RU2025833C1 - Инфракрасный полупроводниковый излучатель - Google Patents

Инфракрасный полупроводниковый излучатель Download PDF

Info

Publication number
RU2025833C1
RU2025833C1 SU4930037A RU2025833C1 RU 2025833 C1 RU2025833 C1 RU 2025833C1 SU 4930037 A SU4930037 A SU 4930037A RU 2025833 C1 RU2025833 C1 RU 2025833C1
Authority
RU
Russia
Prior art keywords
narrow
layer
gap layer
carriers
gap
Prior art date
Application number
Other languages
English (en)
Inventor
Сергей Семенович Болгов
Евгений Иванович Яблоновский
Ольга Юрьевна Салюк
Вячеслав Михайлович Константинов
Валерий Тимофеевич Игуменов
Владимир Алексеевич Морозов
Original Assignee
Институт физики полупроводников АН Украины
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт физики полупроводников АН Украины filed Critical Институт физики полупроводников АН Украины
Priority to SU4930037 priority Critical patent/RU2025833C1/ru
Application granted granted Critical
Publication of RU2025833C1 publication Critical patent/RU2025833C1/ru

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

Использование: изобретение относится к оптоэлектронике. Сущность изобретения: устройство содержит активный узкозонный слой с биполярной проводимостью, толщиной, сравнимой с диффузионной длиной, широкозонную подложку, просветляющей и фокусирующий слои. На активном слое выполнены омические контакты. На излучающей поверхности активного слоя сформирован легированный слой с концентрацией примеси ni<N<
Figure 00000001
где n - концентрация основных носителей в активном слое; ni - собственная концентрация носителей в активном слое; ε - диэлектрическая проницаемость активного слоя; m * e - эффективная масса носителей в активном слое; μn1μp - подвижности электронов и дырок в активном слое. Толщина легированного слоя превышает величину Дебаевской длины экранирования, а степень несоответствия параметров кристаллических решеток материалов гетероструктуры не менне 5%. 1 ил.

Description

Изобретение относится к оптоэлектронике и может быть использовано в экспериментальной физике и измерительной технике в качестве высокоэффективного многофункционального источника излучения с повышенной стабильностью.
Известен полупроводниковый источник электромагнитного излучения [1], содержащий излучающий р-n-переход и два омических контакта для подачи напряжения. При подаче напряжения на контакты в прямом направлении происходит инжекция носителей из одной области р-n-перехода в другую, где они рекомбинируют с испусканием фотона. Технология изготовления данного источника допускает пленочное (эпитаксиальное) исполнение, позволяющее изготавливать излучающие поверхности сложной формы для создания многоцелевых источников ИК-излучения.
Недостатками данного устройства являются низкая эффективность для среднего и дальнего ИК-диапазона, низкая стабильность.
Наиболее близким по технической сущности к заявляемому устройству является полупроводниковый источник электромаг- нитного излучения [2], принцип действия которого основан на магнитоконцентрационном эффекте. Излучатель представляет собой гетероэпитаксиальную структуру, содержащую активный узкозонный слой, широкозонную подложку и переходный варизонный слой. Излучающей является приповерхностная область активного слоя у границы, обращенной к подложке. Изоморфность и изопериодичность материалов активного слоя и подложки, а также встроенное поле, образующееся на границе этих слоев, обеспечивают малую величину Smin - гораздо меньшую, чем могут дать механические и химические методы обработки на открытой поверхности полупроводника. Область с Smax в такой конструкции находится у поверхности активного слоя, граничащей с внешней средой. Для увеличения Smax эту поверхность приходится подвергать дополнительной механической и/или химической обработке.
Недостатком данного устройства является крайняя ограниченность класса материалов, для которых такая конструкция обладает высокой эффективностью. Условию изоморфности и изопериодичности материала гетероструктуры среди узкозонных полупроводников удовлетворяют в основном тройные соединения типа АIIBVI: CdТе - подложка, Cd x Hg1-xТе - активный слой (CdTe/CdHgТe), МnTe/CdMnТе и др., и АIVBVI: PbTe (PbSnTe, BaF2) PbSnТе и др.
Производство таких полупроводников сложно и дорого, а полученные материалы не могут сравниться по чистоте, совершенству и стабильности параметров с бинарными соединениями.
Наличие в готовой эпитаксиальной структуре открытой поверхности с Smax также снижает стабильность излучателей.
Целью изобретения является повышение эффективности и стабильности излучения, расширение круга используемых материалов за счет создания условий для максимального перераспределения носителей в гетероэпитаксиальной структуре при магнитоконцентрационном эффекте путем обеспечения минимальной скорости поверхности рекомбинации на гомозонном переходе между узкозонным (активным) и автоэпитаксиальным (прозрачным) ему слоями и обеспечения стабильности большой скорости поверхностной рекомбинации на границе активного слоя и неизоморфной ему широкозонной подложки.
Цель достигается тем, что в известном инфракрасном полупроводниковом излучателе на основе гетероэпитаксиальной структуры с омическими контактами к узкозонному слою, помещенной в магнитное поле, параллельное слоям гетероструктуры, на поверхности узкозонного слоя, свободной от омических контактов, дополнительно размещен прозрачный автоэпитаксиальный слой с концентрацией примеси
ni<N<
Figure 00000002
exp
Figure 00000003
, , причем толщина дополнительного слоя превышает величину Дебаевской длины экранирования, а степень несоответствия кристаллических решеток материалов гетероструктуры - не менее 5%. В математических соотношениях использованы обозначения: n - концентрация основных носителей в активном слое; ni - cобственная концентрация носителей; me* - эффективная масса электрона в активном слое; μnp - подвижности электронов и дырок в активном слое; ε- диэлектрическая проницаемость активного слоя.
На чертеже представлена конструкция излучателя.
Излучатель содержит активный слой 1 из узкозонного полупроводникового материала, автоэпитаксиальный прозрачный слой 2, широкозонную подложку 3, омические контакты 4, просветляющее и/или фокусирующее покрытие 5, отражающий слой 6.
В предложенном устройстве по сравнению с устройством-прототипом излучающая область переносится к грани активного слоя, противоположной подложке. Тем самым, к подложке не предъявляется самое сложное требование - изоморфности к материалу активного слоя. Поскольку у границы активный слой - подложка должна быть область с Smax, то необходимо максимально возможное несоответствие кристаллических решеток этих слоев, при котором еще может происходить эпитаксиальный рост активного слоя.
Величина скорости поверхностной рекомбинации S ≈Nc, где Nc - плотность разрешенных состояний (центров рекомбинации) у границ слоев. В свою очередь, Nc≈Δa/а, где а - несоответствие постоянных кристаллических решеток для эпитаксиальных слоев активного слоя и подложки. Для обеспечения эффективности излучателя необходимо отличие Smin и Smax не менее, чем на порядок, т.е. Ncmax > 10 Nc min, где Nc min (плотность дислокаций на открытой поверхности эпитаксиального слоя) ≈ 5˙105 см-2. Тогда необходимо Nc max ≥5x x 106 см-2. Расчет Nc в зависимости от Δа/а дает Δа/а ≥5%.
Малая величина Smin достигается в излучающей области формированием на грани активного слоя, противоположной границе с подложкой, дополнительного слоя, который позволяет ввести в структуру встроенное поле. Поскольку теперь излучающая область не граничит с несущей механическую нагрузку подложкой, дополнительный легированный слой может быть выполнен достаточно тонким, чтобы не быть шунтирующим по отношению к активному слою. В качестве дополнительного слоя используется автоэпитаксиальный слой (гомозонный переход), например р+ - или n+-слои. При этом условие изоморфности выполняется автоматически ( Δа/а = О), а встроенное поле обеспечивает полевую границу для носителей заряда. Таким образом достигается величина еще меньшая, чем в устройстве-прототипе, за счет меньшего числа остаточных центров рекомбинации. Толщина прозрачного автоэпитаксиального слоя должна быть больше величины Дебаевской длины экранирования для данного слоя. При выполнении этого условия образуется гомозонный переход, в котором существует встроенное поле.
Концентрация примеси в дополнительном слое определяется из условия равенства величины встроенного поля максимальной величине силы Лоренца (выполнение данного условия обеспечивает рекомбинацию носителей на эффективной полевой поверхности с Smin ->>0 при любых используемых электрических и магнитных полях).
Максимальное магнитное поле определяется из условия
Hmax= C/
Figure 00000004
, где c - скорость света.
При дальнейшем увеличении Н эффект замагничивания носителей приводит к падению их подвижности и к резкому уменьшению эффектов перераспределения носителей.
Максимальное электрическое поле определяется из условия
Еmax = VТ/ μn, где VТ - тепловая скорость носителей заряда.
Дальнейшее увеличение электрического поля не приводит к увеличению дрейфовой скорости носителей в кристалле. Критерием для концентрации примеси в автоэпитаксиальном слое является:
ni<N<
Figure 00000005
exp
Figure 00000006

Конкретное значение N, обеспечивающее малую эффективную скорость поверхностной рекомбинации, выбирается для наибольших практически используемых электрического и магнитного полей, при условии, что
Fл =
Figure 00000007
np) H·E < Fл max
Эффективность предлагаемого технического решения определяется степенью перераспределения носителей по сечению активного элемента при магнитоконцентрационном эффекте, которое зависит от различия скоростей поверхностной рекомбинации на излучающей (Smin) и противоположной ей (Smax) поверхностях активного элемента. Эффект максимален при Smin ->>0 и Smax ->>∞. Малое количество центров рекомбинации на границе узкозонного и автоэпитаксиального ему прозрачного слоя обеспечивает величину Smin еще меньшую, чем в устройстве-прототипе, для всех полупроводниковых материалов.
Обеспечить необходимое значение Smax несложно.
Изобретение позволяет использовать в качестве активного слоя гетероэпитаксиальной излучающей структуры бинарные соединения, которые обладают стабильными электрофизическими характеристиками, а также гораздо более дешевой и простой по сравнению с тройными соединениями технологией изготовления эпитаксиальных структур. То обстоятельство, что обе грани, состояния поверхностей которых (величины Smin и Smax) очень существенны для магнитоконцентрационного эффекта, в предложенном устройстве не находятся в непосредственном контакте с внешней средой, значительно уменьшает деградацию устройства. Снижение требований к механической нагрузке при монтаже излучателя (в данной конструкции защищены обе поверхности активного слоя, а крепление готовой эпитаксиальной структуры производится со стороны механически прочной подложки) обеспечивает увеличение выхода годных структур.
Переход к бинарным соединениям, таким образом, позволяет значительно повысить стабильность излучателей, а также обеспечивает значительное их удешевление как за счет упрощения технологии производства, так и за счет увеличения выхода годных структур. Кроме того, значительно улучшаются экологические условия производства и эксплуатации излучателей.
Конструкция предлагаемого устройства, так же как и устройства-прототипа, допускает формирование просветляющих и фокусирующих слоев, увеличивающих внешний квантовый выход излучения. Эпитаксиальная технология изготовления излучателей позволяет формировать многоэлементные устройства (линейки, матрицы и т.п.) в едином технологическом цикле.
Наличие на широкозонной подложке отражающего слоя позволяет также наблюдать кроме люминесценции и модуляцию теплового излучения полупроводников за краем фундаментального поглощения, т.е. в более длинноволновой части спектра. Для наблюдения модуляции теплового излучения в данной конструкции, так же как и в прототипе, используется нагреватель.
П р и м е р 1. Полупроводниковый излучатель был выполнен в виде гетероэпитаксиальной структуры: широкозонная подложка из полуизолирующего GaAs толщиной 350 мкм, на которой методом термического испарения-конденсации в глубоком вакууме выращен слой InSb и биполярной проводимостью (NA - ND ≈8˙ 1015 см-3, ni = 2 ˙ 1016 см-3) толщиной 10 мкм, являющийся активным слоем излучателя. Несоответствие постоянных кристаллических решеток InSb и Ga As :
Figure 00000008
=14%. При этом, как показали измерения, скорость поверхностной рекомбинации на границе InSb/GaAs Smax порядка 5˙ 105 см/с. Скорость поверхностной рекомбинации на открытой поверхности слоя InSb составляла Smin ≈3˙ 104 см/с. На свободную поверхность слоя InSb нанесен легированный слой n-InSb толщиной d=0,1 мкм, с ND-NA≈ ≈2˙ 1017см-3 (длина экранирования для данного слоя Lэ ≈3,4 ˙ 10-4 мкм, наибольший коэффициент междузонного поглощения на λ= 4 мкм, К ≈5˙ 104см-1, коэффициент поглощения InSb на длине волны, соответствующей максимуму спектральной характеристики λ=7 мкм, К ≈5˙ 103 см-1). Таким образом, условие (Lэ< d< 1/K) было выполнено.
Скорость поверхностной рекомбинации на границе слоев InSb/n-InSb составляла не более 5 ˙103 см/с, что значительно меньше, чем скорость поверхностной рекомбинации на открытой поверхности InSb.
Верхний предел концентрации примеси в легированном слое составляет 2 ˙1019см-3. Практически при работе излучателя используются поля, не превышающие Е= 103 В/см, Н=25 кгс. При этом необходимую величину встроенного поля обеспечивает концентрация примеси 2 ˙1017 см-3.
Методом фотолитографии в данной гетероэпитаксиальной структуре формировались линейка и матрица излучателей с площадью светящейся поверхности каждого элемента 0,5 х 0,5 мм2. Электрическое поле прикладывалось в виде прямоугольных импульсов положительной и отрицательной полярности длительностью 10мкс к каждому из элементов либо при различной их коммутации. Излучатель помещался между полюсами электромагнита таким образом, что направление магнитного поля было параллельно излучающей поверхности. Излучение фокусировалось линзами из ВаF2 и регистрировалось охлаждаемым фотоприемником Ge(Au). Максимальная мощность отрицательной люминесценции Ро ≈2˙10-3 Вт/см2. Мощность положительной люминесценции при Н=3 кгс, Е=100 В/см при наличии легированного слоя составляла порядка 5 Ро, при его отсутствии 2 Ро. При формировании на излучающей поверхности элементов просветляющего сферического покрытия из халькогенидного стекла Аs36,5 Sb2,0 S23,0Se23,0Br15,5 наблюдалось увеличение мощности излучения еще в 3 раза.
Излучательные характеристики структур практически не изменялись после работы в условиях повышенной влажности и температуры в течение 103ч.
При нанесении на свободную поверхность широкозонной подложки GaAs отражающего слоя Al наблюдалось увеличение интенсивности излучения при λ> 7 мкм. Спектральный состав излучения контролировался при помощи фильтров. При помещении полупроводникового излучателя на нагреватель, обеспечивающий температуру 320-350К, и использовании охлаждаемого фотоприемника из СdHgTe, наблюдался сигнал модуляции теплового излучения устройства на длинах волн λ до 14 мкм, что соответствует области чувствительности приемника.
Инфракрасный полупроводниковый излучатель, изготовленный по предлагаемому конструктивному решению, работает эффективно. По конструктивному же решению устройства-прототипа эффективный излучатель на основе InSb и эпитаксиальной технологии создать нельзя, поскольку для InSb нет изоморфного полупроводникового материала, и реальные величины Smin нельзя получить меньше 105 см/с. При этом магнитоконцентрационный эффект и модулированный поток излучения будут крайне малы.
П р и м е р 2. В качестве подложки, как и в примере 1, использован GaAs. Активный слой по той же технологии выполнен из InAs (NA-ND ≈2˙ 1016 см-3, толщина 20 мкм, Δа/а =7%). На свободную поверхность слоя р -InAs нанесен легированный слой n-InAs (ND--NA ≈4˙ 1017см-3) толщиной d = 0,5 мкм. Наибольший коэффициент поглощения InAs в области длин волн 3-5 мкм (область спектра излучения) составляет К=3 ˙103 см-1. Длина экранирования в таком материале Lэ ≈6 ˙10-3 мкм. Таким образом, условие Lэ < d < /К было выполнено. Другое условие для N принимает вид ni<N<
Figure 00000009
exp
Figure 00000010
, поэтому n= 4 ˙1017см-3 соответствует ему. Так как для InAs тоже нет изоморфной широкозонной подложки, работа излучателя на InAs в конструкции устройства-прототипа крайне неэффективна.
Предлагаемое конструктивное решение обеспечивает эффективную работу излучателей из широкого класса используемых материалов.

Claims (1)

  1. ИНФРАКРАСНЫЙ ПОЛУПРОВОДНИКОВЫЙ ИЗЛУЧАТЕЛЬ на основе гетероэпитаксиальной структуры с омическими контактами к узкозонному слою, помещенной в магнитное поле, параллельное слоям гетероструктуры, причем толщина узкозонного слоя не менее диффузионной длины неосновных носителей заряда, отличающийся тем, что, с целью повышения эффективности и стабильности излучения, расширения круга используемых материалов, на поверхности узкозонного слоя, свободной от омических контактов, дополнительно размещен прозрачный автоэпитаксиальный слой с концентрацией примеси
    n1< N≅
    Figure 00000011
    exp
    Figure 00000012
    ,
    где n - концентрация основных носителей в узкозонном слое;
    ni - собственная концентрация носителей в узкозонном слое;
    ε - диэлектрическая проницаемость узкозонного слоя;
    ne * - эффективная масса электрона в узкозонном слое,
    μn , μp - подвижности электронов и дырок в узкозонном слое,
    причем толщина дополнительного слоя превышает величину Дебаевской длины экранирования, а степень несоответствия параметров кристаллических решеток материалов гетероструктуры не менее 5%.
SU4930037 1991-04-22 1991-04-22 Инфракрасный полупроводниковый излучатель RU2025833C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU4930037 RU2025833C1 (ru) 1991-04-22 1991-04-22 Инфракрасный полупроводниковый излучатель

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU4930037 RU2025833C1 (ru) 1991-04-22 1991-04-22 Инфракрасный полупроводниковый излучатель

Publications (1)

Publication Number Publication Date
RU2025833C1 true RU2025833C1 (ru) 1994-12-30

Family

ID=21571165

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4930037 RU2025833C1 (ru) 1991-04-22 1991-04-22 Инфракрасный полупроводниковый излучатель

Country Status (1)

Country Link
RU (1) RU2025833C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076375A1 (fr) * 2004-02-05 2005-08-18 Otkrytoe Aktsionernoe Obschestvo 'nauchno-Issledovatelsky Institut Girikond' Emetteur photoluminescent, cellule photoelectrique a semi-conducteur et octron base sur ces derniers
RU2479071C2 (ru) * 2007-10-25 2013-04-10 Конинклейке Филипс Электроникс Н.В. Устройство для излучения поляризованного света
WO2016105230A1 (ru) * 2014-12-24 2016-06-30 Общество С Ограниченной Ответственостью "Микросенсор Технолоджи" Устройство для определения химических веществ в анализируемой среде
EA027273B1 (ru) * 2014-12-24 2017-07-31 Общество С Ограниченной Ответственностью "Микросенсор Технолоджи" Устройство для определения химических веществ в анализируемой среде

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. Патент Франции N 2251104, кл. H 01L 33/00, 1975. *
2. Авторское свидетельство СССР N 1612881, кл. H 01L 33/00, 1988. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076375A1 (fr) * 2004-02-05 2005-08-18 Otkrytoe Aktsionernoe Obschestvo 'nauchno-Issledovatelsky Institut Girikond' Emetteur photoluminescent, cellule photoelectrique a semi-conducteur et octron base sur ces derniers
GB2426628A (en) * 2004-02-05 2006-11-29 Otkrytoe Aktsionernoe Obschest Photoluminescent radiator, semiconductor photocell and octron based thereon
GB2426628B (en) * 2004-02-05 2008-04-02 Otkrytoe Aktsionernoe Obschest Photoluminescent radiator, semiconductor photocell and optron based thereon
RU2479071C2 (ru) * 2007-10-25 2013-04-10 Конинклейке Филипс Электроникс Н.В. Устройство для излучения поляризованного света
WO2016105230A1 (ru) * 2014-12-24 2016-06-30 Общество С Ограниченной Ответственостью "Микросенсор Технолоджи" Устройство для определения химических веществ в анализируемой среде
EA027273B1 (ru) * 2014-12-24 2017-07-31 Общество С Ограниченной Ответственностью "Микросенсор Технолоджи" Устройство для определения химических веществ в анализируемой среде

Similar Documents

Publication Publication Date Title
Okuyama et al. ZnSe/ZnMgSSe blue laser diode
US5548137A (en) Group II-VI compound semiconductor light emitting devices and an ohmic contact therefor
US5525539A (en) Method for forming a light emitting diode for use as an efficient emitter or detector of light at a common wavelength
JP3270476B2 (ja) オーミックコンタクト及びii−vi族化合物半導体素子並びにこれらの製造方法
JPH0652807B2 (ja) 光子装置用の4元ii−vi族材料
US20070126021A1 (en) Metal oxide semiconductor film structures and methods
Shay et al. CdSnP2–InP heterodiodes for near‐infrared light‐emitting diodes and photovoltaic detectors
CA2574591A1 (en) Method for fabricating lateral semiconductor device
US20130056691A1 (en) Metal Oxide Semiconductor Films, Structures, and Methods
Wei et al. Persistent photoconductivity and the quantized hall effect in in0. 53ga0. 47as/inp heterostructures
US4160258A (en) Optically coupled linear bilateral transistor
KR920009918B1 (ko) 양자-웰 방사선 검출 소자
RU2025833C1 (ru) Инфракрасный полупроводниковый излучатель
Döhler The physics and applications of nipi doping superlattices
Hart Green and yellow emitting devices in vapor-grown gallium phosphide
US7049641B2 (en) Use of deep-level transitions in semiconductor devices
Becla HgMnTe light emitting diodes and laser heterostructures
KR101247415B1 (ko) 기판 상에 제작된 반도체 광 디바이스 및 그 제작 방법
US4813049A (en) Semimagnetic semiconductor laser
Khan et al. Optoelectronic devices based on GaN, AlGaN, InGaN homo-heterojunctions and superlattices
US5065205A (en) Long wavelength, high gain InAsSb strained-layer superlattice photoconductive detectors
Kressel et al. AN OPTOELECTRONIC COLD CATHODE USING AN Al x Ga1− x As HETEROJUNCTION STRUCTURE
Razeghi et al. AlGaN ultraviolet detectors
Logan et al. RADIATIVE RECOMBINATION IN GaP p‐n AND TUNNEL JUNCTIONS
Kasap Pn junction devices and light emitting diodes