RU2031511C1 - Компенсатор реактивной мощности - Google Patents

Компенсатор реактивной мощности Download PDF

Info

Publication number
RU2031511C1
RU2031511C1 SU5040501A RU2031511C1 RU 2031511 C1 RU2031511 C1 RU 2031511C1 SU 5040501 A SU5040501 A SU 5040501A RU 2031511 C1 RU2031511 C1 RU 2031511C1
Authority
RU
Russia
Prior art keywords
phase
voltage
inverter
network
reactive power
Prior art date
Application number
Other languages
English (en)
Inventor
В.С. Климаш
И.Г. Симоненко
Original Assignee
Комсомольский-на-Амуре политехнический институт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Комсомольский-на-Амуре политехнический институт filed Critical Комсомольский-на-Амуре политехнический институт
Priority to SU5040501 priority Critical patent/RU2031511C1/ru
Application granted granted Critical
Publication of RU2031511C1 publication Critical patent/RU2031511C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

Использование: компенсация реактивной мощности с обеспечением стабильности напряжения трехфазной сети. Сущность изобретения: в трансформаторно - тиристорный компенсатор реактивной мощности, содержащий трехфазный двухобмоточный вольтодобавочный трансформатор и трехфазный преобразователь амплитуды и фазы напряжения, выполненный на основе инвертора и выпрямителя, дополнительно введена система управления фазой выходного напряжения инвертора дополнительного канала для широтно - импульсного регулирования амплитуды этого напряжения. 3 ил.

Description

Изобретение относится к электротехнике, в частности к энергетической электронике, и может быть использовано для компенсации реактивной мощности и стабилизации напряжения трехфазной сети.
Известен компенсатор реактивной мощности [1], содержащий трехфазный трансформатор, первичная обмотка которого подключена к сети через блок конденсаторов, а вторичная обмотка - к тиристорному выпрямителю, нагруженному на индуктивность.
Недостатками устройства являются ограниченные функциональные возможности, а именно узкий диапазон регулирования реактивной мощности и нестабильности выходного напряжения. Необходимость ограничения диапазона и неполное в связи с этим использование устройства вызвано тем, что при глубоком регулировании посредством выпрямителя возникают большие искажения компенсационной составляющей тока и недопустимые отклонения напряжения нагрузки от напряжения сети. При этом возможны колебания выходного напряжения, связанные с изменением величины и характера нагрузки, а также изменением напряжения в сети.
Известен также компенсатор реактивной мощности [2], содержащий тиристорный выпрямитель, инвертор напряжения с синхронизированной с сетью системой управления, а также реактор, включенный между сетью и выходом инвертора, и конденсатор, включенный в звено постоянного тока. В этом устройстве тиристоры инвертора включаются таким образом, что основная гармоника его тока опережает на 90о сетевое напряжение, осуществляя тем самым компенсацию реактивной мощности.
Однако и этот компенсатор реактивной мощности имеет ограниченные функциональные возможности и низкое качество выходного напряжения. Он осуществляет частичную, зависящую от емкости конденсатора компенсацию, которая к тому же не регулируемая, так как тиристорный выпрямитель в стационарных режимах отключен и не воздействует на амплитуду компенсационной составляющей тока сети. Кроме того, устройство не обеспечивает стабилизацию напряжения нагрузки, что требует применения совместно с ним дополнительных устройств регулирования переменного напряжения.
Наиболее близким к предлагаемому по технической сущности является компенсатор реактивной мощности [3], который содержит последовательно соединенные три преобразователя: выпрямитель, инвертор напряжения с синхронизированной с сетью системой управления и тиристорно-реакторный регулятор переменного тока с синхронизированной с сетью системой управления. Первым сигналом управления, воздействующим на систему управления инвертором напряжения, обеспечивается опережение компенсационной составляющей тока сети относительно напряжения сети, а вторым сигналом управления, воздействующим на систему управления тиристорно-реакторным регулятором переменного тока, осуществляется регулирование действующего значения компенсационного тока и генерируемой реактивной мощности.
Недостатками устройства, взятого в качестве прототипа, прежде всего являются ограниченные функциональные возможности. Оно не обеспечивает полную компенсацию реактивной мощности и стабилизацию выходного напряжения в процессе изменения напряжения сети, а также величины и характера нагрузки. Кроме того, устройству свойствен режим прерывистого тока, при котором возникают большие искажения формы тока сети.
Цель изобретения - расширение функциональных возможностей, а именно обеспечение полной компенсации реактивной мощности и стабилизации выходного напряжения независимо от внешней характеристики сети, а также от величины и характера нагрузки.
Цель достигается тем, что в устройство введены трехфазный датчик напряжения нагрузки, блок сравнения, датчик реактивной мощности сети, два однофазных измерительных трансформатора тока и трехфазный трансформатор, вторичные обмотки которого включены между сетью и нагрузкой, а в двух фазах соединены последовательно с первичными обмотками однофазных измерительных трансформаторов тока, первичные фазные обмотки трехфазного трансформатора соединены в звезду и подключены к выходу трехфазного инвертора, вход выпрямителя подключен к сети, первый вход блока сравнения соединен с выходом датчика напряжения нагрузки, второй вход блока сравнения подключен к источнику задающего сигнала, выход блока сравнения соединен с вторым управляющим входом системы управления инвертором, первый управляющий вход которой подключен к выходу датчика реактивной мощности сети, причем система управления инвертором выполнена с возможностью управления амплитудой и фазой выходного напряжения инвертора.
Преимуществом устройства является то, что оно обеспечивает управление обобщенного вектора напряжения нагрузки по двум координатам - по амплитуде и по фазе. Возможность регулирования амплитуды обеспечивает стабилизацию напряжения, а регулирование фазы - компенсацию реактивной мощности. Применение датчиков и предложенных связей позволяет автоматизировать этот процесс. В устройстве отсутствует режим прерывистого тока, что обуславливает улучшение формы тока сети. Для полной компенсации среднестатистического коэффициента мощности промышленных нагрузок целесообразно применение трансформатора с отношением первичного и вторичного напряжений как 380/220. Такие трансформаторы выпускаются серийно и широко распространены, например сухие защищенные преобразовательные типа ТСЗП.
Тиристорные преобразователи со звеном постоянного тока также выпускаются серийно, что указывает на готовность предлагаемого устройства к промышленному производству и также может быть отнесено к преимуществам.
На фиг. 1 изображена принципиальная схема силовой части компенсатора реактивной мощности; на фиг.2 и 3 - векторные диаграммы режимов работы устройства.
Предлагаемое устройство состоит из трансформатора 1, инвертора 2 с системой 3 управления, выпрямителя 4, датчика 5 напряжения нагрузки, блока 6 сравнения, нагрузки 7 и датчика 8 реактивной мощности сети с трансформаторами 9 и 10 тока. На векторных диаграммах (фиг.2 и 3) введены следующие обозначения:
Figure 00000001
,
Figure 00000002
,
Figure 00000003
- напряжения сети, выгрузки и на выходе инвертора;
Figure 00000004
,
Figure 00000005
,
Figure 00000006
- токи сети, нагрузки и на входе выпрямителя; φ12,α - фазы тока сети, напряжение выгрузки и напряжение инвертора относительно напряжения сети; Кт - коэффициент трансформации; δ - коэффициент передачи напряжения преобразователя со звеном постоянного тока.
Устройство работает следующим образом. Выходное напряжение
Figure 00000007
формируется из напряжения сети
Figure 00000008
и напряжения инвертора 2 δ˙Uf еjl , регулируемого по амплитуде изменением коэффициентов передачи δ и по фазе - изменением угла управления тиристоров α. При помощи трансформатора 1 выходное напряжение инвертора 2
Figure 00000009
уменьшается в коэффициент трансформации Кт раз и прибавляется к напряжению сети
Figure 00000010
. В результате этого напряжение на нагрузке 7 имеет вид
Figure 00000011
=
Figure 00000012
+ Kт·δ·Ufejk (1)
Из выражения (1) и векторных диаграмм видно, что амплитуду и фазу вектора напряжения
Figure 00000013
можно регулировать изменением коэффициента передачи δ и угла управления тиристорами α. В предлагаемом устройстве изменение коэффициента передачи δ осуществляется в функции отклонения реактивной мощности сети от нулевого уровня, а изменение угла α - в функции отклонения напряжения нагрузки 7 от заданного уровня, например равного номинальному напряжению сети.
При потреблении (генерации) устройством реактивной мощности сети сигнал с выхода датчика 8 реактивной мощности сети поступает на первый управляющий вход системы 3 управления инвертором 2 и увеличивает коэффициент передачи δ, увеличивая тем самым опережающий (отстающий) фазовый сдвиг φ2, напряжения нагрузки 7
Figure 00000014
относительно напряжения сети
Figure 00000015
. При этом датчик 5 напряжения, осуществляя контроль напряжения нагрузки 7, подает сигнал обратной связи на блок 6 сравнения, на котором этот сигнал сравнивается с сигналом, пропорциональным заданному, например номинальному значению напряжения сети. Разность этих сигналов с выхода блока сравнения подается на второй управляющий вход системы 3 управления инвертором 2, которая, изменяя угол управления тиристорами α, осуществляет регулирование амплитуды выходного напряжения. В результате такого амплитудного и фазового воздействия на выходное напряжение инвертора 2 вектор этого напряжения
Figure 00000016
так формирует свой модуль и аргумент, что вектор напряжения нагрузки 7
Figure 00000017
является радиусом заданной окружности.
Использование устройства позволяет осуществлять полную компенсацию реактивной мощности в различных системах трехфазного тока и стабилизацию действующего значения выходного напряжения на заданном уровне независимо от жесткости внешней характеристики сети, а также величины и характера нагрузки.

Claims (1)

  1. КОМПЕНСАТОР РЕАКТИВНОЙ МОЩНОСТИ, содержащий инвертор напряжения, вход которого подключен к выходу выпрямителя и синхронизированную с сетью систему управления инвертором, отличающийся тем, что в него введены дополнительно трехфазный датчик напряжения нагрузки, блок сравнения, датчик реактивной мощности, два однофазных трансформатора тока и трехфазный трансформатор, вторичные обмотки которого включены между сетью и нагрузкой, а в двух фазах соединены последовательно с первичными обмотками однофазных измерительных трансформаторов тока, первичные фазные обмотки трехфазного трансформатора подключены одними выводами к выходу трехфазного инвертора, другие выводы объединены, вход выпрямителя подключен к сети, первый вход блока сравнения соединен с выходом датчика напряжения нагрузки, второй вход блока сравнения подключен к источнику задающего сигнала, выход блока сравнения соединен с вторым управляющим входом системы управления инвертора, первый управляющий вход которой подключен к выходу датчика реактивной мощности сети, а синхронизирующий вход подключен к сети, причем система управления инвертором выполнена с возможностью управления амплитудой и фазой выходного напряжения инвертора.
SU5040501 1992-04-29 1992-04-29 Компенсатор реактивной мощности RU2031511C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5040501 RU2031511C1 (ru) 1992-04-29 1992-04-29 Компенсатор реактивной мощности

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5040501 RU2031511C1 (ru) 1992-04-29 1992-04-29 Компенсатор реактивной мощности

Publications (1)

Publication Number Publication Date
RU2031511C1 true RU2031511C1 (ru) 1995-03-20

Family

ID=21603389

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5040501 RU2031511C1 (ru) 1992-04-29 1992-04-29 Компенсатор реактивной мощности

Country Status (1)

Country Link
RU (1) RU2031511C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2475917C1 (ru) * 2011-12-22 2013-02-20 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Система автоматической компенсации реактивной мощности и отклонения напряжения с широтно-импульсной модуляцией на высокой стороне трансформаторной подстанции

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
1. Баев А.В. и др. Вентильные преобразователи с конденсаторами в силовых цепях. М.: Энергия, 1969, с.20. *
2. Лобунцов В.А. Справочное пособие. Пер. с нем. М.: Энергоатомиздат, 1987, с.243. *
3. Супронович Г. Улучшение коэффициента мощности преобразовательных установок. Пер. с польск. М.: Энергоатомиздат, 1985, с.114. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2475917C1 (ru) * 2011-12-22 2013-02-20 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Система автоматической компенсации реактивной мощности и отклонения напряжения с широтно-импульсной модуляцией на высокой стороне трансформаторной подстанции

Similar Documents

Publication Publication Date Title
US5091839A (en) Method and apparatus for supplying voltage to a three-phase voltage system having a load-carrying neutral conductor with a pulse width modulated three phase invertor
JP3133386B2 (ja) 交流母線に供給するための電流源変換装置用制御装置
US4529925A (en) Reactive power compensating cycloconverter
EP0239278B1 (en) Capacitor apparatus for reactive power compensation
EP0278491B1 (en) Power converter
RU2031511C1 (ru) Компенсатор реактивной мощности
JPH0685622B2 (ja) 高調波補償装置
RU2027278C1 (ru) Трехфазный компенсатор реактивной мощности
US4383183A (en) Control arrangement for a uniform load distribution of at least two power supply devices connected in parallel at the output side
JP3075578B2 (ja) 無効電力補償装置
RU1793514C (ru) Трансформаторно-тиристорный компенсатор реактивной мощности
JP3110898B2 (ja) インバータ装置
JP2843220B2 (ja) サイクロコンバータ装置
JP3395310B2 (ja) 半導体電力変換装置
JP2000032666A (ja) 無効電力補償装置の運転方法
RU2159459C1 (ru) Способ управления стабилизатором трехфазного напряжения с амплитудно-фазовым управлением
RU2094839C1 (ru) Трансформаторно-тиристорный компенсатор отклонений напряжения и реактивной мощности
JPH0568944B2 (ru)
KR910000880B1 (ko) 유도 전동기 작동 제어 시스템 및 그 제어 방법
JPH05931B2 (ru)
JPH11164568A (ja) 電力変換装置
JPH06311787A (ja) インバータ装置
JPH02276475A (ja) 電力変換装置
JPH0443288B2 (ru)
JPS63265526A (ja) 可変速発電装置の自動同期投入装置