в нем индуктора и создание импульсного магнитного поля на внутренней поверхности корпуса.
Задачей предлагаемого изобретения является расширение функциональных возможностей способа магнитно-импульсной раздачи проводящих оболочек посредством обеспечения его применимости для оболочек с непроводящим наполнителем и конкретным использованием для извлечения взрывчатого вещества из металлических корпусов боеприпасов при их утилизации.
Задача решается за счет того, что в известном способе магнитно-импульсной раздачи проводящих оболочек, включающем создание переменного магнитного поля на поверхности оболочки, магнитное поле создают на наружной поверхности оболочки, при этом сначала обеспечивают его медленное возрастание до значений магнитной индукции B≥Bо, а затем быстрое исчезновение за время tс, при этом минимально необходимое значение индукции магнитного поля зависит от μo, Y, rо, δ и составляет
где μo 1,256•10-6 Гн/м магнитная постоянная, Y - предел текучести материала оболочки, rо внутренний радиус оболочки, δ толщина оболочки,
τ=μo•σ•ro•δ/2 характерное время изменения магнитного поля внутри оболочки, σ проводимость материала оболочки.
где μo 1,256•10-6 Гн/м магнитная постоянная, Y - предел текучести материала оболочки, rо внутренний радиус оболочки, δ толщина оболочки,
τ=μo•σ•ro•δ/2 характерное время изменения магнитного поля внутри оболочки, σ проводимость материала оболочки.
Предлагаемый способ реализуется за счет того, что в известной установке для магнитно-импульсной раздачи проводящих оболочек, содержащей последовательно электрически соединенные конденсаторную батарею, коммутатор электрической цепи и индуктор для взаимодействия с оболочкой, в ней индуктор выполнен с обеспечением охвата оболочки, а в электрическую цепь дополнительно включен быстродействующий размыкатель.
Создание магнитного поля на наружной поверхности при обеспечении медленного его возрастания до максимального значения магнитной индукции B за время tн необходимо для исключения скин-эффектов. При времени нарастания tн, существенно большем времени tд диффузии, магнитное поле проникает (диффундирует) в глубину оболочки и в ее полость. Конкретное значение tн определяется по известным правилам электродинамики [2]
При значительно более быстром (в предельном случае мгновенном) исчезновении внешнего магнитного поля начинается процесс, обратный диффузии (выход магнитного поля из корпуса и его полости). При этом в корпусе возникают индукционные токи , взаимодействие которых с магнитным полем приводит к появлению радиальных растягивающих электромагнитных сил.
При значительно более быстром (в предельном случае мгновенном) исчезновении внешнего магнитного поля начинается процесс, обратный диффузии (выход магнитного поля из корпуса и его полости). При этом в корпусе возникают индукционные токи , взаимодействие которых с магнитным полем приводит к появлению радиальных растягивающих электромагнитных сил.
Возникающие в материале оболочки электромагнитные силы F зависят одновременно от значений индукции магнитного поля B и плотности индукционных токов j. В свою очередь, плотность тока j зависит от степени неравномерности пространственного распределения индукции магнитного поля . Степень же неравномерности распределения магнитной индукции по толщине оболочки находится в обратной зависимости от времени tс исчезновения магнитного поля на наружной поверхности. Например, при очень медленном спаде магнитное поле внутри корпуса за счет процесса обратной диффузии будет уменьшаться почти синхронно с наружным полем. В такой ситуации индукционные токи будут малы, и возникающие в материале корпуса электромагнитные силы не смогут преодолеть сопротивление внутренних прочностных сил и обеспечить радиальное деформирование оболочки даже при очень большом значении индукции B предварительно созданного в корпусе и в его полости магнитного поля. Напротив, при быстром исчезновении магнитного поля на наружной поверхности, магнитное поле не успевает "выходить" из оболочки, и индукционные токи велики. При достаточно большом значении индукции B предварительно созданного магнитного поля электромагнитные силы смогут преодолеть прочностное сопротивление оболочки и обеспечить ее радиальное деформирование.
Минимально необходимое для обеспечения раздачи оболочки корпуса значение индукции магнитного поля Bо определяется в зависимости от геометрических параметров оболочки, физико-механических и электрофизических характеристик ее материала и времени спада из решения уравнения движения несжимаемой жесткопластической оболочки [3] совместно с уравнениями Максвелла. Необходимость обеспечения магнитной индукции в соответствии с соотношением (1) подтверждается также результатом численного решения одномерной нестационарной задачи магнитной динамики сжимаемой упругопластической среды. Условие B Bо соответствует условию "страгивания" оболочки. При B ≥ Bо оболочка деформируется в радиальном направлении, отрываясь от наполнителя, а получаемая деформация тем больше, чем больше превышение созданного магнитного поля над минимально необходимым.
Сопоставительный анализ с прототипом позволяет сделать вывод, что заявляемые способ магнитно-импульсной раздачи оболочек и устройство для его осуществления соответствуют требованию новизны. Заявляемый способ отличается от известного технического решения местом приложения магнитно-импульсной нагрузки, параметрами режимов и обеспечивает возможность раздачи оболочек с непроводящим наполнителем, например корпусов расснаряжаемых боеприпасов. Заявляемое устройство отличается от известного формой выполнения индуктора, обеспечивающего охват проводящей оболочки, и включением в электрическую цепь дополнительного элемента быстродействующего размыкателя.
Известны технические решения в области магнитно-импульсной обработки материалов и ряде смежных областей, использующие создание магнитного поля на наружной поверхности оболочки с индуктором, охватывающим оболочку. Однако предлагаемые в найденном техническом решении параметры режимов (время нарастания и спада магнитного поля, значение индукции B магнитного поля), а также включение в электрическую цепь взаимодействующего с оболочкой индуктора быстродействующего размыкателя в своей совокупности не обнаружены ни в одном из известных технических решений. Это указывает на соблюдение требования изобретательского уровня предлагаемого технического решения.
На чертеже показана схема реализации предлагаемого способа магнитно-импульсной раздачи проводящих оболочек применительно к расснаряжению боеприпасов с металлическим корпусом и заполняющим его взрывчатым веществом.
Боеприпас с металлическим корпусом 1 и заполняющим его непроводящим наполнителем взрывчатым веществом 2 размещается в устройстве, создающем внешнее по отношению к боеприпасу аксиальное магнитное поле, например в полости 3 соосного с корпусом 1 соленоида 4, соединенного с источником электрической энергии конденсаторной батареей 5 через коммутатор (замыкатель) 6 и быстродействующий (например, взрывной) размыкатель 7.
Для определенности в качестве примера рассмотрим расснаряжение корпуса основного детонатора взрывательного устройства, представляющего собой стальную оболочку (σ 11,3•106 1/(Ом•м), Y 0,2 ГПа) с внутренним диаметром около 20 мм и толщиной стенки около 1 мм, заполненную взрывчатым веществом.
Характерное время изменения магнитного поля внутри такой оболочки составляет t 70 мкс. Минимально необходимое для раздачи данной оболочки значение Bо индукции магнитного поля зависит от обеспечиваемого быстродействующим размыкателем 7 времени tс исчезновения магнитного поля на наружной поверхности оболочки. Рассмотренный в качестве примера взрывной размыкатель обеспечивает значение tс ≈50 мкс. В этом случае соотношения (1) (2) определяют необходимое значение индукции предварительно создаваемого в оболочке и в ее полости магнитного поля как B ≥ Bо 8,6 Тл.
Предлагаемое устройство работает следующим образом. В исходном состоянии коммутатор 6 разомкнут, а быстродействующий размыкатель 7 замкнут. После зарядки конденсаторной батареи 5 до необходимого напряжения замыкается коммутатор 6. Конденсаторная батарея 5 разряжается на соленоид 4, и в полости соленоида 4 создается внешнее по отношению к металлическому корпусу 1 аксиальное магнитное поле. Параметры электрической цепи выбираются по известным правилам [2] исходя из необходимости обеспечения времени нарастания разрядного тока (а следовательно, и индукции магнитного поля в полости соленоида) до максимального значения, существенно большего времени диффузии магнитного поля в корпус оболочки, например tн>10•τ=700 мкс. Магнитное поле проникает в корпус 1 и его внутреннюю полость и достигает своего максимального по времени значения B ≥ Bо 8,6 Тл. При таком относительно медленном нарастании внешнего магнитного поля обеспечивается близкое к однородному распределение магнитного поля по толщине и в полости корпуса 1. После достижения внешним магнитным полем максимального по времени значения B размыкается взрывной размыкатель 7, обеспечивая резкое (в течение десятков микросекунд, tс <$E approx> 50 мкс) уменьшение до нуля разрядного тока в цепи и индукции магнитного поля в полости 3 соленоида 3 и на наружной поверхности корпуса 1. Возникающие после исчезновения внешнего магнитного поля пондеромоторные силы достаточны для деформирования и раз рушения корпуса 1 при сохранении неразрушенным заряда взрывчатого вещества 2. При этом получаемый в итоге результат зависит от степени превышения значения индукции B создаваемого магнитного поля над минимально необходимым значением Bо. Согласно проведенным оценкам, при B 1,15Bо рассматриваемая в качестве примера оболочка отрывается от снаряжения и получает примерно 20% радиальную деформацию. При B 1,4Bо оболочка получит радиальное расширение более чем в 1,5 раза, что повлечет за собой не только отрыв ее от снаряжения, но и разрушение корпуса [3]
Использование предлагаемого способа позволит повысить безопасность расснаряжения боеприпасов, особенно малого калибра и содержащих высокочувствительные взрывчатые вещества (средства инициирования), повысить производительность расснаряжения и упростить технологию этого процесса.
Использование предлагаемого способа позволит повысить безопасность расснаряжения боеприпасов, особенно малого калибра и содержащих высокочувствительные взрывчатые вещества (средства инициирования), повысить производительность расснаряжения и упростить технологию этого процесса.
Claims (2)
1. Способ магнитно-импульсной раздачи проводящих оболочек, включающий создание внешнего переменного магнитного поля на поверхности оболочки с последующим ее движением и деформированием, отличающийся тем, что внешнее магнитное поле создают на наружной поверхности, при этом сначала обеспечивают его медленное возрастание до значений магнитной индукции B ≥ B0, а затем быстрое исчезновение за время tс, причем минимальное необходимое значение магнитной индукции B0 выбирают в зависимости от времени исчезновения tс, предела текучести Y и проводимости σ материала оболочки, ее внутреннего радиуса r0 и толщины d
где
t=μo•σ•ro•δ/2
μo=1,256•10-6 Гн/м магнитная постоянная.
где
t=μo•σ•ro•δ/2
μo=1,256•10-6 Гн/м магнитная постоянная.
2. Устройство для магнитно-импульсной раздачи проводящих оболочек, включающее последовательно электрически соединенные конденсаторную батарею, коммутатор электрической цепи и индуктор для взаимодействия с оболочкой, отличающееся тем, что в нем индуктор выполнен охватывающим оболочку, а в электрическую цепь дополнительно включен быстродействующий размыкатель.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU94001000A RU2066835C1 (ru) | 1994-01-12 | 1994-01-12 | Способ магнитно-импульсной раздачи проводящих оболочек и устройство для его реализации |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU94001000A RU2066835C1 (ru) | 1994-01-12 | 1994-01-12 | Способ магнитно-импульсной раздачи проводящих оболочек и устройство для его реализации |
Publications (2)
Publication Number | Publication Date |
---|---|
RU94001000A RU94001000A (ru) | 1995-11-27 |
RU2066835C1 true RU2066835C1 (ru) | 1996-09-20 |
Family
ID=20151400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU94001000A RU2066835C1 (ru) | 1994-01-12 | 1994-01-12 | Способ магнитно-импульсной раздачи проводящих оболочек и устройство для его реализации |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2066835C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2591869C1 (ru) * | 2015-06-17 | 2016-07-20 | Общество с ограниченной ответственностью Проектно-строительная компания "ХимПромПроект" | Способ демонтажа пуль патронов стрелкового оружия |
CN111468585A (zh) * | 2020-04-13 | 2020-07-31 | 三峡大学 | 基于仿真的分离轴向电磁力的管件胀形分析及控制方法 |
-
1994
- 1994-01-12 RU RU94001000A patent/RU2066835C1/ru active
Non-Patent Citations (1)
Title |
---|
Белый И.В., Фертик С.М., Хименко Л.Т. Справочник по магнитно-импульсной обработке металлов. Харьков, Высшая школа, 1977, с. 7-8, 49-52, 101-103. * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2591869C1 (ru) * | 2015-06-17 | 2016-07-20 | Общество с ограниченной ответственностью Проектно-строительная компания "ХимПромПроект" | Способ демонтажа пуль патронов стрелкового оружия |
CN111468585A (zh) * | 2020-04-13 | 2020-07-31 | 三峡大学 | 基于仿真的分离轴向电磁力的管件胀形分析及控制方法 |
CN111468585B (zh) * | 2020-04-13 | 2021-08-24 | 三峡大学 | 基于仿真的分离轴向电磁力的管件胀形分析及控制方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3109369A (en) | Disposal of encased explosives | |
EP0088516A1 (en) | An electrically activated detonator assembly | |
AU2004277317B2 (en) | Assembly of an electrodynamic fractionating unit | |
RU2066835C1 (ru) | Способ магнитно-импульсной раздачи проводящих оболочек и устройство для его реализации | |
DE1299614B (de) | Verfahren zur Herstellung von Diamanten aus einer anderen Form von Kohlenstoff | |
PL168256B1 (pl) | Sposób i urzadzenie do redukcji powstawania organizmów wodnych PL | |
US3291046A (en) | Electrically actuated explosive device | |
DE3024554A1 (de) | Anordnung zur kontaktlosen uebertragung elektrischer energie auf flugkoerper bei deren abschuss | |
CA2076017A1 (en) | Firing arrangements | |
US2932110A (en) | Fish lure | |
US3707913A (en) | Pulsed-energy detonation system for electro explosive devices | |
Grigoriev et al. | Electro-discharge compaction of WC–Co and W–Ni–Fe–Co composite materials | |
US4771692A (en) | Electric igniter assembly | |
DE34951C (de) | Elektrischer Geschofszünder | |
EP0142780B1 (de) | Elektrisches Zündmittel | |
CN110132077A (zh) | 一种大尺寸药柱爆炸丝起爆方法及装置 | |
DE3321034A1 (de) | Elektromagnetische kanone | |
RU94001000A (ru) | Способ магнитно-импульсной раздачи проводящих оболочек и устройство для его реализации | |
RU2754313C1 (ru) | Устройство индукционного нагрева | |
US3211092A (en) | Antimine weapon | |
US3596598A (en) | Self-destroying blasting cap | |
FR2341836A1 (fr) | Artifice electropyrotechnique de securite vis-a-vis des decharges electrostatiques | |
RU2148237C1 (ru) | Способ электромагнитной защиты объектов | |
RU2764318C1 (ru) | Способ воздействия на цель и устройство для его осуществления | |
DE10012305A1 (de) | Strahlen-Waffe |