RU2056642C1 - Гравиметр для измерения силы тяжести с движущихся носителей - Google Patents

Гравиметр для измерения силы тяжести с движущихся носителей Download PDF

Info

Publication number
RU2056642C1
RU2056642C1 RU93034116A RU93034116A RU2056642C1 RU 2056642 C1 RU2056642 C1 RU 2056642C1 RU 93034116 A RU93034116 A RU 93034116A RU 93034116 A RU93034116 A RU 93034116A RU 2056642 C1 RU2056642 C1 RU 2056642C1
Authority
RU
Russia
Prior art keywords
outputs
gravimetric
gyroscope
inputs
stabilization
Prior art date
Application number
RU93034116A
Other languages
English (en)
Other versions
RU93034116A (ru
Inventor
О.Д. Богомолов
В.Н. Волнянский
В.Н. Ильин
М.А. Ермаков
Ю.Л. Смоллер
С.Ш. Юрист
Е.Б. Савельев
Original Assignee
Центральный научно-исследовательский институт "Дельфин"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Центральный научно-исследовательский институт "Дельфин" filed Critical Центральный научно-исследовательский институт "Дельфин"
Priority to RU93034116A priority Critical patent/RU2056642C1/ru
Publication of RU93034116A publication Critical patent/RU93034116A/ru
Application granted granted Critical
Publication of RU2056642C1 publication Critical patent/RU2056642C1/ru

Links

Images

Landscapes

  • Navigation (AREA)

Abstract

Использование: при гравиметрических измерениях на подвижном основании. Сущность изобретения: гравиметр для измерения силы тяжести с движущихся носителей содержит гиростабилизированную платформу (ГСП) с установленными на ней гироскопом, оси чувствительности которого совпадают с осями ГСП, акселерометрами, оси чувствительности которых совпадают с осями ГСП, гравиметрическим чувствительным элементом (ГРЧЭ), ось чувствительности которого перпендикулярна плоскости ГСП. Гравиметр содержит также корректирующее устройство, входы которого подключены к выходам акселерометров, а выходы - к входу датчиков момента, гравиметрический фильтр, вход которого подключен к выходу ГРЧЭ, и усилители стабилизации, входы которых подключены к выходам датчиков угла гироскопа, а выход - к исполнительным устройствам следящих систем стабилизации. 2 ил.

Description

Изобретение относится к гравиметрическому приборостроению и может быть использовано для измерения силы тяжести с движущихся носителей (судов, самолетов, вертолетов, вездеходов и др.).
Известны гравиметры для измерения силы тяжести с движущихся носителей [1] включающие в свой состав гиростабилизированную платформу (ГСП) с установленными на ней одним или несколькими гироскопами и гравиметрическим чувствительным элементом (ГРЧЭ). Оси чувствительности гироскопов совпадают с осями ГСП, ось чувствительности ГРЧЭ перпендикулярна плоскости ГСП. Эти гравиметры содержат также усилители стабилизации, входы которых подключены к выходам датчиков углов гироскопов, а выходы к входу исполнительных элементов следящих систем стабилизации. В гравиметрах ГМН, Чета АГГ, KSS применена гиростабилизация с маятниковой коррекцией.
В целях увеличения точности стабилизации ГСП в известном гравиметре La Coste Romberg применена акселерометрическая коррекция [2] С этой целью на ГСП установлены акселерометры, оси чувствительности которых совпадают с осями ГСП, в состав гравиметра включено корректирующее устройство, входы которого соединены с выходами датчиков момента гироскопа.
В гравиметре La Coste Romberg для эпизодического определения масштабного коэффициента (цены деления) ГРЧЭ методом наклона требуется демонтаж его и установка на прецизионное наклономерное устройство наземной гравиметрической лаборатории (см. Гравиразведка. Справочник геофизика. М: Недра, 1981). Это усложняет процесс калибровки, приводит к увеличению периодов вынужденного простоя судов (движущихся носителей), снижает точность калибровки в связи с тем, что условия лаборатории не соответствуют штатным условиям использования ГРЧЭ и не позволяет определить неперпендикулярность оси чувствительности ГРЧЭ плоскости ГСП.
Изобретение направлено на повышение точности определения масштабного коэффициента ГРЧЭ благодаря обеспечению возможности калибровки ГРЧЭ без его демонтажа, что сокращает периоды вынужденного простоя судов в процессе калибровки ГРЧЭ и повышает точность гравиметрической съемки, обеспечение возможности определения неперпендикулярности оси чувствительности ГРЧЭ плоскости ГСП для ее дальнейшего учета в целях повышения точности гравиметрической съемки.
Указанные задачи решаются за счет того, что в гравиметр для измерения силы тяжести с движущихся носителей, содержащий ГСП с установленными на ней гироскопом, оси чувствительности которого совпадают с осями ГСП, акселерометрами, оси чувствительности которых совпадают с осями ГСП, ГРЧЭ, ось чувствительности которого перпендикулярна плоскости ГСП, содержащий также корректирующее устройство, входы которого подключены к выходам акселерометров, а выходы к входам датчиков момента гироскопа, гравиметрический фильтр, вход которого подключен к выходу ГРЧЭ, и усилители стабилизации, входы которых подключены к выходам датчиков угла гироскопа, а выходы к входам исполнительных элементов следящих систем стабилизации, введены индикаторы фиксированного наклона ГСП вокруг ее осей, установленные на ГСП, и блок калибровки, причем выходы индикаторов подключены к свободным входам корректирующего устройства, а вход блока калибровки подключен к выходу ГРЧЭ.
На фиг. 1 изображена схема предложенного гравиметра для измерения силы тяжести с движущихся носителей (показана лишь одна ось стабилизации); на фиг. 2 схематично изображена одна из возможных конструкций индикатора фиксированного наклона ГСП.
Гравиметр (фиг. 1) содержит ГСП 1 с установленными на ней гироскопом 2, акселерометрами 3, индикаторами 4 фиксированного наклона ГСП и ГРЧЭ 5. Выходы датчиков 6 угла гироскопа подключены к входам усилителей 7 следящих систем стабилизации, выходы которых подключены к входам исполнительных элементов 8 следящих систем стабилизации. Выходы акселерометров и индикаторов фиксированного наклона ГСП подключены к входам корректирующего устройства 9, представляющего собой вычислительное устройство с устройствами ввода-вывода, выходы которого подключены к датчикам 10 момента гироскопа. Выход ГРЧЭ подключен к входу блока 11 калибровки, представляющего собой вычислительное устройство с устройствами ввода и вывода, и к входу гравиметрического фильтра 12, представляющего собой вычислительное устройство с устройствами ввода и вывода.
Положение ротора гироскопа относительно Земли, обеспечивающее горизонтирование ГСП, управляется корректирующим устройством 9, формирующим управляющие сигналы как некоторые функции от показаний акселерометров, например
Ωx=K1Wy+K2∫Wy
Ωy= K1Wx+K2∫Wx (1) где Ωx Ωy управляющие сигналы, которые подаются на входы датчиков моментов гироскопа;
Wx, Wy показания акселерометров;
K1, K2 постоянные коэффициенты.
Сигналы с датчиков 6 угла гироскопа, пропорциональные динамическим ошибкам следящих систем стабилизации, подаются на входы усилителей 7 стабилизации, управляющих исполнительными элементами 8 следящих систем стабилизации, стабилизируя на движущемся носителе ГСП 1 в горизонтальном положении.
В режиме калибровки ГРЧЭ корректирующее устройство 9 формирует управляющие сигналы, являющиеся функцией (например (1)) показаний индикаторов 4 наклона ГСП, тем самым стабилизируя ГСП 1 в положении, характеризующемся фиксированным наклоном ее на известный угол относительно горизонта. На первом и втором этапах калибровки корректирующее устройство 9 использует показания первого и второго (соответственно) акселерометров индикатора 4 фиксированного наклона ГСП, что приводит к стабилизации ГСП 1 с наклоном относительно горизонта на углы δ и δ соответственно. При этом показания ГРЧЭ равны
Wz1=Kgcos(β-δ)
Figure 00000001
Kgcosδ+Kgβsinδ
Wz2=Kgcos(β+δ)
Figure 00000002
Kgcosδ-Kgβsinδ (2) где Wz показания ГРЧЭ;
1, 2 номера этапов калибровки;
K масштабный коэффициент ГРЧЭ;
g значение силы тяжести в месте калибровки;
β составляющая неперпендикулярности оси чувствительности ГРЧЭ;
δ известный угол.
В блоке калибровки осредняются значения Wz1, Wz2 и Wz0 показания ГРЧЭ в исходном (горизонтальном) положении ГСП. Фиксируются результаты осреднения
Figure 00000003
,
Figure 00000004
,
Figure 00000005
и вычисляются значения K и β по формулам
β
Figure 00000006

K
Figure 00000007
(3)
При выводе соотношений (3) учтено, что
Figure 00000008
=Kgcosβ
При проведении калибровки по перпендикулярной оси аналогично определяется вторая составляющая неперпендикулярности оси чувствительности ГРЧЭ плоскости ГСП γ
Определенные на этапе калибровки значения K, β, γ используются в гравиметрическом фильтре 12 для ввода соответствующих поправок к показаниям ГРЧЭ при выработке силы тяжести g.
Предложенный гравиметр позволяет проводить калибровку ГРЧЭ без демонтажа ГРЧЭ, а также без демонтажа гравиметра с носителя, например, при нахождении судна у пирса при малой качке.
Индикатор фиксированного наклона ГСП (фиг. 2) представляет собой два акселерометра 13 и 14, оси чувствительности которых наклонены относительно ГСП на известный угол δ. Индикатор устанавливается на ГСП с помощью посадочной плоскости 15 так, чтобы проекции осей чувствительности акселерометров на плоскость ГСП совпадали с осями ГСП. При наклоне ГСП вокруг ее оси на угол δ и δ акселерометры 13 и 14 соответственно выполняют функции нуль-индикаторов, что дает возможность стабилизировать ГСП в положении, характеризующемся наклоном относительно плоскости горизонта на известные углы ± δ.
При динамическом диапазоне акселерометров индикаторов фиксированного наклона 0,01g и их относительной погрешности 0,01% при δ 3о в соответствии с соотношениями (3) погрешность определения K составляет 4 ·10-5, β 5 угл.с, что удовлетворяет требованиям современных гравиметров для измерения силы тяжести с движущихся носителей.

Claims (1)

  1. ГРАВИМЕТР ДЛЯ ИЗМЕРЕНИЯ СИЛЫ ТЯЖЕСТИ С ДВИЖУЩИХСЯ НОСИТЕЛЕЙ, содержащий гиростабилизированную платформу с установленными на ней гироскопом и акселерометрами, при этом оси чувствительности гироскопа и акселерометров совпадают с осями платформы, гравиметрическим чувствительным элементом, ось чувствительности которого перпендикулярна плоскости платформы, гравиметр также содержит датчики угла и момента гироскопа, корректирующее устройство, усилитель стабилизации, исполнительные элементы следящих систем стабилизации и гравиметрический фильтр, при этом вход корректирующего устройства соединен с выходами акселерометров, а выход - с входами датчиков момента гироскопа, первый вход гравиметрического фильтра подключен к выходу гравиметрического чувствительного элемента, выходы датчиков угла гироскопа соединены с входами усилителей стабилизации, выходы которых подключены к входам исполнительных элементов следящих систем стабилизации, отличающийся тем, что он дополнительно содержит индикаторы фиксированного наклона гиростабилизированной платформы вокруг ее осей, установленные на гиростабилизированной платформе, и блок калибровки, при этом выходы индикаторов фиксированного наклона подключены к второму входу корректирующего устройства, а вход блока калибровки - к выходу гравиметрического чувствительного элемента.
RU93034116A 1993-07-09 1993-07-09 Гравиметр для измерения силы тяжести с движущихся носителей RU2056642C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU93034116A RU2056642C1 (ru) 1993-07-09 1993-07-09 Гравиметр для измерения силы тяжести с движущихся носителей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU93034116A RU2056642C1 (ru) 1993-07-09 1993-07-09 Гравиметр для измерения силы тяжести с движущихся носителей

Publications (2)

Publication Number Publication Date
RU93034116A RU93034116A (ru) 1995-12-20
RU2056642C1 true RU2056642C1 (ru) 1996-03-20

Family

ID=20144312

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93034116A RU2056642C1 (ru) 1993-07-09 1993-07-09 Гравиметр для измерения силы тяжести с движущихся носителей

Country Status (1)

Country Link
RU (1) RU2056642C1 (ru)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7559149B2 (en) 2006-11-22 2009-07-14 Technological Resources Pty. Ltd. Gravity gradiometer
US7562460B2 (en) 2006-11-23 2009-07-21 Technological Resources Pty. Ltd. Gravity gradiometer
US7562461B2 (en) 2006-11-20 2009-07-21 Technological Resources Pty. Ltd. Gravity gradiometer
US7571547B2 (en) 2006-11-23 2009-08-11 Technological Resources Pty. Ltd. Gravity gradiometer
US7581327B2 (en) 2006-11-20 2009-09-01 Technological Recources Pty. Ltd. Gravity gradiometer
US7584544B2 (en) 2006-11-20 2009-09-08 Technological Resources Pty, Ltd. Gravity gradiometer
US7596876B2 (en) 2006-11-20 2009-10-06 Technological Resources Pty. Ltd. Gravity gradiometer
US7624635B2 (en) 2006-11-23 2009-12-01 Technological Resources Pty. Ltd. Gravity gradiometer
US7627954B2 (en) 2006-11-23 2009-12-08 Technological Resources Pty. Ltd. Gravity gradiometer
US7637153B2 (en) 2006-11-23 2009-12-29 Technological Resources Pty. Ltd. Gravity gradiometer
US7714584B2 (en) 2006-11-20 2010-05-11 Technological Resources Pty. Ltd. Gravity gradiometer
US7784343B2 (en) 2005-10-06 2010-08-31 Technological Resources Pty. Ltd. Gravity gradiometer
US7823449B2 (en) 2006-11-23 2010-11-02 Technological Resources Pty, Ltd. Gravity gradiometer
US7849739B2 (en) 2006-11-23 2010-12-14 Technological Resources Pty. Ltd. Gravity gradiometer
CN103925930A (zh) * 2014-04-17 2014-07-16 哈尔滨工程大学 一种重力仪双轴陀螺稳定平台航向误差效应的补偿方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Юзефович А.П., Огородова Л.В. Гравиметрия. М.: Недра, 1980, с.139. 2. Richard A. Geyer. Ph. D. CRC, Haudbook of Geophysical Exploration at Sea aud Edition Hydrocarbons Press Boca Raton Ann Arbor London, 1992. *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7942054B2 (en) 2005-10-06 2011-05-17 Technological Resources Pty. Ltd. Gravity gradiometer
US7784343B2 (en) 2005-10-06 2010-08-31 Technological Resources Pty. Ltd. Gravity gradiometer
US7788974B2 (en) 2005-10-06 2010-09-07 Technological Resources Pty. Ltd. Gravity gradiometer
US8074515B2 (en) 2005-10-06 2011-12-13 Technological Resources Pty. Ltd. Gravity gradiometer
US7980130B2 (en) 2005-10-06 2011-07-19 Technological Resources Pty. Ltd. Gravity gradiometer
US7975544B2 (en) 2005-10-06 2011-07-12 Technological Resources Pty. Ltd. Gravity gradiometer
US7938003B2 (en) 2005-10-06 2011-05-10 Technological Resources Pty. Limited Gravity gradiometer
US7823448B2 (en) 2005-10-06 2010-11-02 Technological Resources Pty. Ltd. Actuatory and gravity gradiometer
US7581327B2 (en) 2006-11-20 2009-09-01 Technological Recources Pty. Ltd. Gravity gradiometer
US8033170B2 (en) 2006-11-20 2011-10-11 Technological Resources Pty. Ltd. Gravity gradiometer
US7714584B2 (en) 2006-11-20 2010-05-11 Technological Resources Pty. Ltd. Gravity gradiometer
US7814790B2 (en) 2006-11-20 2010-10-19 Technological Resources Pty. Ltd. Gravity gradiometer
US7562461B2 (en) 2006-11-20 2009-07-21 Technological Resources Pty. Ltd. Gravity gradiometer
US7584544B2 (en) 2006-11-20 2009-09-08 Technological Resources Pty, Ltd. Gravity gradiometer
US7596876B2 (en) 2006-11-20 2009-10-06 Technological Resources Pty. Ltd. Gravity gradiometer
US7559149B2 (en) 2006-11-22 2009-07-14 Technological Resources Pty. Ltd. Gravity gradiometer
US7823449B2 (en) 2006-11-23 2010-11-02 Technological Resources Pty, Ltd. Gravity gradiometer
US7849739B2 (en) 2006-11-23 2010-12-14 Technological Resources Pty. Ltd. Gravity gradiometer
US7624635B2 (en) 2006-11-23 2009-12-01 Technological Resources Pty. Ltd. Gravity gradiometer
US7562460B2 (en) 2006-11-23 2009-07-21 Technological Resources Pty. Ltd. Gravity gradiometer
US7627954B2 (en) 2006-11-23 2009-12-08 Technological Resources Pty. Ltd. Gravity gradiometer
US7637153B2 (en) 2006-11-23 2009-12-29 Technological Resources Pty. Ltd. Gravity gradiometer
US7571547B2 (en) 2006-11-23 2009-08-11 Technological Resources Pty. Ltd. Gravity gradiometer
CN103925930A (zh) * 2014-04-17 2014-07-16 哈尔滨工程大学 一种重力仪双轴陀螺稳定平台航向误差效应的补偿方法
CN103925930B (zh) * 2014-04-17 2016-08-17 哈尔滨工程大学 一种重力仪双轴陀螺稳定平台航向误差效应的补偿方法

Similar Documents

Publication Publication Date Title
Valliant The LaCoste & Romberg air/sea gravity meter: an overview
RU2056642C1 (ru) Гравиметр для измерения силы тяжести с движущихся носителей
US5527003A (en) Method for in-field updating of the gyro thermal calibration of an intertial navigation system
US4254465A (en) Strap-down attitude and heading reference system
US4106094A (en) Strap-down attitude and heading reference system
US6647352B1 (en) Dynamic attitude measurement method and apparatus
EP0617259A1 (en) Method for calibrating aircraft navigation systems
US5031330A (en) Electronic boresight
US4870602A (en) Method for determining route angles
US20060206267A1 (en) Methods and systems utilizing true airspeed to improve vertical velocity accuracy
US4545019A (en) Aircraft in-flight center of gravity measuring system
RU93034116A (ru) Гравиметр для измерения силы тяжести с движущихся носителей
US4531299A (en) Analog inclination data system
US3052122A (en) Flight path angle computer
US2976618A (en) Gyro-compass
RU2056641C1 (ru) Гравиметр для измерения силы тяжести с движущихся сухопутных носителей в режиме кратковременных остановок
CA1251563A (en) Doppler-inertial data loop for navigation system
Bezvesilnaya et al. Electromechanical gravimeter
RU2062987C1 (ru) Гирогоризонт
RU2056643C1 (ru) Гравиметр для измерения силы тяжести с движущихся носителей
US3005348A (en) Vertical velocity measuring system
RU2320963C2 (ru) Способ выставки осей подвижного объекта
US2970471A (en) Rate of climb meter
EP0326256A1 (en) Electronic surface alignment system
US3546943A (en) Sea gravimeter

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080710