RU2038902C1 - Способ непрерывной разливки металлов - Google Patents

Способ непрерывной разливки металлов Download PDF

Info

Publication number
RU2038902C1
RU2038902C1 RU92012866A RU92012866A RU2038902C1 RU 2038902 C1 RU2038902 C1 RU 2038902C1 RU 92012866 A RU92012866 A RU 92012866A RU 92012866 A RU92012866 A RU 92012866A RU 2038902 C1 RU2038902 C1 RU 2038902C1
Authority
RU
Russia
Prior art keywords
mold
ingot
temperature
working
metal
Prior art date
Application number
RU92012866A
Other languages
English (en)
Other versions
RU92012866A (ru
Inventor
Владимир Ильич Лебедев
Альберт Павлович Щеголев
Владимир Алексеевич Тихановский
Александр Леонидович Кузьминов
Юрий Павлович Бойко
Владимир Сергеевич Луковников
Александр Львович Угодников
Юрий Иванович Жаворонков
Борис Николаевич Николаев
Original Assignee
Производственное объединение "Южуралмаш"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Производственное объединение "Южуралмаш" filed Critical Производственное объединение "Южуралмаш"
Priority to RU92012866A priority Critical patent/RU2038902C1/ru
Application granted granted Critical
Publication of RU2038902C1 publication Critical patent/RU2038902C1/ru
Publication of RU92012866A publication Critical patent/RU92012866A/ru

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

Изобретение относитсмя к металлургии. Способ непрерывной разливки металлов включает подачу металла в кристаллизатор, подачу на мениск металла в кристаллизаторе шлаковой смеси, измерение температуры рабочих стенок кристаллизатора по длине и периметру слитка при помощи термопар, по меньшей мере, на двух уровнях по длине слитка, находящегося в кристаллизаторе, на расстоянии соответственно 0,7 0,1 и 1,4 2,2 толщины слитка от мениска металла. В процессе разливки определяют момент повышения температуры рабочих стенок на верхнем уровне измерения на 10 25% от рабочего значения и через время, равное l/vp определяют момент повышения температуры на нижнем уровне измерения и в случае ее повышения на ту же относительную величину увеличивают расход шлаковой смеси на 3 35% от рабочего значения, где l расстояние между уровнями измерения температуры рабочих стенок кристаллизатора, м; vp - рабочее значение скорости вытягивания слитка, м/мин. 1 табл.

Description

Изобретение относится к металлургии, конкретнее к непрерывной разливке металлов.
Известен способ непрерывной разливки металлов, включающий подачу металла в кристаллизатор, вытягивание из него слитка с переменной скоростью, сообщение кристаллизатору возвратно-поступательного движения, подачу на мениск металла в кристаллизаторе шлаковой смеси, охлаждение рабочих стенок кристаллизатора проточной водой, охлаждение поверхности слитка под кристаллизатором охладителем, распыливаемым форсунками, измерение температуры рабочих стенок кристаллизатора, а также отслеживание перемещения элементов поверхности слитка вдоль кристаллизатора. В процессе разливки измеряют расходы и перепады температур охлаждающей воды на входе и выходе из каналов в рабочих стенках кристаллизатора. На основании этих данных определяют момент нарушения сплошности оболочки слитка. Расход шлаковой смеси на мениск металла в кристаллизаторе поддерживают постоянным. Недостатком этого известного способа является неудовлетворительная точность определения момента нарушения сплошности или разрыва оболочки слитка в кристаллизаторе. Это объясняется тем, что при больших расходах охлаждающей воды, протекающей по каналам кристаллизатора снизу вверх, невозможно замерить перепад температуры воды, фиксирующий момент разрыва оболочки слитка. Этот перепад температур незначителен по величине и лежит ниже предела чувствительности существующих измерительных приборов. В результате отсутствует возможность своевременно изменять технологические параметры процесса непрерывной разливки для устранения последствий разрывов оболочки слитка. Сказанное приводит к прорывам металла под кристаллизатором, что снижает производительность и стабильность процесса непрерывной разливки металлов.
Наиболее близким по технической сущности является способ непрерывной разливки металлов, включающий подачу металла в кристаллизатор, вытягивание из него слитка с переменной скоростью, сообщение кристаллизатору возвратно-поступательного движения, подачу на мениск металла в кристаллизаторе шлаковой смеси, охлаждение рабочих стенок кристаллизатора проточной водой, охлаждение поверхности слитка под кристаллизатором охладителем, распыливаемым форсунками, измерение температуры рабочих стенок кристаллизатора, а также отслеживание перемещения элементов поверхности слитка вдоль кристаллизатора. Вдоль и по периметру рабочей полости в медных стенках кристаллизатора устанавливается медь-константановые термопары. В процессе непрерывной разливки фиксируют показания этих термопар и определяют температуру рабочих стенок кристаллизатора. На основании полученных данных рассчитывают толщину оболочки слитка по длине кристаллизатора. Расход шлаковой смеси на мениске металла в кристаллизаторе поддерживают постоянным. Недостатком этого известного способа является неудовлетворительная точность определения момента нарушения сплошности или разрыва оболочки слитка в кристаллизаторе. Это объясняется тем, что в процессе непрерывной разливки не фиксируют последовательность по времени изменения температуры рабочих стенок кристаллизатора по его длине. Вследствие этого отсутствует возможность контролировать момент образования разрыва оболочки слитка и его перемещения по длине кристаллизатора. Сказанное приводит к прорывам металла под кристаллизатором, что снижает производительность и стабильность процесса непрерывной разливки металлов.
Технический эффект при использовании изобретения заключается в повышении стабильности и производительности процесса непрерывной разливки металлов.
Указанный технический эффект достигают тем, что в кристаллизатор подают металл, вытягивают из него слиток с переменной скоростью, сообщают кристаллизатору возвратно-поступательное движение, подают на мениск металла в кристаллизаторе шлаковую смесь, охлаждают рабочие стенки кристаллизатора проточной водой, охлаждают поверхность слитка под кристаллизатором охладителем, распыливаемым форсунками, измеряют температуру рабочих стенок кристаллизатора по длине и периметру слитка при помощи термопар, измерение температуры рабочих стенок кристаллизатора производят как минимум на двух уровнях по длине слитка, находящегося в кристаллизаторе, на расстоянии соответственно 0,7-1,0 и 1,4-2,2 толщины слитка от мениска металла, определяют момент повышения температуры рабочих стенок на верхнем уровне измерения на 10-25% от рабочего значения и через время, равное l/Vp, определяют момент повышения температуры на нижнем уровне измерения и в случае ее повышения на ту же относительную величину увеличивают расход шлаковой смеси на 3-35% от рабочего значения, расход шлаковой смеси уменьшают до рабочего значения через время, равное
τ= [L l (0,7-1,0)H]/(0,4-0,9)Vp, где L длина слитка, находящегося в кристаллизаторе, м;
l расстояние между уровнями измерения температуры рабочих стенок кристаллизатора, м;
Vp рабочее значение скорости вытягивания слитка, м/мин;
Н толщина слитка, м;
(0,7-1,0) эмпирический коэффициент, учитывающий расположение верхнего уровня изменения от мениска металла в кристаллизаторе, безразмерный;
(0,4-0,9) эмпирический коэффициент, учитывающий величину увеличения расхода шлаковой смеси на мениск металла в кристаллизаторе, безразмерный.
Повышение производительности и стабильности процесса непрерывной разливки металлов будет происходить вследствие своевременного увеличения расхода шлаковой смеси, что гарантирует повторную кристаллизацию и "залечивание" участка слитка между разрывами оболочки. Последовательное фиксирование, как минимум, двух и более моментов увеличения значений температуры на последовательно расположенных уровнях измерения температуры рабочих стенок кристаллизатора позволяет гарантированно определять факт разрыва оболочки слитка и своевременно изменять технологические параметры процесса разливки, что позволяет избежать прорывы металла под кристаллизатором.
Диапазон значений расстояния расположения первого уровня измерения температуры рабочих стенок кристаллизатора в пределах 0,7-1,0 толщины слитка от мениска металла объясняется закономерностями разрыва оболочки слитка в верхней части кристаллизатора. При меньших значениях повышение температуры в случае разрыва оболочки будет незначительным, что делает невозможным его измерение. При больших значениях информация о случае разрыва оболочки слитка будет запоздалой для соответствующего изменения технологических параметров процесса разливки, что приведет к прорывам металла под кристаллизатором. Указанный диапазон устанавливают в прямой пропорциональной зависимости от толщины слитка.
Диапазон значений расстояния расположения второго нижнего уровня измерения температуры рабочих стенок кристаллизатора в пределах 1,4-2,2 толщины слитка от мениска металла объясняется закономерностями разрыва и взаимного расположения краев обрывов оболочки по длине кристаллизатора. При меньших значениях разница в результатах измерения температуры стенок кристаллизатора будет незначительной, что делает невозможным ее измерение. При больших значениях информация о повышении температуры стенок кристаллизатора будет запоздалой для соответствующего изменения технологических параметров процесса разливки, что приведет к прорывам металла под кристаллизатором. Указанный диапазон устанавливают в обратной пропорциональной зависимости от толщины слитка.
Диапазон значений повышения температуры рабочих стенок кристаллизатора в пределах 10-25% от рабочего значения на обоих уровнях измерения объясняется закономерностями теплоотвода через рабочую стенку в случае ее контакта с целой оболочкой слитка и с жидким металлом в районе разрыва. При меньших значениях повышение температуры рабочих стенок не будет означать факт разрыва оболочки слитка. Большие значения устанавливать не имеет смысла, так как факт разрыва оболочки устанавливается при меньших значениях. Указанный диапазон устанавливают в прямой пропорциональной зависимости от рабочего значения температуры рабочих стенок на обоих уровнях измерения.
Диапазон значений увеличения расхода шлаковой смеси в пределах 3-35% от рабочего значения объясняется закономерностями "залечивания" оболочки слитка с вместе разрыва. При меньших значениях не будет происходить "залечивание" оболочки слитка вследствие большого трения разорвавшейся части оболочки о стенки кристаллизатора. Большие значения устанавливать не имеет смысла, так как "залечивание" оболочки слитка будет происходить при меньших расходах шлаковой смеси. Указанный диапазон устанавливают в прямой пропорциональной зависимости от рабочего расхода шлаковой смеси.
Диапазон значений эмпирического коэффициента в пределах 0,7-1,0 объясняется закономерностями разрыва оболочки слитка в верхней части кристаллизатора. При меньших значениях повышение температуры в случае разрыва оболочки будет незначительным, что делает невозможным его измерение. При больших значениях информация о случае разрыва оболочки слитка будет запоздалой для соответствующего изменения технологических параметров процесса разливки, что приведет к прорывам металла под кристаллизатором. Указанный диапазон устанавливают в прямой пропорциональной зависимости от толщины слитка.
Диапазон значений эмпирического коэффициента в пределах 0,4-0,9 объясняется закономерностями "залечивания" оболочки слитка. При меньших значениях будет нарушаться стабильность формирования оболочки слитка на мениске металла в кристаллизаторе, что приведет к образованию на поверхности слитков затворов, поясов, ужимин и к их браку. При больших значениях разрывы оболочки слитка не будут успевать "залечиваться" или срастаться, что приведет к прорывам металла под кристаллизатором. Указанный диапазон устанавливают в обратной пропорциональной зависимости от рабочего значения скорости вытягивания слитка.
Способ непрерывной разливки металлов осуществляют следующим образом.
П р и м е р. В процессе непрерывной разливки в кристаллизатор подают сталь марки 3Сп и вытягивают из него слиток с переменной скоростью, сообщают кристаллизатору возвратно-поступательное движение, подают на мениск металла в кристаллизаторе шлаковую смесь на основе CaO-SiO2-Al2O3, охлаждают рабочие стенки кристаллизатора проточной водой, охлаждают поверхность слитка под кристаллизатором водой, распыливаемой форсунками, измеряют температуру рабочих стенок кристаллизатора по длине и периметру слитка при помощи медь-константановых термопар.
Термопары устанавливают на двух уровнях по высоте и с шагом 200 мм по периметру кристаллизатора. Спаи термопар располагают на расстоянии 2 мм от рабочей поверхности медных стенок кристаллизатора. Сигналы с термопар обрабатывают соответствующим образом в ЭВМ.
Измерение температуры рабочих стенок кристаллизатора производят, как минимум, на двух уровнях по длине слитка, находящегося в кристаллизаторе, на расстоянии соответственно 0,7-1,0 и 1,4-2,2 толщины слитка от мениска металла, определяют момент повышения температуры рабочих стенок на верхнем уровне измерения на 10-25% от рабочего значения и через время равное l/Vp, определяют момент повышения температуры на нижнем уровне измерения и в случае ее повышения на ту же относительную величину увеличивают расход шлаковой смеси на 3-35% от рабочего значения. Расход шлаковой смеси уменьшают до рабочего значения через время, равное
τ= [L l (0,7-1,0)H]/(0,4-0,9)Vp, где L длина слитка, находящегося в кристаллизаторе, м;
l расстояние между уровнями измерения температуры рабочих стенок кристаллизатора, м;
Vp рабочее значение скорости вытягивания слитка, м/мин;
Н толщина слитка, м;
(0,7-1,0) эмпирический коэффициент, учитывающий расположение верхнего уровня измерения от мениска металла в кристаллизатор безразмерный;
(0,4-0,9) эмпирический коэффициент, учитывающий величину увеличения расхода шлаковой смеси, безразмерный.
В таблице приведены примеры осуществления способа непрерывной разливки металлов при различных технологических параметрах процесса разливки.
В первом примере вследствие большого увеличения расхода шлаковой смеси происходит ее перерасход. Кроме того, вследствие близкого расположения уровня измерения к мениску металла в кристаллизаторе повышение температуры на этом уровне в случае разрыва оболочки делает невозможным фиксирование этого разрыва. Сказанное приводит к прорывам металла под кристаллизатором.
В пятом примере вследствие малого расхода шлаковой смеси не происходит "залечивания" оболочки слитка. Кроме того, вследствие малого расстояния между уровнями измерения делает невозможным фиксирование момента разрыва оболочки слитка. Сказанное приводит к прорывам металла под кристаллизатором.
В шестом примере вследствие отсутствия последовательного фиксирования во времени изменения температуры рабочих стенок кристаллизатора по его длине не производится фиксирование момента разрыва оболочки слитка, что делает невозможным изменение соответствующих технологических параметров процесса разливки. Сказанное приводит к прорывам металла подкристаллизатором.
В примерах 2-4 вследствие своевременного увеличения расхода шлаковой смеси в оптимальных пределах после фиксирования момента разрыва оболочки слитка на двух уровнях измерения устраняются прорывы металла под кристаллизатором, что приводит к повышению производительности и стабильности процесса непрерывной разливки металлов. Применение предлагаемого способа позволяет повысить производительность процесса непрерывной разливки металлов на 0,8%

Claims (1)

  1. СПОСОБ НЕПРЕРЫВНОЙ РАЗЛИВКИ МЕТАЛЛОВ, включающий подачу металла в кристаллизатор, вытягивание из него слитка с переменной скоростью, сообщение кристаллизатору возвратно-поступательного движения, подачу на мениск металла в кристаллизаторе шлаковой смеси, охлаждение рабочих стенок кристаллизатора проточной водой, охлаждение поверхности слитка под кристаллизатором охладителем, распыливаемым форсунками, измерение температуры рабочих стенок кристаллизатора по длине и периметру слитка при помощи термопар, отличающийся тем, что измерение температуры рабочих стенок кристаллизатора производят по меньшей мере на двух уровнях по длине слитка, находящегося в кристаллизаторе, на расстоянии соответственно 0,7 1,0 и 1,4 2,2 толщины слитка от мениска металла, при этом при последовательном повышении температуры рабочих стенок на верхнем и нижнем уровнях измерения на 10 25% от рабочего значения в течение времени, равном l/vр, увеличивают расход шлаковой смеси на 3 35% от рабочего значения, а затем его снижают до рабочего значения через время
    τ = [L-l-(0,7-1,0)H]/(0,4-0,9)·Vp,
    где L длина слитка, находящегося в кристаллизаторе, м;
    l расстояние между уровнями измерения температуры рабочих стенок кристаллизатора, м;
    vр рабочее значение скорости вытягивания слитка, м/мин;
    H толщина слитка, м;
    (0,7 1,0) эмпирический коэффициент, учитывающий расположение верхнего уровня измерения от мениска металла в кристаллизаторе;
    (0,4 0,9) эмпирический коэффициент, учитывающий величину повышения расхода шлаковой смеси.
RU92012866A 1992-12-18 1992-12-18 Способ непрерывной разливки металлов RU2038902C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU92012866A RU2038902C1 (ru) 1992-12-18 1992-12-18 Способ непрерывной разливки металлов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU92012866A RU2038902C1 (ru) 1992-12-18 1992-12-18 Способ непрерывной разливки металлов

Publications (2)

Publication Number Publication Date
RU2038902C1 true RU2038902C1 (ru) 1995-07-09
RU92012866A RU92012866A (ru) 1996-11-20

Family

ID=20133918

Family Applications (1)

Application Number Title Priority Date Filing Date
RU92012866A RU2038902C1 (ru) 1992-12-18 1992-12-18 Способ непрерывной разливки металлов

Country Status (1)

Country Link
RU (1) RU2038902C1 (ru)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Бойченко М.С. и др. Непрерывная разливка стали. М.: Металлургиздат. 1961, с.200-203, рис.127. *
Емельянов В.А. Тепловая работа машин непрерывного литья заготовок. М.: Металлургия. 1988, с.57-58, рис.7. *

Similar Documents

Publication Publication Date Title
DE3162190D1 (en) Process for controlling the cooling of an ingot in a continuous-casting plant
US4304290A (en) Method of adjusting the setting speed of the narrow sides of plate molds
Thomas Fluid flow in the mold
RU2038902C1 (ru) Способ непрерывной разливки металлов
CN1011387B (zh) 带钢浇注设备及其浇注方法
RU2052312C1 (ru) Способ непрерывной разливки металлов
RU2038900C1 (ru) Способ непрерывной разливки металлов
RU2038901C1 (ru) Способ непрерывной разливки металлов
RU1819188C (ru) Способ охлаждени стальных слитков при непрерывной разливке и установка дл его осуществлени
JPS57127553A (en) Hot top continuous casting method for aluminum
RU2038899C1 (ru) Способ непрерывной разливки металлов
US5004040A (en) Method of continuous casting
RU2015806C1 (ru) Способ непрерывной разливки металлов
KR20000036232A (ko) 연속 주조기
RU2015807C1 (ru) Способ непрерывной разливки металлов
RU2021868C1 (ru) Способ непрерывной разливки металлов
RU2021869C1 (ru) Способ непрерывной разливки металлов
RU2015808C1 (ru) Способ непрерывной разливки металлов
RU2021875C1 (ru) Способ непрерывной разливки металла
SU1284653A1 (ru) Способ автоматического управлени режимом работы кристаллизатора машины непрерывного лить заготовок и устройство дл его осуществлени
SU1020182A1 (ru) Устройство дл непрерывного лить намораживанием
SU1028418A1 (ru) Способ охлаждени слитка при непрерывном литье в электромагнитный кристаллизатор
US5027884A (en) Process and device for producing thin metal products by continuous casting
RU2021872C1 (ru) Способ непрерывного литья прямоугольных слитков
SU595058A1 (ru) Способ непрерывной разливки металлов