RU2026722C1 - Способ удаления серы и устройство для его осуществления - Google Patents

Способ удаления серы и устройство для его осуществления Download PDF

Info

Publication number
RU2026722C1
RU2026722C1 SU884355676A SU4355676A RU2026722C1 RU 2026722 C1 RU2026722 C1 RU 2026722C1 SU 884355676 A SU884355676 A SU 884355676A SU 4355676 A SU4355676 A SU 4355676A RU 2026722 C1 RU2026722 C1 RU 2026722C1
Authority
RU
Russia
Prior art keywords
sulfur
gas
iron
reactor
scrubber
Prior art date
Application number
SU884355676A
Other languages
English (en)
Inventor
Хаук Рольф
Original Assignee
Фоест-Альпине Индустрианлагенбау ГмбХ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Фоест-Альпине Индустрианлагенбау ГмбХ filed Critical Фоест-Альпине Индустрианлагенбау ГмбХ
Application granted granted Critical
Publication of RU2026722C1 publication Critical patent/RU2026722C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/28Increasing the gas reduction potential of recycled exhaust gases by separation
    • C21B2100/282Increasing the gas reduction potential of recycled exhaust gases by separation of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/42Sulphur removal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture Of Iron (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)
  • Industrial Gases (AREA)

Abstract

Область применания: изобретение относится к процессам обессеривания отходящих газов с использованием твердых поглотителей. Сущность изобретения: отходящие газы сначала очищаются и охлаждаются в скруббере,а затем производится удаление серы, при котором в качестве материала, абсорбирующего серу, используется часть губчатого железа, произведенного в восстановительной шахтной печи. Удаление серы выгодно производить при температуре в зоне от 30 до 60°С. Оно производится преимущественно в отношении отделенного от колошникового газа CO2, а также в отношении используемой в качестве экспортного газа части колошникового газа. 2 с.п. ф-лы., 1ил.

Description

Изобретение относится к процессам обессеривания отходящих газов с использованием твердых поглотителей.
Целью изобретения является упрощение процесса и исключение образования шламовых отходов.
На чертеже изображена установка для выделения серы.
Установка функционирует следующим образом.
П р и м е р 1. Установка для выделения серы состоит в основном из шахтной печи 1 для прямого восстановления и находящегося под ней плавильного агрегата 2. Известным образом в шахтную печь 1 через трубопровод 3 подается предпочтительно кусковая железная руда. По трубопроводу 4 редукционный газ вдувается в шахтную печь 1, подымается вверх против течения опускающейся вниз железной руды и приводит к восстановлению железной руды. После прохождения через шахтную печь 1 этот газ в виде колошникового газа выводится через трубопровод 5.
Через опускную трубу 6 восстановленная в губчатое железо руда попадает в плавильный агрегат 2. Известным образом в плавильный агрегат 2 через трубопровод 7 подается носитель углерода, например в виде высокотемпературного буроугольного кокса, а через трубопровод 8 - газ, содержащий кислород. Кроме того, через трубопровод 9 обогащенный колошниковый газ из шахтной печи 1 подается в плавильный агрегат 2. В заданные промежутки времени через трубопровод 10 выводится жидкий чугун, а через трубопровод 11 - жидкий шлак из плавильного агрегата 2.
В плавильном агрегате 2 образуется газ, состоящий в основном из СО и Н2, имеющий температуру около 1000оС и подаваемый через трубопровод 4 в виде редукционного газа в шахтную печь 1. Перед этим через трубопровод 12, отходящий от трубопровода 9, подмешивается обогащенный колошниковый газ, таким образом температура редукционного газа регулируется примерно до 850оС, которая благоприятна для редукции.
Колошниковый газ через трубопровод 5 подается сначала в скруббер 13, в котором он охлаждается до температуры, например, 35оС и очищается от твердых примесей. Последние через трубопровод 14 подаются предпочтительно в плавильный агрегат 2.
Из скруббера 13 охлажденный и очищенный колошниковый газ попадает в трубопровод 15. От него отходит трубопровод 16, который принимает возвращенный в редукционный процесс колошниковый газ. Трубопровод 16 заканчивается в скруббере 17 для СО2, в котором из колошникового газа известным способом отделяется СО2. Обогащенный колошниковый газ отводится через трубопровод 9, а СО2 - через трубопровод 18.
Остальной колошниковый газ из трубопровода 15 попадает через трубопровод 19 в парогенератор 20, в котором он сжигается для образования пара. Через трубопровод 21 пар подается к скрубберу 17 для СО2, в котором он требуется для отделения СО2 от колошникового газа.
Параметры процесса предпочтительно регулировать таким образом, чтобы весь образующийся в шахтной печи 1 колошниковый газ требовался для поддержания редукционного процесса. Это означает, что весь проходящий через трубопровод 15 колошниковый газ забирался трубопроводами 16 и 19. Если же часть колошникового газа не требуется, то ее отводят в качестве экспортного газа для использования в других целях.
СО2, содержащее 200 ppm H2S, попадает из скруббера для СО2 17 через трубопровод 18 в реактор 22 удаления серы. В нем оно поднимается через колонку, состоящую из губчатого железа, вверх и через трубопровод 23 выпускается в атмосферу или же подается на дальнейшую переработку.
Реактор удаления серы 22 загружается сверху губчатым железом через трубопровод 24, соединенный с выпускным отверстием губчатого железа шахтной печи 1. С помощью соответствующих транспортных устройств малая часть произведенного в шахтной печи 1 губчатого железа непрерывно или порциями подается в реактор удаления серы. В днище реактора 22 для удаления серы находится выпускное отверстие, соединенное с трубопроводом 25. В соответствии с количеством губчатого железа, подведенным по трубопроводу 24, через трубопровод 25 отводится губчатое железо из реактора 22 удаления серы, таким образом губчатое железо опускается вниз в реакторе 22 удаления серы против течения СО2. Губчатое железо вступает с H2S, содержащимся в СО2, в реакцию таким образом, что образуются сульфид железа и водород. Сульфид железа отбирается с помощью трубопровода 25, таким образом газ, отводимый через трубопровод 23, является по существу обессеренным.
Названная реакция между железом и H2S протекает хорошо благодаря сравнительно низким температурам. По этой причине необходимо, чтобы колошниковый газ охлаждался до того, как его можно подвергнуть сероудалению по описанному способу. При той температуре, при которой колошниковый газ покидает шахтную печь 1, подобное удаление серы было бы возможно только при более высоком содержании H2S, чем примерно 800 ppm. Подобная концентрация серы, как правило, не достигается в колошниковом газе, таким образом, описанное удаление серы целесообразно только тогда, когда колошниковый газ сначала охлаждают, причем целеобразная температура находится в пределах от 30 до 60оС.
Лишенный серы газ имеет тогда содержание H2S менее 1 ppm.
Нагруженное серой губчатое железо поступает через трубопровод 25 в трубопровод 7, через который оно вместе с носителем углерода подается в плавильный агрегат 2. В нем губчатое железо освобождается от серы с помощью веществ, связывающих серу, и точно также, как и подаваемое с помощью опускной трубы 6 губчатое железо расплавляется и подвергается окончательному восстановлению в готовый чугун. Сера связана в шлаке, выводимом через трубопровод 11.
По причине меньшего объема газа и более высокой концентрации серы целесообразно, как показано в примере выполнения, освобождать от серы только ответвленный поток газа СО2. Однако при этом из-за СО2 и влаги может произойти реоксидация железа, что приводит к образованию Н2 или СО с концентрацией примерно в 500 ppm. В некоторых случаях по этой причине может быть выгодным производить удаление серы в колошниковом газе уже до удаления СО2. При этом FeO выступает в качестве средства удаления серы.
Избыточный, используемый в качестве экспортного колошниковый газ целесообразно перед его дальнейшим использованием также подвергнуть обессериванию. При этом его можно провести через собственный реактор по удалению серы или же вместе с возвращенным в качестве процессного газа колошниковым газом обессерить, а затем ответвить от него.
П р и м е р 2. Для установки по производству 40 т чугуна в час при серной нагрузке в 50% и содержании H2S в колошниковом газе в 80 ppm требуется только 20 кг губчатого железа в час для загрузки реактора 22 по удалению серы. При этом производится около 62900 нм3 в час колошникового газа, имеющего в составе около 37,2% СО, 32,8% СО2, 12,0% H2S, 12,9% Н2О, а также некоторое количество СН4 и N2. Из этого количества 42850 нм3 в час подводятся через трубопровод 16 в скруббер 17 для СО2, в то время как остаток служит для производства пара в парогенераторе 20 и не выделяется экспортный газ. 15350 нм3 в час СО2 подаются через трубопровод 18 в реактор 22 удаления серы, в то время как из оставшегося обогащенного колошникового газа 18500 нм3 в час подаются в плавильный газификатор 2 и 9000 нм3 в час через трубопроводы 12 и 4 непосредственно в качестве редукционного газа в шахтную печь 1. Через трубопровод 3 в шахтную печь вводится 60 т в час железной руды в форме окатышей, а также 3 т в час доломита и 5,6 т в час известняка в качестве добавок. Весь введенный в шахтную печь 1 объем редукционного газа составляет 61000 нм3 в час и содержит СО и Н2 90%. Для производства этого редукционного газа, а также для плавления и окончательного восстановления губчатого железа в плавильный реактор 2 вдувается, кроме того, 18,5 т в час угля и 11700 нм3 в час кислорода.
Данные способ и установка позволяют упростить процесс очистки и избежать образования вредных шламов, так как используемое в качестве поглотителя губчатое железо получают в процессе восстановления руды и там же утилизируется после проведения процесса очистки, что позволяет процессу функционировать в замкнутом цикле.

Claims (3)

  1. СПОСОБ УДАЛЕНИЯ СЕРЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ.
  2. 1. Способ удаления серы, включающий отвод отходящих серосодержащих газов из шахтной печи процесса восстановления железной руды, их предварительную очистку в скруббере, охлаждение и контактирование с железосодержащим поглотителем, отличающийся тем, что, с целью упрощения процесса и исключения образования шламовых отходов, в качестве поглотителя используют губчатое железо, получаемое в процессе восстановления руды, контактирование с поглотителем осуществляют при 30 - 60oС, а насыщенный серой поглотитель подают на стадию восстановления железной руды.
  3. 2. Устройство для удаления серы, включающее шахтную печь, скруббер, реактор для выделения серы и плавильный агрегат, отличающееся тем, что, с целью упрощения процесса, входной патрубок для твердых веществ шахтной печи соединяют с входным патрубком реактора для выделения серы и выходной патрубок этого реактора соединяют с входным патрубком углеродных компонентов плавильного агрегата, а входной патрубок газа реактора для удаления серы соединяют с выходным патрубком скруббера.
SU884355676A 1987-05-16 1988-05-13 Способ удаления серы и устройство для его осуществления RU2026722C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3716511.9 1987-05-16
DE19873716511 DE3716511A1 (de) 1987-05-16 1987-05-16 Verfahren zur entfernung von schwefel aus dem abgas eines reduktionsschachtofens

Publications (1)

Publication Number Publication Date
RU2026722C1 true RU2026722C1 (ru) 1995-01-20

Family

ID=6327745

Family Applications (1)

Application Number Title Priority Date Filing Date
SU884355676A RU2026722C1 (ru) 1987-05-16 1988-05-13 Способ удаления серы и устройство для его осуществления

Country Status (12)

Country Link
US (1) US4857284A (ru)
EP (1) EP0291754B1 (ru)
JP (1) JPH0653206B2 (ru)
KR (1) KR960000009B1 (ru)
AT (1) AT389460B (ru)
AU (1) AU615187B2 (ru)
BR (1) BR8802342A (ru)
CA (1) CA1307907C (ru)
DD (1) DD285723A5 (ru)
DE (2) DE3716511A1 (ru)
RU (1) RU2026722C1 (ru)
ZA (1) ZA883289B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2671336C2 (ru) * 2013-03-01 2018-10-30 Ле Газ Интеграл Сас Способ удаления диоксида серы из газовых потоков с применением диоксида титана в качестве катализатора

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT394201B (de) * 1989-02-16 1992-02-25 Voest Alpine Ind Anlagen Verfahren zur erzeugung von brennbaren gasen in einem einschmelzvergaser
US5102603A (en) * 1989-07-03 1992-04-07 The Goodyear Tire & Rubber Company Process for manufacturing polyethylene terephthalate industrial yarn
AU640062B2 (en) * 1990-11-19 1993-08-12 Shell Internationale Research Maatschappij B.V. Spent catalyst disposal
US5320676A (en) * 1992-10-06 1994-06-14 Bechtel Group, Inc. Low slag iron making process with injecting coolant
US5354356A (en) * 1992-10-06 1994-10-11 Bechtel Group Inc. Method of providing fuel for an iron making process
US5397376A (en) * 1992-10-06 1995-03-14 Bechtel Group, Inc. Method of providing fuel for an iron making process
US6197088B1 (en) 1992-10-06 2001-03-06 Bechtel Group, Inc. Producing liquid iron having a low sulfur content
US5958107A (en) * 1993-12-15 1999-09-28 Bechtel Croup, Inc. Shift conversion for the preparation of reducing gas
AT405187B (de) * 1994-12-01 1999-06-25 Voest Alpine Ind Anlagen Verfahren zum herstellen von eisenschwamm sowie anlage zur durchführung des verfahrens
US6748883B2 (en) 2002-10-01 2004-06-15 Vitro Global, S.A. Control system for controlling the feeding and burning of a pulverized fuel in a glass melting furnace
SE0301071D0 (sv) * 2003-04-11 2003-04-11 Hoeganaes Ab Gas purification
DE102007027388A1 (de) * 2007-06-11 2008-12-18 Forschungszentrum Jülich GmbH Vorrichtung und Verfahren zur Reduzierung von CO2-Emissionen aus den Abgasen von Feuerungsanlagen
JP5647388B2 (ja) * 2008-03-19 2014-12-24 住友精化株式会社 高炉ガスの分離方法、および高炉ガスの分離装置
EP2821509A1 (de) * 2013-07-01 2015-01-07 Siemens VAI Metals Technologies GmbH Entschwefelung von Gasen bei der Herstellung von Roheisen

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1444947A1 (de) * 1960-07-19 1968-11-21 Honolulu Gas Company Entfernung von Schwefelwasserstoff aus Kohlenwasserstoffbrenngasen
US3853538A (en) * 1973-07-20 1974-12-10 Steel Corp Use of reducing gas by coal gasification for direct iron ore reduction
DE2727107C2 (de) * 1977-06-16 1984-10-04 Carl Still Gmbh & Co Kg, 4350 Recklinghausen Verfahren zur Entfernung von schwefelhaltigen Verbindungen und Ruß aus den heißen, ungekühlten Reduktionsgasen für die Erzreduktion
CA1147964A (en) * 1979-05-25 1983-06-14 Francis J. Ii Harvey Process for reducing spent gas generated in the production of sponge iron
US4409102A (en) * 1981-11-27 1983-10-11 Central Plants, Inc. Process for removing contaminants from a stream of methane gas
AT379323B (de) * 1983-10-07 1985-12-27 Voest Alpine Ag Verfahren zum abtrennen von schwefel oder schwefelverbindungen und anderen schadstoffen aus heissen gasen eines schmelzreduktionsreaktors
US4608240A (en) * 1983-11-04 1986-08-26 Hylsa, S.A. Method for the desulfurization of hydrocarbon gas
DE3503493A1 (de) * 1985-01-31 1986-08-14 Korf Engineering GmbH, 4000 Düsseldorf Verfahren zur herstellung von roheisen
DE3504346C2 (de) * 1985-02-06 1986-11-27 Korf Engineering GmbH, 4000 Düsseldorf Verfahren und Vorrichtung zur Erzeugung von Eisenschwammpartikeln und flüssigem Roheisen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Заявка РСТ N 82/02346, кл. B 01D 53/34, опублик.1982. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2671336C2 (ru) * 2013-03-01 2018-10-30 Ле Газ Интеграл Сас Способ удаления диоксида серы из газовых потоков с применением диоксида титана в качестве катализатора

Also Published As

Publication number Publication date
AT389460B (de) 1989-12-11
ZA883289B (en) 1988-11-14
JPS63315128A (ja) 1988-12-22
AU1604388A (en) 1988-11-17
EP0291754B1 (de) 1992-12-09
EP0291754A3 (en) 1990-11-28
BR8802342A (pt) 1988-12-13
KR880013603A (ko) 1988-12-21
DE3876491D1 (de) 1993-01-21
AU615187B2 (en) 1991-09-26
DD285723A5 (de) 1991-01-03
ATA126888A (de) 1989-05-15
US4857284A (en) 1989-08-15
CA1307907C (en) 1992-09-29
KR960000009B1 (ko) 1996-01-03
DE3716511A1 (de) 1988-12-01
JPH0653206B2 (ja) 1994-07-20
EP0291754A2 (de) 1988-11-23
DE3716511C2 (ru) 1989-07-06

Similar Documents

Publication Publication Date Title
RU2026722C1 (ru) Способ удаления серы и устройство для его осуществления
CS218587B2 (en) Method of reduction of the iron oxides
JPH0673679B2 (ja) 下水スラッジをガス化する方法
RU2134301C1 (ru) Установка для получения чугуна и/или губчатого железа, способ получения чугуна и/или губчатого железа и способ работы установки
SU1438614A3 (ru) Способ пр мого восстановлени окислов железа
RU97101124A (ru) Способ прямого восстановления содержащего оксиды железа материала и установка для его осуществления
RU97107769A (ru) Установка для получения чугуна и/или губчатого железа, способ получения чугуна и/или губчатого железа и способ работы установки
AU723568B2 (en) Method for producing liquid pig iron or liquid steel pre-products and plant for carrying out the method
FI76707C (fi) Foerfarande foer rening av gaser innehaollande kondenserbara komponenter.
RU2127319C1 (ru) Способ получения губчатого железа и установка для осуществления этого способа
SU1711677A3 (ru) Способ получени расплавленного чугуна или промежуточного продукта дл производства стали и устройство дл его осуществлени
KR0125443B1 (ko) 배기 가스 정제에 의해 얻어진 잔류물을 처리하는 방법
US4370161A (en) Ore reduction using calcium oxide desulfurization
SU1155162A3 (ru) Способ и установка дл пр мого восстановлени железа в шахтной печи с использованием продуктов газификации каменного угл
US4274863A (en) Method of treating pollutant-laden gases, especially from a steel-making or coking plant
JPH09104878A (ja) ガス精製装置
US3993730A (en) Purification of coke oven gas with production of sulfuric acid and ammonium sulfate
US4436529A (en) Method for removing sulphur in conjunction with the gasification of carbonaceous material in metal smelts
US4321242A (en) Low sulfur content hot reducing gas production using calcium oxide desulfurization with water recycle
JP2635652B2 (ja) 石炭ガスの乾式脱硫方法
US6197088B1 (en) Producing liquid iron having a low sulfur content
US2755179A (en) Method and device for the desulphurization of carburetter gas
RU2020170C1 (ru) Способ непрерывной плавки сульфидных материалов
US4102674A (en) Method for hardening iron ore pellets
JPH0631359B2 (ja) 高温乾式脱硫方法