RU2062303C1 - Способ нанесения покрытия на лопатки тепловой турбомашины - Google Patents

Способ нанесения покрытия на лопатки тепловой турбомашины Download PDF

Info

Publication number
RU2062303C1
RU2062303C1 SU914895114A SU4895114A RU2062303C1 RU 2062303 C1 RU2062303 C1 RU 2062303C1 SU 914895114 A SU914895114 A SU 914895114A SU 4895114 A SU4895114 A SU 4895114A RU 2062303 C1 RU2062303 C1 RU 2062303C1
Authority
RU
Russia
Prior art keywords
blades
protective layer
coating
turbomachine
protective
Prior art date
Application number
SU914895114A
Other languages
English (en)
Inventor
Коромцаи Тибор
Колеф Сейко
Original Assignee
Асеа Браун Бовери АГ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Асеа Браун Бовери АГ filed Critical Асеа Браун Бовери АГ
Application granted granted Critical
Publication of RU2062303C1 publication Critical patent/RU2062303C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/002Cleaning of turbomachines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/067Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Abstract

Изобретение относится к области защиты от коррозии и может быть использовано в газотурбинных процессах. Сущность изобретения - нанесение покрытия на лопатки тепловой турбомашины с помощью высокоскоростного способа газопламенной металлизации, при котором защитный слой напыляется на поверхность основного материала со скоростью частиц по меньшей мере 300 м/с. Затем лопатки подвергаются последующей обработке, которая в зависимости от потребности служит для уменьшения шероховатости поверхности и/или для нанесения верхнего слоя. 6 ил.

Description

Данное изобретение касается способа нанесения покрытия на лопатки согласно ограничительной части пункта 1 формулы изобретения.
Например, в открытом газотурбинном процессе всасываемый компрессором воздух содержит также водяной пар, а также твердые и газообразные примеси. Последние оказываются негативно с возникновением эрозии, загрязнения и коррозии. Находящиеся на лопатках отложения имеют частично значительную концентрацию оказывающих воздействие составных частей, таких как NaCl и KCl. Соли ведут наряду с высокотемпературной коррозией в лопаточной решетке турбины также к усиленной сквозной коррозии в зоне компрессора и к комплексному химическому снижению прочности материала лопаток. При высокой влажности воздуха во входной зоне компрессора происходит концентрация водяного пара, которая приводит к усиленному коррозийному разрушению передних рядов лопаток. Чтобы предотвратить это, лопатки вращающихся тепловых машин многократно покрывают защитными покрытиями. Это используется как для паро- и газотурбинных лопаток, так и для компрессорных лопаток. Таким образом, речь идет, прежде всего, о том, чтобы повысить сопротивление коррозии и окисляющего воздействия, а также против эрозии и изнашивания (износа). Если лопатки, несмотря на поверхностную обработку, все равно имеют повреждение, степень которого могла бы снизить эксплуатационную надежность, то лопатки демонтируют, заменяют новыми или восстанавливают и опять монтируют. Эти демонтаж и монтаж связаны с относительно высокими расходами и затратами времени. Затем действительное состояние лопаточной решетки становится видимым только после относительно долгого времени, т. е. после предварительной очистки, отсюда решение, может ли быть выполнено восстановление лопаток или нет, или уже необходимо, принимается только много позднее.
Недостатками этого метода являются большие потери времени, более высокие производственные расходы на установку, более высокие расходы при ревизиях и неопределенность в вопросе восстановления лопаток. Отсюда перешли к поиску путей и средств, чтобы выйти из этого затруднительного положения.
В этой связи известен способ, согласно которому ротор вместе с лопатками поднимается из статора для восстановления в отдельной установке. Подлежащие покрытию роторы с лопатками должны быть обезжирены, в случае необходимости ранее нанесенные органические покрытия должны быть полностью удалены. Затем подлежащим покрытию участкам придают шероховатость посредством сухой пескоструйной обработки с окисью алюминия, и металлическая поверхность активируется. Зоны, подлежащие покрытию, должны маркироваться с помощью соответствующих материалов. После этого наносятся основные слои, причем они в каждом случае должны обжигаться. Это ведет к длительной процедуре: процесс агломерации или процесс обжигания длится примерно 55 часов и должен проводиться в среднем четыре раза. Этот процесс агломерации или обжигания во время нанесения покрытия состоит из термообработки при температуре 350oC с выдержкой примерно в 10-12 часов. Наряду с этим для проведения отдельных технологических операций должны предусматриваться весьма большие установки со специфическим геометрическим оформлением, следует только представить, что в процессе агломерации ротор с лопатками должен быть охвачен сводом печи.
Задача изобретения заключается в том, чтобы устранить отмеченные трудности. В основу изобретения, описанного в формуле изобретения, положена задача при небольших затратах времени и расходов предложить более рациональный метод для восстановления лопаток. Задачей изобретения является также увеличение срока службы покрытия посредством выбора подходящего способа и защитного слоя.
Существенные преимущества изобретения следует усматривать в том, что ротор с лопатками для первого процесса восстановления не должен сниматься из статора: очистка или удаление защитного слоя может приводиться перед непосредственной остановкой машины, т.е. компрессора, т.е. во время конечной фазы работы. Тем самым достигается равномерный подвод лопаток на обработку, причем достигнутая таким образом эффективность этого процесса очистки, которая обеспечивает наиболее полное удаление имеющегося защитного слоя, делает возможным принятие немедленного решения о восстановлении лопаток. Это решение может быть принято уже после остановки машины и удаления верхней части статора. Если после соответствующего анализа состояния лопаток принимается решение об их восстановлении, то достаточно поднять ротор из опор и поставить его на подмостки, где без помощи специального оборудования могут проводиться технологические операции по восстановлению. Это ведет к низким производственным расходам (расходы на ремонт), что не мешает периодическому проведению этого вида обработки. Таким образом, повышается эксплуатационная надежность установки.
Другое важное преимущество следует усматривать в том, что при применении высокоскоростного способа газопламенной металлизации предварительно обрабатываемые в смонтированном состоянии лопатки получают соответствующий защитный слой на Si- и Al-основе, локально и по мере необходимости, причем этот способ нанесения покрытия может проводиться без термообработки на более длительное время и без помощи специальных дополнительных установок. Это упрощает весь технологический процесс нанесения покрытия, в то время как расходы получаются примерно наполовину ниже, чем в известном способе. Кроме того, срок службы этого вида покрытия намного выше, чем у применяемых для этого в настоящее время так называемых комбинированных слоев. Так как предварительная обработка после напыления защитного слоя имеет большое значение для срока службы покрытия, по мере необходимости могут целенаправленно предприниматься непосредственные корррективы.
Благодаря этому в кратчайшее время при низких расходах на восстановление с помощью одного процесса с высокой согласованностью с окружающей средой получают лопатки очень высокого качества, которое гарантирует эксплуатационную надежность установки в течение длительного промежутка времени.
Предпочтительные и целесообразные усовершенствования соответствующего изобретению решения задачи охарактеризованы в других пунктах формулы изобретения.
Далее изобретение поясняется более подробно с помощью чертежей, где показаны примеры осуществления изобретения. Все не требующиеся для непосредственного понимания изобретения элементы исключены. Направление потока различных сред указано стрелками. Одинаковые элементы на различных фигурах снабжены одинаковыми ссылочными знаками.
На фиг. 1 показана турбоустановка с агрегатом для предварительной обработки; на фиг. 2 вид на фиг. 1 в плоскости 11-11; на фиг. 3 ступень очистки или удаление защитного слоя в колеблющейся эрозионной ванне; на фиг. 4 вид ротора согласно фиг. 3 вдоль плоскости IV-IV; на фиг. 5 способ окончательной очистки с реактивными соплами; на фиг.6 покрытие лопаток с помощью высокоскоростного способа газопламенной металлизации.
На фиг. 1 показана схематически газотурбинная установка 11, состоящая в основном из компрессорной части 11а, камеры сгорания 11в и трубной части 11с. При предварительной обработке лопаток нужно определить, имели ли последние в исходном состоянии покрытие. Независимо от этого происходит первая очистка лопаток перед остановкой машины, т.е. компрессора. Очистка лопаток покрытием состоит предпочтительно в эрозионном удалении его посредством мягкоструйного гранулята. Само собой разумеется, очистка непокрытых лопаток может производиться только с помощью водного растворителя, например трихлорэтилена. Посредством централизованно размещенного трехструйного сопла 1 (см. для этого также фиг. 2), действующего во всасывающем канале компрессора, через определенное время средство для очистки (гранулят мягкоструйный, водный раствор и т.д.) распыляется в потоке воздуха на компрессор. Равномерная и интенсивная подача 12 на лопатки компрессора составляет эффективный процесс очистки при непокрытых лопатках или полное удаление старого защитного слоя с лопаток с покрытием. Процесс очистки многократно повторяется в зависимости от потребности. Так как мягкоструйный гранулят при температурах примерно 300oC сгорает, не возникает трудностей, связанных с удалением отходов. При применении водного раствора можно также принимать во внимание эту точку зрения.
Что касается схемы, многоструйное сопло 1 состоит из шарикового крана 2, подключенного в направлении потока средства очистки к смесительной камере 3 и служащего для регулирования расхода. Давление в этой смесительной камере 3 определяется посредством манометра 7. Вверх по течению от смесительной камеры 3 предусмотрен резервуар 4, в котором запасен, например, гранулят, причем с помощью фильтра и впускного клапана следят за тем, чтобы смесительная камера 3 была обеспечена гомогенным материалом. Необходимое давление в резервуаре 4 устанавливается с помощью воздухоподводящего трубопровода 10, причем редукционный вентиль 8 и главный вентиль 9 в воздухопроводе являются следующими вспомогательными средствами схемы. Посредством соответствующих мероприятий может также обрабатываться лопаточная решетка турбины.
В случае необходимости лопатки подвергаются очистке или удалению защитного слоя. Это происходит, как показано на фиг. 3 и 4, с помощью колеблющейся эрозионной ванны 14. Для этой цели ротор 11а и 11с с лепестками поднимается из статора и ставится на подмостки 13а и 13в таким образом, что определенная часть лопаточной решетки погружается в ванну 14. Посредством генератора колебаний 15 отдельные эрозионные компоненты ванны 14 начинают колебаться, что ведет к удалению остаточного загрязнения или остатков защитного слоя на лопатках. Тем самым основательно могут обрабатываться все виды лопаток ротора газотурбинной установки.
Окончательная очистка согласно фиг. 5 проводится с помощью дроби промышленного стекла для струйной обработки 18. Эта окончательная очистка базируется на эрозионном удалении посредством названного средства, которое может состоять из стекла. Определенная часть лопаточной решетки покрывается специальным кожухом 16, при одновременном отсасывании 19 распыленного средства осуществляется очистка с помощью одного или нескольких реактивных сопел 17.
Другие технологические операции могут предусматриваться в зависимости от потребности:
обдирочное шлифование во всяком случае имеющихся еще коррозионных язв в наиболее нагруженных местах;
дефектоскопия лопаток;
контроль размеров лопаток в случае, если последние подвергались шлифованию;
придание шероховатости поверхности посредством пескоструйной обработки;
перед непосредственным нанесением покрытия рекомендуется нагреть лопатки примерно до 30oС, например с помощью излучателя.
На фиг. 6 показано проведение высокоскоростного процесса газопламенной металлизации. Для этой цели предусматривается доступная сбоку оболочка 16, которая охватывает некоторое количество подготовленных лопаток. С помощью распылителя 20 защитный слой наносится на лопатки, причем сразу является возможным осуществлять вручную управление распылителем 20. Отсасывание 19 обеспечивает удаление избыточного средства из зоны лопаток.
Последующая обработка напыленных лопаток включает, как правило, следующие технологические операции:
для уменьшения шероховатости поверхности применяется легкая шлифовка наждачным полотном и/или струями, например стеклянными шариками;
для защиты основного слоя и для дальнейшего уменьшения шероховатости поверхности может наноситься верхний слой лака с помощью пистолет-распылителя. Этот лак не нуждается в высокотемпературном длительном отжиге (печи не нужны). По крайней мере, для первых рядов компрессора, где при эксплуатации преобладают более низкие температуры, применяется двухкомпонентный лак.
Примером средства для такого наружного слоя является полиуретанреакционный лак на систематической основе.
Относительно качества защитного слоя следует сказать, что общепринятые покрытия компрессоров очень часто имеют низкую эрозионную стойкость. Так как такие гальванические защитные слои действуют только, если они существуют в системе металл-покрытие-электролит, уменьшается защитное действие локально эродированного слоя.
Применяющийся здесь защитный слой на основе алюминия является активным корозионнозащитным слоем, состав которого выглядит предпочтительно следующим образом:
1. Защитный слой состоит из 6-15 мас. Si, остальное алюминий;
2. Другой защитный слой состоит из чистого алюминия;
3. Другой защитный слой состоит из 80 мас. Al, 5-15 мас. Si, остальное Cu, Mn, Mg, Ni.
Химическое строение вышеназванных защитных слоев, а также описанный выше способ нанесения (высокоскоростной способ газопламенной металлизации) определяют малочувствительный к эрозии слой "анод протекторной защиты", который активно защищает от коррозии основной материал. Способ нанесения, который является высокоэнергетическим способом нанесения покрытия, обеспечивает получение хорошо сцепляющихся с основным металлом эрозионностойких защитных слоев, которые без новой специфической для защитного слоя последующей обработки имеют требуемое электрическое соединение с основным материалом.
Предложенные защитные слои могут дополнительно снабжаться верхним слоем. Этот защитный верхний слой может быть, например, черным. Такой защитный верхний слой позволяет легче различить обледенение на лопатках с помощью детекторов льда. Высокоскоростной способ газопламенной металлизации, осуществляющийся со скоростью частиц по меньшей мере 300 м/с, дает оптимальное соединение покрытия с основным материалом лопаток. Даже при более толстых защитных слоях гарантировано, что покрытие не отстанет. Это можно объяснить тем, что при соударении частиц порошка благодаря высокой кинетической энергии возникают внутренние напряжения сжатия в соответственно прежде напыленном слое. Максимальная стойкость к эрозии объясняется еще и тем, что применяемые слои имеют очень высокую твердость. Благодаря предложенному способу получается, что содержание окислов слоя глубже, чем у напыленных в воздухе защитных слоев. Это означает, что слой чище, отчего он не так быстро окисляется, причем окисление происходит, во всяком случае, только на поверхности. Благодаря тому, что защитные слои очень плотны, их пористость ниже 0,5% Разрушение посредством коррозии практически исключено. При испытании в солевом тумане до ДИН 50021 стандартный керамический алюминиевый слой сравнивался с защитным слоем и вышеупомянутым способом. Результаты полностью подтвердили вышеупомянутые высказывания. В испытании на усталость проводилось аналогичное сравнение: выяснилось, что нагрузка до первой трещины усталости в лопатке с покрытием вышеназванного состава и по вышеназванному способу на 20% выше, чем у сравниваемых лопаток. Это означает, что надежность лопаток против усталостного разрушения может быть повышена.
Описанные выше преимущества, а также результаты после нескольких тысяч часов работы компрессора в установке, приближенной к морю, позволили получить повышение срока службы активного защитного слоя на 50% ЫЫЫ2 ЫЫЫ4

Claims (7)

1. Способ нанесения покрытия на лопатки тепловой турбомашины, расположенные в роторе или статоре, включающий подготовку поверхности лопаток после открытия турбомашины и нанесение защитного слоя, отличающийся тем, что перед открытием турбомашины в ее рабочем состоянии проводят очистку с помощью средства, подводимого воздушным потоком, а после подготовки наносят защитный слой газопламенной металлизацией со скоростью напыления не менее 300 л/с.
2. Способ по п.1, отличающийся тем, что в качестве средства, подводимого воздушным потоком, используют органический абразивный материал.
3. Способ по п.1, отличающийся тем, что к качестве средства, подводимого воздушным потоком, используют водный раствор трихлорэтилена.
4. Способ по п.1, отличающийся тем, что подготовку поверхности приводят в вибрационной ванне.
5. Способ по п.1, отличающийся тем, что газопламенной металлизацией наносят защитный свой состава, мас.
Si 6 15
Al Остальное
6. Способ по п.1, отличающийся тем, что газопламенной металлизацией наносят защитный слой алюминия.
7. Способ по п.1, отличающийся тем, что газопламенной металлизацией наносят защитный слой состава, мас.
Al 80
Si 5 15
Сu, и/или Mn, и/или Мо, и/или Ni Остальное
8. Способ по п.1, отличающийся тем, что после газопламенной металлизации проводят механическую обработку покрытия.
9. Способ по пп.1 и 8, отличающийся тем, что после механической обработки наносят слой полиуретанового лака на синтетической основе.
SU914895114A 1990-04-11 1991-04-10 Способ нанесения покрытия на лопатки тепловой турбомашины RU2062303C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH123790 1990-04-11
CH1237/90 1990-04-11

Publications (1)

Publication Number Publication Date
RU2062303C1 true RU2062303C1 (ru) 1996-06-20

Family

ID=4205685

Family Applications (1)

Application Number Title Priority Date Filing Date
SU914895114A RU2062303C1 (ru) 1990-04-11 1991-04-10 Способ нанесения покрытия на лопатки тепловой турбомашины

Country Status (9)

Country Link
EP (1) EP0451512B1 (ru)
JP (1) JP3027214B2 (ru)
CA (1) CA2039944C (ru)
DE (1) DE59100238D1 (ru)
DK (1) DK0451512T3 (ru)
ES (1) ES2044634T3 (ru)
PL (1) PL165873B1 (ru)
RU (1) RU2062303C1 (ru)
UA (1) UA27027A1 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193568A (ja) * 1995-01-13 1996-07-30 Hitachi Ltd 水力機械のランナ及びその製造方法
AT402943B (de) * 1995-10-04 1997-09-25 Engel Gmbh Maschbau Verfahren zur herstellung von verschleiss- und korrosionsgeschützten oberflächen auf plastifizierschnecken für spritzgiessmaschinen
AT403059B (de) * 1995-10-04 1997-11-25 Engel Gmbh Maschbau Verfahren zur herstellung einer beschichtung auf der oberfläche von plastifizierschnecken für spritzgiessmaschinen
DE102004001575A1 (de) 2004-01-10 2005-08-04 Mtu Aero Engines Gmbh Verfahren zur Herstellung von Hohlschaufeln sowie eines Rotors mit Hohlschaufeln
WO2008116757A2 (en) * 2007-03-27 2008-10-02 Alstom Technology Ltd Turbomachine blade with erosion and corrosion protective coating and method of manufacturing the same
US8113787B2 (en) 2007-06-20 2012-02-14 Alstom Technology Ltd. Turbomachine blade with erosion and corrosion protective coating and method of manufacturing
EP2752559A1 (de) * 2013-01-08 2014-07-09 Siemens Aktiengesellschaft Verfahren zur Reinigung eines Rotors einer Gasturbine innerhalb eines Gehäuses
CN110420769B (zh) * 2019-08-02 2020-06-09 柳州联顺戴克雷汽车部件有限公司 一种具有调配功能的防起粒的喷涂设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2709569A (en) * 1948-08-28 1955-05-31 Thompson Prod Inc Impeller member and method of making same
US3010843A (en) * 1958-04-28 1961-11-28 Gen Motors Corp Abradable protective coating for compressor casings
FR2564350B1 (fr) * 1984-05-17 1987-11-20 Snecma Procede de reparation par diffusion

Also Published As

Publication number Publication date
JP3027214B2 (ja) 2000-03-27
UA27027A1 (ru) 2000-02-28
EP0451512A1 (de) 1991-10-16
CA2039944C (en) 2001-01-02
DK0451512T3 (da) 1993-12-27
PL289795A1 (en) 1991-12-02
ES2044634T3 (es) 1994-01-01
PL165873B1 (pl) 1995-02-28
DE59100238D1 (de) 1993-09-09
JPH04225865A (ja) 1992-08-14
EP0451512B1 (de) 1993-08-04
CA2039944A1 (en) 1991-10-12

Similar Documents

Publication Publication Date Title
US8262802B2 (en) Method of removing deposits
CA2030936C (en) Liquid jet removal of plasma sprayed and sintered coatings
EP1694463B1 (en) Process for removing thermal barrier coatings
EP0916445B1 (en) A method of coating a component
EP1236812B1 (en) Method for refurbishing a coating including a thermally grown oxide
EP1944120A2 (en) Weld repair of metallic components
JP2007224920A (ja) タービンエンジン部品の熱遮蔽被覆の局所修理方法
US20020076573A1 (en) Vapor deposition repair of superalloy articles
RU2062303C1 (ru) Способ нанесения покрытия на лопатки тепловой турбомашины
JP2006131997A (ja) ワークピースの修復方法
CN111250368A (zh) 一种航空发动机机匣类零件用聚苯酯封严涂层的制备工艺
EP2104591B1 (en) Process for surface preparation of parts to be coated
Kempster et al. A novel method for refurbishing used hot section gas turbine blades
EP3719166A1 (en) Laser cleaning prior to metallic coating of a substrate
Kempster et al. A Novel Method for Refurbishing Used Hot Section Gas Turbine Blades
Schnyder et al. New life for old compressor blades