RU2053207C1 - Способ получения минеральных волокон и устройство для его осуществления - Google Patents

Способ получения минеральных волокон и устройство для его осуществления Download PDF

Info

Publication number
RU2053207C1
RU2053207C1 SU915001966A SU5001966A RU2053207C1 RU 2053207 C1 RU2053207 C1 RU 2053207C1 SU 915001966 A SU915001966 A SU 915001966A SU 5001966 A SU5001966 A SU 5001966A RU 2053207 C1 RU2053207 C1 RU 2053207C1
Authority
RU
Russia
Prior art keywords
centrifuge
side wall
temperature
fibers
silicon carbide
Prior art date
Application number
SU915001966A
Other languages
English (en)
Inventor
Бернар Жан-Люк
Бертье Ги
Фуртак Ханс
Опозда Мишель
Original Assignee
Изовер Сэн-Гобэн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9401639&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2053207(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Изовер Сэн-Гобэн filed Critical Изовер Сэн-Гобэн
Application granted granted Critical
Publication of RU2053207C1 publication Critical patent/RU2053207C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/03Drawing means, e.g. drawing drums ; Traction or tensioning devices
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/04Manufacture of glass fibres or filaments by using centrifugal force, e.g. spinning through radial orifices; Construction of the spinner cups therefor
    • C03B37/045Construction of the spinner cups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/04Manufacture of glass fibres or filaments by using centrifugal force, e.g. spinning through radial orifices; Construction of the spinner cups therefor
    • C03B37/047Selection of materials for the spinner cups

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Glass Compositions (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Inorganic Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Preliminary Treatment Of Fibers (AREA)
  • Paper (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Seasonings (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Reinforced Plastic Materials (AREA)
  • Adornments (AREA)

Abstract

Сущность изобретения: способ получения минеральных волокон включает подачу расплава внутрь центрифуги и продавливание его за счет центробежных сил через фильеры в боковой стенке чаши при поддержании температурного градиента по ее толщине и равной температуре поля по высоте. Температуру внутренней поверхности боковой стенки центрифуги поддерживают более высокой, чем температуру наружной поверхности. Градиент температур между внутренней и наружной поверхностями боковой стенки центрифуги составляет 50 - 300oС, преимущественно 100 - 200oС. Устройство для получения минеральных волокон включает корпус центрифуги с фильерами в боковой стенке, лоток для подачи расплава, установленный в центрифуге, и вне ее горелки. Боковая стенка центрифуги выполнена из материала, теплопроводность которого ниже 20 Втм-1 с-1 при 1000oС или ниже 10 Вт м-1 с-1 при 1000oС, или из материала, коэффициент тепловой диффузии которого менее 5 • 10-6 м2с-1 при температуре 1000oС, или из керамики на основе фриттированного нитрида кремния, или из композиционной керамики с матрицей из карбида кремния, усиленной волокнами из карбида кремния, или из композиционной керамики с матрицей из карбида кремния, усиленной волокнами из углерода. Центрифуга выполнена с защитным слоем на основе карбида кремния. 2 с. и 7 з. п. ф-лы, 3 ил.

Description

Изобретение относится к развитию технологии и аппаратурному оформлению получения стеклянных волокон методом внутреннего центрифугирования из термопластичного вещества с высокой температурой плавления, например, типа стекла или базальта.
Известен способ получения минеральных волокон путем подачи расплава внутрь центрифуги и продавливания его за счет центробежных сил через фильеры в боковой стенке чаши при поддержании температурного градиента по ее толщине и равной температуре поля по высоте.
Известно устройство для получения минеральных волокон, включающее корпус центрифуги с фильерами в боковой стенке, лоток для подачи расплава, установленный в центрифуге, и вне ее горелки.
Такие традиционные центрифуги выполнены из металлических сплавов, например сплав типа никель-хром. В этих условиях их термическая проводимость является очень большой и стенка является практически изотермической по ее толщине, температура определяется температурой стенки.
Известные центрифуги не могут обрабатывать стекла из указанных камней, таких как базальты, без добавок соды, которые характеризуются очень высокими температурами плавления, например порядка 1500-1600оС (часто намного выше предельной температуры использования никель-хромовых сплавов), и, главным образом, очень узкой областью переработки, которая просто не представляет времени для волокнообразования.
Целью изобретения является расширение ассортимента вырабатываемых стекол и создание центрифуги для выработки данных стекол.
Цель достигается тем, что в способе получения минеральных волокон путем подачи расплава внутрь центрифуги и продавливания его за счет центробежных сил через фильеры в боковой стенке чаши при поддержании температурного градиента по ее толщине и равной температуре поля по высоте температуру внутренней поверхности боковой стенки центрифуги поддерживают более высокой, чем температуру наружной поверхности.
Градиент температур между внутренней и наружной поверхностями боковой стенки центрифуги составляет 50-300оС, преимущественно 100-200оС.
В устройстве для получения минеральных волокон, включающем корпус центрифуги с фильерами в боковой стенке, лоток для подачи расплава, установленный в центрифуги, и вне ее горелки, боковая стенка центрифуги выполнена из материала, теплопроводность которого ниже 20 Втм-1с-1 при 1000оС.
Боковая стенка центрифуги выполнена из материала, теплопроводность которого ниже 10 Втм-1с-1 при 1000оС.
Боковая стенка центрифуги выполнена из материала, коэффициент тепловой диффузии которого менее 5 · 10-6м2с-1 при температуре 1000оС.
Боковая стенка центрифуги выполнена из керамики на основе фриттированного нитрида кремния.
Боковая стенка центрифуги выполнена из композиционной керамики с матрицей из карбида кремния, усиленной волокнами из карбида кремния.
Боковая стенка центрифуги выполнена из композиционной керамики с матрицей из карбида кремния, усиленной волокнами из углерода.
Центрифуга выполнена с защитным слоем на основе карбида кремния.
На фиг. 1 показаны кривые вязкость-температура для различных стекол; на фиг. 2 схема, иллюстрирующая способ получения волокон; на фиг. 3 центрифуга.
Центрифуга выполнена из керамики SiC-SiC. Под керамической центрифугой понимают просто часть центрифуги, способную находиться в контакте с расплавленным стеклом или непосредственно в соприкосновении с газообразной окружающей средой при высокой температуре. Все другие детали являются предпочтительно металлическими. Керамическое изделие образуется кольцеобразной секцией 1, разделенной на три части: собственно периферическая лента 2 с проделанными, например, 20000 отверстиями, диаметр которых составляет 0,2-0,7 мм, а предпочтительно около 0,5 мм, для центрифуги с диаметром 400 мм и для высоты ленты порядка 50 мм. Кольцеобразная секция включает также борт 3, который придает хорошую механическую прочность изделию, и плоский участок 4, который принимает струю расплавленного стекла 5 и где образуется в случае необходимости резерв расплавленного стекла. Участок 4, который образует дно центрифуги, крепится к металлической ступице 6, приводимой во вращение ведущим валом 7. Крепление должно учитывать три обязательных требования: гибкое соединение, учитывающее различие в расширении между металлическими и керамическими деталями; точное центрирование центрифуги, периферическая скорость которой, например, превышает 50 мс-1 и предпочтительно составляет 50-90 мс-1; керамика не должна работать при растяжении, а всегда при сжатии. Для этого на внутренней поверхности днища 4 оборудуются по меньшей мере три регулярно расположенные продолговатые канавки 8. Эти продолговатые канавки заполняются зажимами 9 также из керамики, которые в горячем состоянии насаживаются на металлическую ступицу 6, причем насаживание в горячем состоянии позволяет осуществить чрезвычайно точную установку. Эти зажимы перемещаются радиально, когда ступица 6 расширяется, и обеспечивают, таким образом, хорошее центрирование центрифуги. Кроме того, днище 4 схвачено круглым металлическим фланцем 10, прикрепленным к ступице 6, например, при помощи болтов 11 путем крепления металла с металлом. Зазор между днищем 4 и фланцем 10 с одной стороны и ступицей 6 с другой стороны заполняется огнеупорной набивкой, которая поддерживает керамическую часть путем защемления без сдавливания, причем нагрузка распределяется на очень большую поверхность. Чтобы это сделать, можно применять войлок из волокон на основе оксида алюминия или из других огнеупорных волокон; однако предпочтительными являются набивки из графита, в частности из слоеной графитной бумаги, которые являются эластичными и могут обратимо следовать за деформациями деталей, причем графит может здесь использоваться, так как он находится в замкнутом объеме, без обновления воздуха.
Центрифуга окружается горелками, служащими для предварительного нагревания, для поддержания температуры и для создания нагретого окружающего пространства и/или газовых потоков для вытягивания, распространяющихся вдоль периферической ленты. Внутренняя стенка периферической ленты нагревается внутренними горелками 12, смонтированными в виде кольца, которые предпочтительно являются горелками с рассеивающими форсунками так, чтобы покрывать всю высоту стенки. Внешняя стенка нагревается кромкой 13 кольцевой горелки 14. Преимуществом также может быть размещение подвижной площадки 15 с внешними горелками, применяемыми для предварительного нагревания и извлекаемыми как только начинается течение расплавленного стекла.
Предварительное нагревание осуществляется при соблюдении кривой подъема температуры, учитывающей сопротивление керамики тепловым ударам, причем температура стенки, превышающая по крайней мере 1000оС, должна достигаться, пока не начнется течение, если выбирают способ получения волокон с температурой центрифуги 1200-1300оС. Чтобы избежать появления слишком значительных температурных градиентов, предварительное нагревание должно осуществляться при как можно более изотермических условиях (в сечениях, сделанных по толщине, а следовательно, параллельно слоям ткани в случае композиционной керамики). Это связано с очень малым коэффициентом тепловой диффузии для керамик, которые практически не передают тепло, полученное в одном месте, соседним частям. Вследствие наличия отверстий, через которые газы из горелки локально проходят сквозь стенку, преимуществом является предварительное нагревание центрифуги и снаружи, и изнутри, причем внутреннее нагревание начинается, например, когда достигается температура 500-600оС. Вместе с тем внутреннее нагревание позволяет свести к минимуму эффекты охлаждения, обусловленного конвекций.
На стадии получения волокон внешняя кольцевая горелка 14 должна быть в состоянии испускать газовые потоки, температура которых соответствует температуре, желательной для внешней стенки периферической ленты, а скорость равняется периферической скорости центрифуги, т.е. 50 мс-1. Эти потоки, испущенные в основном перпендикулярно волокнам из стекла, содействуют, таким образом, их вытягиванию и увлекают их по направлению к устройству для приема волокон. Чтобы избежать того, что некоторое число филаментов не продолжают свой горизонтальный путь за зоной, разграниченной газовыми потоками, устройство для получения волокон дополняется кольцом 15 для поддувания, испускающим через отверстие относительно более быстрые потоки с температурой меньшей температуры, требуемой для газового вытягивания, которые хорошо известным для этой техники способом обрывают волокна и направляют их падение в сторону приемника.
При помощи такой установки обеспечивается возможность переводить в волокна очень широкий набор стекол, отвечающих составам, в которых содержание диоксида кремния может колебаться от 50 до 70% что позволяет получать широкую гамму продуктов, допускает возможное применение природной породы без добавок гидроксида натрия, и все это с качеством волокон, равным, по крайней мере, обычному качеству волокон, полученных в результате внутреннего центрифугирования.
Центрифуга в соответствии с изобретением может действовать с температурным градиентом по толщине (т.е. перпендикулярно слоям ткани), который может достигать, например, 200оС, причем такой диапазон позволяет без труда создавать профиль температур, показанный на фиг. 1. Этот профиль температур позволяет получать волокна в хороших условиях из базальта. Волокна с более большими диаметрами (30 и 35 мкм) были получены с растягиванием 30 кг в день через одно отверстие, причем с практически нулевым содержанием неволоконных частиц, что очень важно для базальтового стекла. Волокна с меньшими диаметрами были получены с растягиванием 0,1 кг в день через одно отверстие и со стеклом, для которого кривая вязкость-температура соответствует кривой 1, причем были получены очень тонкие волокна со средним диаметром 1,75 мкм. Все другие промежуточные значения могут быть получены при варьировании значения растягивания в день через одно отверстие между указанными значениями.
Промышленность изоляционных волокон производит в основном два типа продукции: стеклянное волокно (стекловата) и горный лен (асбест), причем каждый из этих типов имеет отклонения в соответствии с очень большим числом вариантов. В типичном случае стекловата получается исходя из стекольного состава, мас. SiO2 61-66 Na2O 12-17 Al2O3 2-5 К2О 0-3 СаО 6-9 В2О3 0-7,5 МgO 0-5 Fe2O3 меньше 0,6
При исследовании кривой вязкость-температура для такого стекла (кривая 1 на фиг. 1), констатируют, что вязкость составляет 300-3000 Пуаз, когда температура составляет 1050-1300оС. На фиг. 1 заштрихованы области температур, меньших верхних температур расстекловывания для данных стекол. Верхняя температура растекловывания находится вне этой области (960оС), Следовательно, рабочий интервал сильно растягивается и эти стекла особенно хорошо поддаются превращению в волокна, так как они могут обрабатываться в течение относительно длительных сроков в хорошо оптимизируемых условиях вытягивания, что приводит к высокому качеству волокон с точки зрения термических и механических свойств, т.е. основных свойств, которые пытаются получить при производстве изолирующего материала.

Claims (9)

1. Способ получения минеральных волокон путем подачи расплава внутрь центрифуги и продавливания его за счет центробежных сил через фильеры в боковой стенке чаши при поддержании температурного градиента по ее толщине и равной температуре поля по высоте, отличающийся тем, что температуру внутренней поверхности боковой стенки центрифуги поддерживают более высокой, чем температуру наружной поверхности.
2. Способ по п. 1, отличающийся тем, что градиент температур между внутренней и наружной поверхностями боковой стенки центрифуги составляет 50 - 300oС, преимущественно 100 - 200oС.
3. Устройство для получения минеральных волокон, включающее корпус центрифуги с фильерами в боковой стенке, лоток для подачи расплава, установленный в центрифуге, вне ее горелки, отличающееся тем, что боковая стенка центрифуги выполнена из материала, теплопроводность которого ниже 20 Вт • м-1 с-1 при 1000oС.
4. Устройство по п.3, отличающееся тем, что боковая стенка центрифуги выполнена из материала, теплопроводность которого ниже 10 Вт • м-1 с-1 при 1000oС.
5. Устройство по п.3, отличающееся тем, что боковая стенка центрифуги выполнена из материала, коэффициент тепловой диффузии которого менее 5 • 10-6 м2 с-1 при 1000oС.
6. Устройство по пп. 3 и 4, отличающееся тем, что боковая стенка центрифуги выполнена из керамики на основе фриттированного нитрида кремния.
7. Устройство по пп. 3 и 4, отличающееся тем, что боковая стенка центрифуги выполнена из композиционной керамики с матрицей из карбида кремния, усиленной волокнами из карбида кремния.
8. Устройство по пп. 3 и 4, отличающееся тем, что боковая стенка центрифуги выполнена из композиционной керамики с матрицей из карбида кремния, усиленной волокнами из углерода.
9. Устройство по п. 8, отличающееся тем, что центрифуга выполнена с защитным слоем на основе карбида кремния.
SU915001966A 1990-10-29 1991-10-28 Способ получения минеральных волокон и устройство для его осуществления RU2053207C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9013354A FR2668470B1 (fr) 1990-10-29 1990-10-29 Procede et dispositif de production de fibres par centrifugation interne et application au fibrage de certains verres.
FR9013354 1990-10-29

Publications (1)

Publication Number Publication Date
RU2053207C1 true RU2053207C1 (ru) 1996-01-27

Family

ID=9401639

Family Applications (1)

Application Number Title Priority Date Filing Date
SU915001966A RU2053207C1 (ru) 1990-10-29 1991-10-28 Способ получения минеральных волокон и устройство для его осуществления

Country Status (26)

Country Link
US (1) US5176729A (ru)
EP (1) EP0484211B1 (ru)
JP (1) JPH04265247A (ru)
KR (1) KR920007938A (ru)
CN (1) CN1062127A (ru)
AT (1) ATE125521T1 (ru)
AU (1) AU648831B2 (ru)
BR (1) BR9104665A (ru)
CA (1) CA2054326A1 (ru)
CZ (1) CZ280908B6 (ru)
DE (1) DE69111567T2 (ru)
DK (1) DK0484211T3 (ru)
ES (1) ES2078475T3 (ru)
FI (1) FI94749C (ru)
FR (1) FR2668470B1 (ru)
HU (1) HUT66662A (ru)
IE (1) IE70330B1 (ru)
IS (1) IS3771A7 (ru)
MX (1) MX174325B (ru)
NO (1) NO914143L (ru)
NZ (1) NZ240336A (ru)
PL (1) PL168379B1 (ru)
RU (1) RU2053207C1 (ru)
TR (1) TR25519A (ru)
YU (1) YU48062B (ru)
ZA (1) ZA918561B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7753312B2 (en) 2003-07-08 2010-07-13 Airbus Deutschland Gmbh Lightweight structure especially for an aircraft and method for making such a structure

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SK284033B6 (sk) * 1991-08-02 2004-08-03 Isover Saint-Gobain Minerálna vlna z roztaveného minerálneho materiálu, spôsob jej výroby a zariadenie na vykonávanie tohto spôsobu
KR100188507B1 (ko) * 1992-08-20 1999-06-01 한스 푸르탁 광물모의 제조방법 및 장치, 및 그것에 의해 제조된 광물모
WO1994004468A1 (en) * 1992-08-20 1994-03-03 Isover Saint-Gobain Method for producing mineral wool, and mineral wool produced thereby
DE19730996A1 (de) * 1997-07-18 1999-01-21 Klaus Rennebeck Verfahren zur Herstellung von keramischen Fasern, die danach hergestellten keramischen Fasern und deren Verwendung
FR2783516B1 (fr) * 1998-09-17 2000-11-10 Saint Gobain Isover Composition de laine minerale
FR2809387B1 (fr) * 2000-05-23 2002-12-20 Saint Gobain Isover Procede de fabrication de laine minerale, alliages a base de cobalt pour le procede et autres utilisations
FR2811661B1 (fr) * 2000-07-13 2003-05-02 Saint Gobain Isover Produit d'isolation thermique/phonique a base de laine minerale et son procede de fabrication
DE10041481B4 (de) * 2000-08-24 2006-01-19 Deutsche Rockwool Mineralwoll Gmbh & Co. Ohg Dämmstoffelement sowie Verfahren und Vorrichtung zur Herstellung eines Dämmstoffelementes, insbesondere einer roll- und/oder wickelbaren Dämmstoffbahn aus Mineralfasern
ITMI20031877A1 (it) * 2003-09-30 2005-04-01 Saint Gobain Isover Italia S P A Pannello isolante a base di fibre minerali e relativo metodo di produzione.
CA2541687C (en) * 2003-10-06 2013-06-25 Saint-Gobain Isover Climate, respectively ventilation channel
US20070000286A1 (en) * 2005-07-01 2007-01-04 Gavin Patrick M Fiberizing spinner for the manufacture of low diameter, high quality fibers
US7635521B2 (en) * 2006-02-10 2009-12-22 Corning Incorporated Glass compositions for protecting glass and methods of making and using thereof
US8104311B2 (en) * 2006-05-09 2012-01-31 Johns Manville Rotary fiberization process for making glass fibers, an insulation mat, and pipe insulation
US20120144869A1 (en) * 2010-12-10 2012-06-14 Schott Corporation Glass optical waveguides incorporating materials of interest and methods of fabricating the same
US9624123B2 (en) * 2014-08-07 2017-04-18 Knauf Insulation, Inc. Multi-component rotary spinner apparatuses systems and methods for producing fiber from molten material
WO2018111198A1 (en) 2016-12-12 2018-06-21 Izoteh D.O.O. Coated rotating wheel for mineral melt fiberization and method for coating of a rotating wheel for mineral melt fiberization
WO2023087014A1 (en) * 2021-11-15 2023-05-19 Blasch Precision Ceramics, Inc. Ceramic article with holes and method of making the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2624912A (en) * 1946-05-31 1953-01-13 Saint Gobain Process and apparatus for the production of fibers from thermoplastics
US3227536A (en) * 1962-01-18 1966-01-04 Miles S Firnhaber Apparatus for manufacturing fibers of thermoplastic material
US3560179A (en) * 1968-07-09 1971-02-02 Owens Corning Fiberglass Corp Rotary apparatus with fluid blast means for making glass fibers from heat-softenable mineral materials
US3928009A (en) * 1972-03-02 1975-12-23 Walter Merton Perry Rotary forming unit for fine mineral fibers
US3785791A (en) * 1972-03-02 1974-01-15 W Perry Forming unit for fine mineral fibers
US4058386A (en) * 1972-12-22 1977-11-15 Johns-Manville Corporation Method and apparatus for eliminating external hot gas attenuation in the rotary fiberization of glass
US4185980A (en) * 1978-09-15 1980-01-29 Owens-Corning Fiberglas Corporation Manufacturing glass with improved silicon carbide bushing operation
DE2954455A1 (ru) * 1978-12-08 1985-07-04
US4756732A (en) * 1982-04-06 1988-07-12 Isover Saint-Gobain Glass fiberization method
FR2536385B1 (fr) * 1982-11-22 1985-07-26 Spafi Centrifugeur poreux pour le fibrage de matieres thermoplastiques, notamment de verre
US4534779A (en) * 1982-12-22 1985-08-13 Owens-Corning Fiberglas Corporation Method and apparatus for heating a mineral fiber forming spinner
US4627868A (en) * 1985-08-19 1986-12-09 Owens-Corning Fiberglas Corporation Method and apparatus for producing mineral fibers
US4689061A (en) * 1986-05-20 1987-08-25 Owens-Corning Fiberglas Corporation Method and apparatus for producing fine fibers
US5015278A (en) * 1990-03-12 1991-05-14 Owens-Corning Fiberglas Corporation Open bottomed spinner for mineral fibers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Школьников Я.А. и др. Стеклянное штапельное волокно. М.: Химия, 1969, с.135-136. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7753312B2 (en) 2003-07-08 2010-07-13 Airbus Deutschland Gmbh Lightweight structure especially for an aircraft and method for making such a structure

Also Published As

Publication number Publication date
MX174325B (es) 1994-05-06
DK0484211T3 (da) 1995-12-18
FI94749C (fi) 1995-10-25
AU648831B2 (en) 1994-05-05
CZ280908B6 (cs) 1996-05-15
PL292204A1 (en) 1992-08-10
KR920007938A (ko) 1992-05-27
NO914143L (no) 1992-04-30
US5176729A (en) 1993-01-05
AU8605891A (en) 1992-04-30
EP0484211A1 (fr) 1992-05-06
TR25519A (tr) 1993-05-01
DE69111567D1 (de) 1995-08-31
NZ240336A (en) 1994-01-26
BR9104665A (pt) 1992-06-16
EP0484211B1 (fr) 1995-07-26
ATE125521T1 (de) 1995-08-15
JPH04265247A (ja) 1992-09-21
CN1062127A (zh) 1992-06-24
CS324691A3 (en) 1992-05-13
FI915072A0 (fi) 1991-10-28
ES2078475T3 (es) 1995-12-16
ZA918561B (en) 1992-07-29
IE70330B1 (en) 1996-11-13
FI915072A (fi) 1992-04-30
YU169691A (sh) 1994-09-09
IE913721A1 (en) 1992-05-22
DE69111567T2 (de) 1996-03-21
FR2668470B1 (fr) 1992-12-24
NO914143D0 (no) 1991-10-22
HUT66662A (en) 1994-12-28
IS3771A7 (is) 1992-04-30
FR2668470A1 (fr) 1992-04-30
FI94749B (fi) 1995-07-14
CA2054326A1 (fr) 1992-04-30
HU913382D0 (en) 1992-02-28
PL168379B1 (pl) 1996-02-29
YU48062B (sh) 1996-10-18

Similar Documents

Publication Publication Date Title
RU2053207C1 (ru) Способ получения минеральных волокон и устройство для его осуществления
RU2100298C1 (ru) Способ изготовления минеральной ваты и устройство для образования волокон путем внутреннего центрифугирования
CZ238192A3 (en) Mineral wool, process of producing the mineral wool and apparatus for making the same
US4534779A (en) Method and apparatus for heating a mineral fiber forming spinner
US8250884B2 (en) Rotary fiberizer
CZ281392B6 (cs) Způsob vytváření minerálních vláken
KR100341648B1 (ko) 2중유리섬유제조방법
EP1339647A1 (en) Apparatus and process for producing an optical fibre preform
US6658897B2 (en) Optical fiber draw furnace having a SiC or Silicon Nitride tube
WO1999023040A1 (en) Apparatus and method for drawing waveguide fibers
RU95116491A (ru) Способ получения минераловатного ковра из базальтового супертонкого волокна