RU2049086C1 - Способ получения метанола - Google Patents

Способ получения метанола Download PDF

Info

Publication number
RU2049086C1
RU2049086C1 SU5028053A RU2049086C1 RU 2049086 C1 RU2049086 C1 RU 2049086C1 SU 5028053 A SU5028053 A SU 5028053A RU 2049086 C1 RU2049086 C1 RU 2049086C1
Authority
RU
Russia
Prior art keywords
methane
reactor
stage
effect
carried out
Prior art date
Application number
Other languages
English (en)
Inventor
В.С. Арутюнов
В.И. Веденеев
Н.Ю. Крымов
П.М. Щербаков
В.П. Симченко
Original Assignee
Научно-производственное предприятие "Технопром"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Научно-производственное предприятие "Технопром" filed Critical Научно-производственное предприятие "Технопром"
Priority to SU5028053 priority Critical patent/RU2049086C1/ru
Application granted granted Critical
Publication of RU2049086C1 publication Critical patent/RU2049086C1/ru

Links

Images

Abstract

Использование: в основном органическом синтезе для получения метанола, применяемого в качестве компонента моторного топлива. Сущность изобретения: продукт- метанол. Б.В. CH4O,, селективность 50% Реагент 1: метансодержащий газ. Реагент 2: кислородсодержащий газ. Условия реакции: процесс осуществляют при химическом воздействии (гетерофазная каталитическая система, высшие газообразные углеводороды или кислородсодержащие соединения, холодный окислитель) на одну или несколько последовательных стадий прямого неполного окисления метана при 200-600°С и давлении 2,5-1,5 МПа. 8 з.п. ф-лы, 1 ил.

Description

Изобретение относится к органической химии, в частности к способам получения метанола путем прямого окисления природного газа, и может быть использовано в химической промышленности для получения метанола, применяемого, например, в качестве компонента моторного топлива либо исходного сырья для получения синтетического бензина и других моторных топлив.
Известен ряд способов получения метанола из метана и метансодержащих газов. Наибольшее промышленное применение получило превращение метана в синтез-газ (СО и Н2) с его последующим каталитическим превращением в метанол [1]
Этот процесс имеет ряд недостатков: сложность оборудования, большие энергозатраты на превращение метана в синтез-газ, многостадийность процесса, необходимость тщательной очистки природного газа от соединений серы, нерентабельность организации небольших производств мощностью менее 2000 т/день. Поэтому в настоящее время интенсивно исследуется возможность создания эффективных процессов прямого окисления метана в метанол, минуя стадию получения синтез-газа.
Наиболее близким к предлагаемому является способ получения метанола, заключающийся в окислении природного газа кислородсодержащим газом при температуре 350-1600оС и давлении 100-150 атм при раздельной подаче предварительно подогретых природного газа и кислородсодержащего газа в ректор [2]
Однако известный способ имеет следующие недостатки: низкая степень конверсии природного газа в целевой продукт, потери целевого продукта в результате его дальнейшего более глубокого окисления до органических кислот и оксидов углерода, неустойчивость процесса.
Задачей изобретения является создание высокоэффективного способа получения метанола, позволяющего повысить степень конверсии метана в целевой продукт (метанол, а также формальдегид и высшие спирты и альдегиды) и увеличить устойчивость процесса.
Это достигается тем, что в способе получения метанола путем окисления метансодержащего газа, в том числе природного газа, кислородсодержащим газом, в том числе кислородом, при повышенных температуре и давлении при раздельной подаче в реактор предварительно подогретого метансодержащего газа и кислородсодержащего газа и последующего отделения целевого продукта, процесс осуществляют при химическом воздействии на одну или несколько последовательных стадий прямого гомогенного окисления метана при температуре 200-600оС и давлении 2,5-15 МПа.
Проведенные при разработке предлагаемого способа исследования выявили три основных стадии протекания процесса в реакторе. Первая стадия является разветвленно-цепным процессом, причем разветвление определяется только строением и свойствами исходных веществ. Вторая стадия является вырожденно-разветвленным цепным процессом, причем разветвление определяется строением и свойствами промежуточных продуктов (метанола, формальдегида, перекисей). При этом во второй стадии происходит практически полное расходование окислителя. Третья стадия характеризуется термическим безокислительным превращением продуктов реакции. Вторая стадия условно может быть разделена на две подстадии: подстадию медленного накопления промежуточных продуктов реакции, занимающую большую часть времени всего процесса, и относительно короткую подстадию, в которой происходит образование основного количества продуктов, характеризующуюся резким автоускорением процесса и подъемом температуры.
Химические реакции на перечисленных стадиях существенно различны, поэтому решение поставленной задачи достигается различными видами химического воздействия на разных стадиях или сразу на нескольких стадиях в реакционный поток на определенном участке (что соответствует определенному моменту времени реакции) вводят какое-либо химическое вещество (реагент, катализатор и др.).
Для достижения максимального выхода целевого продукта применяют регулировку (в том числе автоматическую) точек приложения воздействия с учетом текущих параметров процесса (например, температуры). Применяют также повторную рециркуляцию отходящих из реактора газов (после отделения целевого продукта).
В известных способах получения метанола из метансодержащих газов путем их прямого окисления раздельное химическое воздействие на последовательные стадии протекания процесса до сих пор не применялось. В то же время, как показали исследования, воздействие на отдельные стадии процесса позволяет наилучшим образом организовать процесс и оптимизировать его с точки зрения получения максимальной конверсии метансодержащего газа в целевой продукт.
На чертеже показана зависимость величины разогрева от времени.
Установлено, что процесс прямого неполного окисления метана при малых концентрациях кислорода и повышенных давлениях, т.е. условиях, наиболее благоприятных для образования метанола, характеризуется наличием трех достаточно выраженных областей (см.чертеж), в каждой из которых доминируют различные химические процессы. Начальная стадия разветвленно-цепного разгона реакции (участок t0-t1 на кривой) характеризуется важной ролью гомогенных и гетерогенных реакций зарождения свободных радикалов. Теоретические и экспериментальные исследования показали возможность существенного воздействия на эту стадию путем введения гомогенных химических промоторов, таких как высшие газообразные углеводороды (этан, пропан и др.) или кислородсодержащего соединения (спирты, перекиси, альдегиды), или путем использования гетерогенных катализаторов разложения углеводородов. Однако, как показали проведенные исследования, такое дополнительное инициирование в течение всей реакции, например путем использования каталитического реактора, в еще большей степени увеличивает скорость окисления самого целевого продукта и в итоге приводит к снижению его выхода. Установлено, что такое ускоряющее воздействие дает положительный эффект при воздействии только на ограниченную начальную область реакции, что способствует общему снижению температуры остальных стадий процесса, что, в свою очередь, уменьшает скорость дальнейшего окисления уже образовавшегося метанола. Кроме того, снижается расход энергии на предварительный нагрев газов.
Во второй стадии процесса (t1-t2) происходит наработка промежуточных продуктов (перекисей и альдегидов), приводящих к последующему быстрому разогреву в конце этой стадии на участке (t1'-t2). Исследования показали, что в начале второй стадии наиболее эффективным является мягкое каталитическое воздействие, способствующее наиболее быстрому и полному переводу исходных реагентов в такие соединения, как перекиси и альдегиды. Кроме того, показано, что введение на начальном участке второй стадии (t1-t1') катализаторов на основе молибдата кобальта способствует переводу одного из промежуточных продуктов формальдгида в целевой продукт метанол.
Воздействие на заключительную часть второй стадии (t1'-t2) должно иметь основной целью повышение степени конверсии природного газа при сохранении незначительной глубины его окисления с тем, чтобы сохранить максимально возможную степень его конверсии в метанол. Это может быть достигнуто путем ввода небольшой дополнительной порции холодного окислителя (кислорода или воздуха). Такой прием не приводит к значительному взрывному разогреву реакции и связанному с ним процессу образования продуктов глубокого окисления метана окиси и двуокиси углерода, сохраняя высокую степень конверсии метана в метанол при повышении общей глубины переработки исходного метансодержащего газа.
На третьей, заключительной, стадии процесса после израсходования одного из реагентов кислорода происходит рекомбинация радикалов и относительно медленное превращение неустойчивых продуктов. Исследования показали, что на этой стадии, как и в начале второй стадии, наиболее эффективно введение специфических катализаторов, способствующих переводу образовавшегося в ходе предыдущих стадий формальдегида в целевой продукт метанол.
Следует отметить, что каждому участку кривой на чертеже (зависимости температуры процесса от времени) соответствует определенный участок длины реактора.
Проведенные эксперименты показали принципиальную неустойчивость процесса неполного окисления в режиме холодных пламен. Даже при полном постоянстве входных параметров процесса происходят стохастические изменения концентрационного и температурного профиля вдоль реактора, приводящие к смещению положения отдельных стадий относительно его начала. Особенно драматично оказываются такие случайные изменения на положении относительно начала реактора конца второго этапа процесса, занимающего очень небольшую часть общей длины реактора, но определяющего превращение подавляющей части всего расходуемого метана. Любое воздействие на этот этап, например подачу дополнительной порции кислорода, необходимо автоматически подстраивать к реальному текущему положению зоны максимального разогрева.
Ввиду того что достаточно высокие селективности образования метанола (порядка 50% ) достигаются только при небольших степенях конверсии метана (3-5% ), рациональное использование метансодежащего сырья требует рециркуляции непрореагировавшей части метансодержащего газа после извлечения из него целевых продуктов.
Предлагаемый способ осуществляют следующим образом.
Предварительно нагретый до температуры 200-500оС природный газ под давлением 2,5-15 МПа и при расходе 760 нм3/ч подают в реактор, представляющий собой трубу диаметром 36х5,5 мм из стали 12Х18Н10Т. В смесительной камере природный газ смешивают с воздухом, доводя концентрацию кислорода до величины от 1 до 4% Для лучшего смешивания струя воздуха подается перпендикулярно потоку газа. Ход процесса контролируют по разогреву установленными вдоль реактора термопарами. На различных участках реактора имеются вводы для дополнительной подачи реагентов, а также возможность введения внутрь реактора катализатора. На выходе из реактора газы охлаждают в теплообменнике и затем отделяют жидкие продукты в сепараторе. Анализ жидких продуктов производится хроматографически.
П р и м е р 1 (сравнительный без химического воздействия).
Условия процесса: Давление, МПа 10,0
Расход природного газа, нм3/ч 760 Расход воздуха, нм3/ч 80 Содержание кислорода, об. 2 Температура, оС 360
Состав продуктов реакции:
Компонент метанол альдегиды вода
Выход, кг/1000 нм3 11,36 4,10 11,9
П р и м е р 2. Условия те же, что и в примере 1. В смеситель дополнительно подавали формальдегид в количестве 1 кг/1000 нм3 газа.
Состав продуктов реакции:
Компонент м етанол альдегиды вода
Выход, кг/1000 нм3 12,4 4,3 12,0
П р и м е р 3. Условия те же, что и в примере 1. В начальный участок реактора вносили оксидный катализатор (Cr2O3).
Состав продуктов реакции:
Компонент метанол альдегиды вода
Выход, кг/1000 нм3 12,6 4,8 10,5
П р и м е р 4. Условия те же, что и в примере 1, но непосредственно перед зоной максимального разогрева (зона достижения максимальной концентрации метанола) в реактор подавали этан в количестве 2-10% от объема проходящего природного газа.
Состав продуктов реакции:
Компонент метанол альдегиды вода
Выход, кг/1000 нм3
при 2% этана 11,6 5,15 11,2
при 10% этана 11,9 6,3 8,1
П р и м е р 5. Условия те же, что и в примере 1. В зону максимального разогрева дополнительно подавали воздух в том же объеме, что и в смеситель (80 нм3/ч).
Состав продуктов реакции:
Компонент метанол альдегиды вода
Выход, кг/1000 нм3 19,73 6,11 19,61
П р и м е р 6 (сравнительный). Условия примера 5, но весь воздух сразу подается в начало реактора (в смеситель).
Состав продуктов реакции:
Компонент метанол альдегиды вода
Выход, кг/1000 нм3 17,76 1,89 20,18
П р и м е р 7. Условия те же, что в примере 1. В зону начальной части стадии накопления продуктов (t1-t2) вносили промышленный многокомпонентный оксидный катализатор на основе молибдата кобальта (С-41).
Состав продуктов реакции:
Компонент метанол альдегиды вода
Выход, кг/1000 нм3 11,96 2,50 11,95
П р и м е р 8. Условия те же, что и в примере 1, но сразу за зоной максимального разогрева (t2) вносили промышленный многокомпонентный оксидный катализатор на основе молибдата кобальта (С-41).
Состав продуктов реакции:
Компонент метанол альдегиды вода
Выход, кг/1000 нм3 12,1 2,9 12,1
П р и м е р 9. Условия те же, что и в примере 1, но в смеситель дополнительно подавали формальдегид в количестве 1 кг/1000 нм3 газа, а в зону максимального разогрева дополнительно подавали воздух в том же объеме, что и в смеситель (80 нм3/ч).
Состав продуктов реакции:
Компонент метанол альдегиды вода
Выход, кг/1000 нм3 20,2 5,2 1,3
Как видно из приведенных примеров, различные виды химического воздействия приводят к повышению выхода метанола или альдегидов. Сравнение примеров 5 и 6 показывает определяющее значение места приложения воздействия.

Claims (9)

1. СПОСОБ ПОЛУЧЕНИЯ МЕТАНОЛА путем окисления метансодержащего газа, в том числе природного газа, кислородсодержащим газом, в том числе кислородом, при повышенных температуре и давлении при раздельной подаче в реактор предварительно подогретого метансодержащего газа и кислородсодержащего газа и последующего отделения целевого продукта, отличающийся тем, что процесс осуществляют при химическом воздействии на одну или несколько последовательных стадий прямого неполного окисления метана при температуре 200 600oС и давлении 2,5 15 МПа.
2. Способ по п. 1, отличающийся тем, что воздействие осуществляют на начальную стадию прямого неполного окисления метана стадию разветвленно-цепного автоускорения реакции.
3. Способ по п. 1, отличающийся тем, что воздействие осуществляют на вторую стадию окисления метана на стадию вырожденного разветвленно-цепного накопления промежуточных продуктов.
4. Способ по п. 1, отличающийся тем, что воздействие осущетвляют на третью стадию процесса на стадию безокислительного превращения промежуточных продуктов реакции.
5. Способ по п. 1, отличающийся тем, что воздействие осуществляют путем введения в реактор гетерофазной каталитической системы многокомпонентного металлоксидного катализатора.
6. Способ по п. 2, отличающийся тем, что воздействие осуществляют путем введения в реактор гомогенных химических промоторов высших газообразных углеводородов или кислородсодержащих соединений.
7. Способ по п. 3, отличающийся тем, что воздействие осуществляют путем введения в реактор дополнительной порции холодного окислителя.
8. Способ по п. 1, отличающийся тем, что область приложения воздействия смещают с учетом значений текущих выходных параметров процесса.
9. Способ по п. 1, отличающийся тем, что выходящие из реактора газа после отделения целевых продуктов повторно подают на вход реактора (рециркулируют).
SU5028053 1992-02-21 1992-02-21 Способ получения метанола RU2049086C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5028053 RU2049086C1 (ru) 1992-02-21 1992-02-21 Способ получения метанола

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5028053 RU2049086C1 (ru) 1992-02-21 1992-02-21 Способ получения метанола

Publications (1)

Publication Number Publication Date
RU2049086C1 true RU2049086C1 (ru) 1995-11-27

Family

ID=21597254

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5028053 RU2049086C1 (ru) 1992-02-21 1992-02-21 Способ получения метанола

Country Status (1)

Country Link
RU (1) RU2049086C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006091120A1 (fr) * 2005-02-22 2006-08-31 Closed Joint-Stock Company 'centre Of Exportable High Technologies' Procede permettant de reduire les quantites d'oxydes d'azote emises par des installations de production d'energie utilisant du gaz naturel ou associe
WO2011021955A1 (ru) 2009-08-19 2011-02-24 Открытое Акционерное Общество "Gtl" Установка для гомогенного окисления метаносодержащего газа и способ окисления метаносодержащего газа
RU2451660C2 (ru) * 2010-03-23 2012-05-27 Государственное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ПГУ) Способ получения метанола и установка для его осуществления

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. Караваев М. М. и др. Технология синтетического метанола. М.: Химия, 1984. *
2. Авторское свидетельство СССР N 1145014, кл. C 07C 31/04, опубл. 1981. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006091120A1 (fr) * 2005-02-22 2006-08-31 Closed Joint-Stock Company 'centre Of Exportable High Technologies' Procede permettant de reduire les quantites d'oxydes d'azote emises par des installations de production d'energie utilisant du gaz naturel ou associe
WO2011021955A1 (ru) 2009-08-19 2011-02-24 Открытое Акционерное Общество "Gtl" Установка для гомогенного окисления метаносодержащего газа и способ окисления метаносодержащего газа
RU2451660C2 (ru) * 2010-03-23 2012-05-27 Государственное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ПГУ) Способ получения метанола и установка для его осуществления

Similar Documents

Publication Publication Date Title
RU2158747C1 (ru) Способ прямого пиролиза метана
JP2519942B2 (ja) アクロレインへのプロピレン酸化反応およびアクリル酸へのアクロレイン酸化反応用の無水希釈剤
US4724272A (en) Method of controlling pyrolysis temperature
JP2001010984A (ja) アセチレン及び合成ガスの製造方法
JP2002512211A (ja) 有機酸の製造
JPS6351353A (ja) アクロレインへのプロピレン酸化反応およびアクリル酸へのアクロレイン酸化反応に対する無水稀釈剤法
Schmidt et al. New ways to make old chemicals
EP0546677A1 (en) Process for the fluidized bed oxidation of ethane to acetic acid
US20190248717A1 (en) Oxidative dehydrogenation of alkanes to alkenes, and related system
US20140058146A1 (en) Production of butadiene from a methane conversion process
RU2049086C1 (ru) Способ получения метанола
KR960034156A (ko) 유기 화합물의 연속적인 불균일하게 촉매 작용된 기체상 부분 산화 방법
US7288684B1 (en) Process for the direct production of methanol from methane
US9308513B2 (en) Production of vinyl chloride from a methane conversion process
US5478962A (en) Process for the synthesis of dimethylcarbonate
O'Connor et al. C6 oxygenates from n-hexane in a single-gauze reactor
US9205398B2 (en) Production of butanediol from a methane conversion process
RU2057745C1 (ru) Способ получения метанола
EP1491494A1 (en) Process for producing benzene, ethylene and synthesis gas
CN111909000B (zh) 一种煤制乙二醇氮氧化物补充系统及其方法
RU2282612C1 (ru) Способ получения жидких оксигенатов путем конверсии природного газа и установка для его осуществления
US5214226A (en) Method and apparatus for the homogeneous conversion of methane
US20140058160A1 (en) Methane conversion apparatus and process using a supersonic flow reactor
US20140058159A1 (en) Methane conversion apparatus and process using a supersonic flow reactor
RU2807871C1 (ru) Установка и способ производства продуктов нефтехимии из бутан-бутеновой фракции без использования катализатора