RU2057358C1 - Автокоррелятор световых импульсов - Google Patents

Автокоррелятор световых импульсов Download PDF

Info

Publication number
RU2057358C1
RU2057358C1 RU94017270A RU94017270A RU2057358C1 RU 2057358 C1 RU2057358 C1 RU 2057358C1 RU 94017270 A RU94017270 A RU 94017270A RU 94017270 A RU94017270 A RU 94017270A RU 2057358 C1 RU2057358 C1 RU 2057358C1
Authority
RU
Russia
Prior art keywords
plate
mirror
plane
optical axis
autocorrelator
Prior art date
Application number
RU94017270A
Other languages
English (en)
Other versions
RU94017270A (ru
Inventor
Иван Владимирович Тулин
Original Assignee
Иван Владимирович Тулин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Иван Владимирович Тулин filed Critical Иван Владимирович Тулин
Priority to RU94017270A priority Critical patent/RU2057358C1/ru
Publication of RU94017270A publication Critical patent/RU94017270A/ru
Application granted granted Critical
Publication of RU2057358C1 publication Critical patent/RU2057358C1/ru

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

Изобретение относится к оптике, в частности к устройствам для измерения длительности сверхкоротких лазерных импульсов методом регистрации автокорреляционной функции интенсивности. Применение изобретения позволит упростить конструкцию и юстировку автокоррелятора. Данный результат достигается тем, что в автокорреляторе, содержащем делитель светового пучка, линию переменной оптической задержки, узел совмещения прямого и задержанного пучков, оптически сопряженные с узлом регистрации, делитель светового пучка, линия переменной оптической задержки и узел совмещения прямого и задержанного пучков выполнены в виде плоскопараллельной двулучепреломляющей пластинки, установленной с возможностью поворота ее вокруг оси, перпендикулярной главной плоскости пластинки. В схему также введены вторая плоскопараллельная двулучепреломляющая пластинка и два зеркала, установленные на одной оптической оси, при этом главная плоскость второй пластинки совпадает или перпендикулярна главной плоскости первой пластинки, первое зеркало выполнено полупрозрачным и установлено под углом к оптической оси перед пластинками, второе зеркало установлено за пластинками перпендикулярно к оптической оси, причем второе зеркало оптически сопряжено с узлом регистрации через первое зеркало. 1 ил.

Description

Изобретение относится к оптике, в частности к устройствам для измерения параметров лазерного излучения.
В лазерной технике известны автокорреляторы, предназначенные для измерения длительности сверхкоротких световых импульсов методом регистрации корреляционной функции интенсивности двух импульсов, полученных делением амплитуды исходного импульса, причем один из импульсов следует с регулируемой задержкой [1]
Cхема автокоррелятора аналогична схеме интерферометра Майкельсона и содержит делитель светового пучка, линию переменной оптической задержки, вносящую регулируемое запаздывание в один из пучков, узел совмещения прямого и задержанного пучков и приемное устройство, осуществляющее функцию перемножения интенсивностей пучков на основе эффекта генерации второй гармоники в нелинейном кристалле. Известные схемы автокорреляторов различаются устройством линии задержки.
Недостатком известных автокорреляторов является сложность конструкции и настройки, связанная с необходимостью точной взаимной юстировки всех элементов схемы.
Наиболее близким к заявляемому устройству является принятый за прототип автокоррелятор [2] Прототип содержит делитель пучка, выполненный в виде полупрозрачного зеркала, два концевых отражателя, один из которых может поступательно перемещаться, образуя линию переменной оптической задержки, и приемное устройство. Два пучка, полученные после делителя, отражаются от концевых отражателей, совмещаются на полупрозрачном зеркале по сечению и направлению и направляются на приемное устройство.
Недостатком прототипа, как и других автокорреляторов, является сложность конструкции и юстировки схемы.
Задача, которая решалась при разработке заявляемого устройства, заключалась в том, чтобы разделить исходный пучок на два и внести заданное запаздывание одного пучка относительно другого, оставляя их пространственно совмещенными. Результатом этого явилось бы существенное упрощение конструкции и юстировки автокоррелятора.
Указанный результат достигается в автокорреляторе световых импульсов, содержащем делитель светового пучка, линию переменной оптической задержки, узел совмещения прямого и задержанного пучков, оптически сопряженные с узлом регистрации, отличающемся тем, что делитель светового пучка, линия переменной оптической задержки и узел совмещения прямого и задержанного пучков выполнены в виде плоскопараллельной двулучепреломляющей пластинки, установленной с возможностью поворота ее вокруг оси, перпендикулярной главной плоскости пластинки, а также в схему введены вторая плоскопараллельная двулучепреломляющая пластинка и два зеркала, установленные на одной оптической оси, при этом главная плоскость второй пластинки совпадает или перпендикулярна главной плоскости первой пластинки, первое зеркало выполнено полупрозрачным и установлено под углом к оптической оси перед пластинками, второе зеркало установлено за пластинками перпендикулярно к оптической оси, причем второе зеркало оптически сопряжено с узлом регистрации через первое зеркало.
Сущность изобретения заключается в том, что деление светового пучка на два и задержка одного пучка относительно другого реализуются в двулучепреломляющей пластинке, при этом один пучок является обыкновенной волной, а другой необыкновенной; каждая из волн распространяется со своей групповой скоростью. Величина относительной задержки равна алгебраической сумме задержек, которые вносят две пластинки, и зависит от угла между оптической осью пластинки и осью пучка в каждой пластинке.
Первая двулучепреломляющая пластинка вносит переменную задержку, величина которой изменяется при повороте пластинки. Вторая двулучепреломляющая пластинка установлена так, что она вносит фиксированную задержку противоположного знака по сравнению с задержкой, которую вносит первая пластинка. Благодаря этому:
суммарная задержка в двух пластинках может быть как положительной, так и отрицательной; регистрируется полная автокорреляционная функция;
путем выбора величины фиксированной задержки рабочая точка автокоррелятора ( τ30) устанавливается на квазилинейном участке зависимости величины задержки от угла поворота первой пластинки.
Пучки, прошедшие две пластинки в прямом направлении, отражаются от второго зеркала и вторично проходят пластинки в обратном направлении. Благодаря этому:
величина задержки увеличивается в два раза по сравнению с одним проходом; для обеспечения заданной задержки можно использовать пластинки вдвое меньшей толщины;
компенсируется переменный поперечный снос пучков, вызванный преломлением в первой подвижной пластинке.
компенсируется поперечное расщепление пучков, вызванное двулучепреломлением в пластинках.
Полупрозрачное зеркало отражает пучки на приемное устройство.
Пучки, прошедшие пластинки в прямом и обратном направлениях, совмещены и имеют заданную относительную задержку; пучки поляризованы в ортогональных плоскостях. В конструкции автокоррелятора отсутствуют сложные юстировочные узлы, линия задержки упрощена, величина задержки может устанавливаться и контролироваться с высокой точностью.
На чертеже показана оптическая схема устройства.
На схеме и в тексте приняты следующие обозначения:
1 оптическая ось пучка,
2 первое (полупрозрачное) зеркало,
3 первая плоскопараллельная двулучепреломляющая пластинка,
4 вторая плоскопараллельная двулучепреломляющая пластинка,
5 второе зеркало,
6 приемное устройство.
Устройство состоит из расположенных на оптической оси пучка 1 полупрозрачного зеркала 2, подвижной двулучепреломляющей пластинки 3, неподвижной двулучепреломляющей пластинки 4, зеркала 5 и приемного устройства 6. Пластинка 3 совмещает в себе функции делителя пучка, линии переменной оптической задержки и узла совмещения пучков. Примем для определенности, что пластинки 3 и 4 вырезаны из одного материала, главная плоскость пластинки 3 горизонтальна, главная плоскость пластинки 4 вертикальна. Пластинка 3 может поворачиваться вокруг оси О-О, перпендикулярной к главной плоскости пластинки 3. Плоскость поляризации пучка на входе в устройство наклонена под углом 45о к главной плоскости пластинки 3.
Изобретение осуществляется следующим образом.
Излучение, прошедшее полупрозрачное зеркало 2, делится в первой пластинке 3 на две волны обыкновенную и необыкновенную, поляризованные соответственно в вертикальной и горизонтальной плоскостях. Каждая из волн распространяется со своей групповой скоростью и выходит из пластинки 3 с определенным временным запаздыванием. Во второй пластинке 4 волна, бывшая обыкновенной, становится необыкновенной и наоборот. Суммарная задержка одной волны относительно другой после прохождения через пластинки 3 и 4 в прямом направлении равна:
τ3
Figure 00000001
-
Figure 00000002
l1sin2Φ1-l2sin
Figure 00000003
где l1, l2 толщина пластинок 3 и 4 вдоль оси пучка 1;
с скорость света;
Δ η ηo ηe разность показателей преломления для обыкновенной и необыкновенной волн;
λ длина волны излучения;
Φ1 угол между оптической осью Z1 первой пластинки 3 и осью пучка 1;
Φ2 угол между оптической осью Z2 второй пластинки 4 и осью пучка 1.
Далее пучки отражаются от зеркала 5 и проходят через пластинки 4 и 3 в обратном направлении, при этом относительная задержка удваивается, и отражаются зеркалом 2 на приемное устройство 6. Пучки, прошедшие пластинки 3 и 4 в прямом и обратном направлениях, имеют одинаковую амплитуду, совмещены по сечению и направлению распространения и имеют относительный временной сдвиг 2 τ3 При вращении пластинки 3 вокруг оси О-О задержка периодически изменяется, что позволяет регистрировать автокорреляционную функцию светового импульса за каждый оборот пластинки 3.
Два пучка, прошедшие пластинки 3 и 4, поляризованы в вертикальной и горизонтальной плоскостях. Если в приемном устройстве 6 для генерации второй гармоники используется 2-ой тип взаимодействия, ось нелинейного кристалла ориентируется в вертикальной или горизонтальной плоскостях, если используется 1-ый тип взаимодействия, ось кристалла ориентируется в плоскости, наклоненной под углом 45о к указанным плоскостям.
Для измерения длительности спектрально-ограниченных импульсов могут использоваться автокорреляторы с регистрацией корреляционной функции амплитуд (интенсивности интерференции прямого и задержанного импульсов). В этом случае генератор второй гармоники не используется, а для обеспечения интерференции прямого и задержанного импульсов перед приемником излучения 6 устанавливается соответствующим образом ориентированный анализатор.
Зеркало 5 может быть наклонено к оптической оси 1 под небольшим углом, достаточным для того, чтобы пространственно разнести падающий и отраженный пучки и сместить зеркало 2 с оптической оси пучка, входящего в устройство. Тогда зеркало 2 может быть выполнено полностью отражающим и чувствительность автокоррелятора существенно возрастет.
По данному техническому решению были проведены расчеты величины относительной задержки между импульсами и уширения импульсов за счет дисперсии групповых скоростей в материале пластинок. Расчеты проводились для группы кристаллов, широко используемых в нелинейной оптике. Расчеты показывают, что при толщине пластинок 1-3 мм (кристаллы ВВО, DKDP) задержка достигает ± 300 Фс при уширении импульсов менее 10 Фс в диапазоне длин волн 1,1-1,3 мкм. В данном спектральном диапазоне работает фемтосекундный лазер на форстерите с примесью ионов хрома (Cr4+:Mg2SiO4).
Проведенные эксперименты подтвердили работоспособность и расчетные характеристики устройства.

Claims (1)

  1. АВТОКОРРЕЛЯТОР СВЕТОВЫХ ИМПУЛЬСОВ, содержащий делитель светового пучка, линию переменной оптической задержки, узел совмещения прямого и задержанного пучков, оптически сопряженные с узлом регистрации, отличающийся тем, что делитель светового пучка, линия переменной оптической задержки и узел совмещения прямого и задержанного пучков выполнены в виде плоскопараллельной двулучепреломляющей пластинки, установленной с возможностью поворота ее вокруг оси, перпендикулярной главной плоскости пластинки, в схему также введены вторая плоскопараллельная двулучепреломляющая пластинка и два зеркала, установленные на одной оптической оси, при этом главная плоскость второй пластинки совпадает или перпендикулярна главной плоскости первой пластинки, первое зеркало выполнено полупрозрачным и установлено под углом к оптической оси перед пластинками, второе зеркало установлено за пластинками перпендикулярно к оптической оси, причем второе зеркало оптически сопряжено с узлом регистрации через первое зеркало.
RU94017270A 1994-05-18 1994-05-18 Автокоррелятор световых импульсов RU2057358C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94017270A RU2057358C1 (ru) 1994-05-18 1994-05-18 Автокоррелятор световых импульсов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94017270A RU2057358C1 (ru) 1994-05-18 1994-05-18 Автокоррелятор световых импульсов

Publications (2)

Publication Number Publication Date
RU94017270A RU94017270A (ru) 1996-01-20
RU2057358C1 true RU2057358C1 (ru) 1996-03-27

Family

ID=20155764

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94017270A RU2057358C1 (ru) 1994-05-18 1994-05-18 Автокоррелятор световых импульсов

Country Status (1)

Country Link
RU (1) RU2057358C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Ахманов С.А., Выслоух В.А. и Чиркин А.С. Оптика фемтосекундных импульсов. М.: Наука, 1988, с.280. 2. Модель АС-150 фирмы Clark Instrumentation, Inc., Rochester, USA, рекламный проспект "Autocorrelator /Pumpprobe Scanner", 1991. *

Similar Documents

Publication Publication Date Title
Froehly et al. II shaping and analysis of picosecond light pulses
CN109297930B (zh) 一种基于涡旋光束共轭干涉的三阶非线性测量装置及方法
CN102636272B (zh) 基于瞬态光栅效应的飞秒激光脉冲测量的方法与装置
CN104730279B (zh) 一种啁啾脉冲速度干涉仪
US4472053A (en) Method and apparatus for measuring the duration of optical radiation pulses
US7800755B1 (en) High-speed polarimeter having a multi-wavelength source
CN101113927A (zh) 移相横向剪切干涉仪
US7643212B1 (en) Rotationally tunable optical delay line
EP0104322A1 (en) A dual differential interferometer
JP5277530B2 (ja) 光学遅延器械及び光学遅延器械を備える光学測定装置
US6204926B1 (en) Methods and system for optically correlating ultrashort optical waveforms
US4027976A (en) Optical interferometer
SU1152533A3 (ru) Сканирующий интерферометр (его варианты)
CN101498589A (zh) 一种在光学测量中实现光程四倍增的方法及其装置
NO168392B (no) Fasekonjugert reflekterende media
RU2057358C1 (ru) Автокоррелятор световых импульсов
US3675985A (en) Optical autocorrelator for autocorrelating picosecond optical pulses
RU2057357C1 (ru) Автокоррелятор световых импульсов
RU2057304C1 (ru) Автокоррелятор световых импульсов
Joubert et al. Temporal reversal of picosecond optical pulses by holographic phase conjugation
Bertolotti et al. Reversing-front interferometer for phase-correlation measurements in the turbulent atmosphere
US20040141180A1 (en) Autocorrelator based on triangle delay line and grating delay line
CN110487426B (zh) 一种近红外飞秒激光光谱相位测量装置
Wyant A simple interferometric MTF instrument
WO2017033974A1 (ja) 自己相関測定装置