RU2022412C1 - Фотосимистор на основе полупроводниковой структуры - Google Patents

Фотосимистор на основе полупроводниковой структуры Download PDF

Info

Publication number
RU2022412C1
RU2022412C1 SU5017423A RU2022412C1 RU 2022412 C1 RU2022412 C1 RU 2022412C1 SU 5017423 A SU5017423 A SU 5017423A RU 2022412 C1 RU2022412 C1 RU 2022412C1
Authority
RU
Russia
Prior art keywords
symmetry
regions
base
emitter
plane
Prior art date
Application number
Other languages
English (en)
Inventor
Сергей Борисович Бакланов
Владимир Витальевич Гайтан
Нектарий Тимофеевич Гурин
Original Assignee
Сергей Борисович Бакланов
Владимир Витальевич Гайтан
Нектарий Тимофеевич Гурин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сергей Борисович Бакланов, Владимир Витальевич Гайтан, Нектарий Тимофеевич Гурин filed Critical Сергей Борисович Бакланов
Priority to SU5017423 priority Critical patent/RU2022412C1/ru
Application granted granted Critical
Publication of RU2022412C1 publication Critical patent/RU2022412C1/ru

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Abstract

Изобретение относится к оптоэлектронике и, в частности, к полупроводниковым фотоприемникам с отрицательным дифференциальным сопротивлением (ОДС) и симметричной относительно начала координат вольтамперной характеристикой (ВАХ) и может быть использовано в качестве фотодатчика переменного тока или фотоприемного элемента оптопары в системах автоматики, переключающей и преобразовательной техники для бесконтактной коммутации и управления в цепях переменного тока. Сущность изобретения: в фотосимисторе на основе полупроводниковой структуры, содержащем выполненные в слое исходного материала базовые области с размещенными в них внешними эммитерными областями, снабженными металлическими контактами, и по крайней мере один свободный для доступа светового потока участок, расположенный симметрично относительно оси или плоскости симметрии структуры, базовые области расположены с одной стороны структуры симметрично относительно оси или плоскости ее симметрии. 7 ил.

Description

Изобретение относится к оптоэлектронике, в частности к полупроводниковым фотоприемникам с отрицательным дифференциальным сопротивлением (ОДС) и симметричной относительно начала координат вольт-амперной характеристикой (ВАХ), и может быть использовано в качестве фотодатчика переменного тока или фотоприемного элемента оптопары в системах автоматики, переключающей и преобразовательной техники для бесконтактной коммутации и управления в цепях переменного тока.
Известен фотосимистор на основе пятислойной n-p-n-p-n-структуры с зашунтированными внешними эмиттерными слоями, с конической канавкой на границе раздела составляющих структур прямого и обращенного тиристоров, в которую помещается один или два источника излучения таким образом, что освещению подвергаются наиболее фоточувствительные области составных структур - области объемного заряда коллекторного перехода [1].
Недостатками такого фотосимистора являются трудоемкость изготовления, использование двух источников излучения для выравнивания фоточувствительности прямого и обращенного тиристоров, малые механическая прочность и напряжение пробоя.
Наиболее близким по технической сущности к предложенному является фотосимистор на основе пятислойной структуры, например, n-p-n-p-n-типа с зашунтированными внешними эмиттерными слоями n-типа проводимости и со свободным по крайней мере с одной стороны структуры для доступа светового потока участком, причем внешние слои n-типа проводимости выполнены так, что их проекции на основные поверхности структуры перекрываются в области освещаемого участка [2].
Недостатками этого фотосимистора являются его невысокая фоточувствительность, обусловленная невозможностью подачи излучения непосредственно в наиболее фоточувствительную среднюю n-область, и сложность управления прибором с помощью светового потока, обусловленная невозможностью получения симметричных токов управления и необходимостью их выравнивания изменением интенсивности светового потока при разных полярностях коммутируемого напряжения.
Цель изобретения - повышение фоточувствительности прибора и упрощение управления им с помощью светового потока.
Это достигается тем, что в фотосимисторе на основе полупроводниковой структуры, содержащем выполненные в слое исходного материала базовые области с размещенными в них внешними эмиттерными областями, снабженными металлическими контактами, и по крайней мере один свободный для доступа светового потока участок, расположенный симметрично относительно оси или плоскости симметрии структуры, базовые области расположены с одной стороны структуры симметрично относительно оси или плоскости ее симметрии.
В частности, свободный для доступа светового потока участок может быть расположен либо на поверхности структуры, со стороны которой размещены базовые и эмиттерные области, либо на противоположной ей поверхности, либо на одной из поверхностей структуры, перпендикулярных плоскости симметрии структуры и поверхности структуры, со стороны которой размещены базовые и эмиттерные области. Также свободные для доступа светового потока участки могут быть расположены либо поверхностях структуры, параллельных плоскости симметрии структуры, либо на поверхности структуры, противоположной поверхности, со стороны которой размещены базовые и эмиттерные области, либо на поверхностях структуры, перпендикулярных плоскости симметрии структуры и поверхности структуры, со стороны которой размещены базовые и эмиттерные области, либо на поверхности структуры, со стороны которой размещены базовые и эмиттерные области.
В известных технических решениях расположение с одной стороны структуры выполненных в слое исходного материала базовых областей с размещенными в них внешними эмиттерными областями симметрично относительно оси или плоскости симметрии структуры при реализации фотосимистора не обнаружено, в связи с чем предложенное решение обладает существенными отличиями.
При этом повышение фоточувствительности прибора достигается за счет обеспечения доступа излучения в наиболее фоточувствительную высокоомную среднюю базовую область, а упрощение управления прибором с помощью светового потока - за счет использования постоянной интенсивности излучения, обеспечивающей симметрию токов управления без необходимости их выравнивания при включении прибора в обоих направлениях.
На фиг. 1-3 показаны варианты структур фотосимистора с одним свободным для доступа светового потока участком; на фиг. 1, 2 - продольный разрез структуры, на фиг. 3 - вид сверху на поверхность, со стороны которой расположены базовые и эмиттерные области; на фиг. 4-7 - варианты структур фотосимистора с двумя свободными для доступа светового потока участками; на фиг. 4, 5, 7 - продольный разрез структуры, на фиг. 6 - вид сверху на поверхность, со стороны которой расположены базовые и эмиттерные области (а) и вид сбоку на структуру (б). На фиг. 2 показан также вариант структуры фотосимистора с эмиттерными n-областями, выполненными в виде нескольких распределенных областей и зашунтированными металлическими контактами с разделяющими участками базовых р-областей.
Каждый из вариантов фотосимистора (см. фиг. 1-7) представляет собой двухэлектродный полупроводниковый прибор с планарной n-p-n-p-n-структурой, имеющий четыре p-n-перехода, причем внешние эмиттерные переходы n1-p1 и n33 - низковольтные, а коллекторные р1-n2 и n23 - высоковольтные. В общей высокоомной полупроводниковой подложке (исходном материале) n-типа проводимости 1 последовательно сформированы базовые р-области 2 и эмиттерные n-области 3 симметрично относительно плоскости симметрии структуры 4 и оси симметрии структуры 5. Базовые 2 и эмиттерные 3 области могут быть сформированы симметрично только плоскости симметрии структуры 4 или только оси симметрии структуры 5. Конфигурация проекций базовых 2 и эмиттерных 3 областей на поверхность структуры, со стороны которой расположены базовые 2 и эмиттерные 3 области, может быть в виде прямоугольника, полукруга или другой формы. Концентрации легирующих примесей и электрофизические параметры в одноименных областях (базовых 2 или эмиттерных 3) одинаковы. Эмиттерные переходы n1-p1 и n33 зашунтированы металлическими контактами 6, служащими электродами 7 и 8 фотосимистора, и тем самым обуславливают интегральное соединение двух встречно-параллельно включенных тиристоров. Указанные эмиттерные р-n-переходы могут быть также и не зашунтированы металлическими контактами 6, которыми снабжены только эмиттерные области 3 (на фиг. 1-7 не показано). В данном случае при работе в каждой из двух полярностей приложенного напряжения фотосимистор представляет собой последовательно соединенные тиристор и обратносмещенный диод на основе одного из эмиттерных р-n-переходов.
Фотосимистор по фиг. 1 имеет один свободный для доступа светового потока участок 9, расположенный симметрично относительно плоскости симметрии структуры 4 и оси симметрии структуры 5 на поверхности структуры, со стороны которой расположены базовые 2 и эмиттерные 3 области.
Фотосимистор по фиг. 2 имеет один свободный для доступа светового потока участок 9, расположенный симметрично относительно плоскости симметрии структуры 4 и оси симметрии структуры 5 на поверхности структуры, противоположной поверхности, со стороны которой расположены базовые 2 и эмиттерные 3 области.
Фотосимистор по фиг. 3 имеет один свободный для доступа светового потока участок 9, расположенный симметрично относительно плоскости симметрии структуры 4 на одной из поверхностей структуры, перпендикулярных плоскости симметрии структуры 4 и поверхности структуры, со стороны которой расположены базовые 2 и эмиттерные 3 области.
Фотосимистор по фиг. 4 имеет два свободных для доступа светового потока участка 9, расположенных симметрично друг другу относительно плоскости симметрии структуры 4 и оси симметрии структуры 5 на поверхностях структуры, параллельных плоскости симметрии структуры 4.
Фотосимистор по фиг. 5 имеет два свободных для доступа светового потока участка 9, расположенных симметрично друг другу относительно плоскости симметрии структуры 4 и оси симметрии структуры 5 на поверхности структуры, противоположной поверхности, со стороны которой расположены базовые 2 и эмиттерные 3 области.
Фотосимистор по фиг. 6 имеет два свободных для доступа светового потока участка 9, расположенных симметрично друг другу относительно оси симметрии структуры 5 на поверхностях структуры, перпендикулярных плоскости симметрии структуры 4 и поверхности структуры, со стороны которой расположены базовые 2 и эмиттерные 3 области.
Фотосимистор по фиг. 7 имеет два свободных доступа светового потока участка 9, расположенных симметрично друг другу относительно плоскости симметрии структуры 4 и оси симметрии структуры 5 на поверхности структуры, со стороны которой расположены базовые 2 и эмиттерные 3 области.
Фотосимисторы по фиг. 1, 2 могут иметь свободный для доступа светового потока участок 9, расположенный симметрично только плоскости симметрии структуры 4.
Фотосимисторы по фиг. 4, 5, 7 могут иметь свободные для доступа светового потока участки 9, расположенные симметрично только плоскости симметрии структуры 4 или только оси симметрии структуры 5, а фотосимистор по фиг. 6 - симметрично только плоскости симметрии структуры 4 на одной из поверхностей.
Переключение каждого варианта фотосимистора с зашунтированными переходами (см. фиг. 1-7) в состояние с высокой проводимостью осуществляется путем приложения напряжения внешней цепи к электродам 7 и 8 и подачи излучения на один свободный для доступа светового потока участок 9 (у фотосимисторов по фиг. 1-3) или на два (либо один из двух) свободных для доступа светового потока участка 9 (у фотосимисторов по фиг. 4-7). При облучении в n2-области генерируются пары носителей заряда (электрон-дырка), образуя объемный заряд и обуславливая управляющий фототок, что приводит к уменьшению напряжения переключения составляющих тиристоров. Если на электроде 7 полярность приложенного напряжения соответствует знаку "-", то при протекании тока по пути наименьшего сопротивления произойдет включение тиристорной структуры, образованной областями n1, p1, n2, p3. Аналогично будет включаться встречнопараллельная тиристорная р1-n2-p3-n3-структура при изменении полярности напряжения на обратную.
Переключение фотосимисторов с незашунтированными эмиттерными переходами осуществляется аналогично и характеризуется повышенным остаточным напряжением, представляющим собой сумму остаточного напряжения включенного тиристора и пробивного напряжения обратносмещенного диода. Однако такие фотосимисторы имеют максимально высокую фоточувствительность из-за отсутствия влияния шунтов.
За счет обеспечения доступа излучения в наиболее фоточувствительную n2-область, а именно в область объемного заряда коллекторных переходов составляющих тиристоров, фотосимисторы (см. фиг. 1-7) имеют высокую фоточувствительность.
За счет симметричного расположения базовых 2 и эмиттерных 3 областей и свободного для доступа светового потока участка 9, а также одинаковых концентраций легирующих примесей и электрофизических параметров в одноименных областях, в фотосимисторах по фиг. 1-3 при постоянной интенсивности излучения обеспечивается генерация объемных зарядов с одинаковой концентрацией носителей в области коллекторных переходов составляющих тиристоров, что обуславливает симметрию токов управления без необходимости их выравнивания и приводит к упрощению управления приборами с помощью светового потока.
Фотосимисторы по фиг. 4-7 позволяют раздельно управлять переменным током в одном из направлений путем подачи излучения на один из двух свободных для доступа светового потока участков 9, вызывая генерацию объемного заряда в области коллекторного перехода соответствующей структуры составляющих тиристоров и перевод ее в состояние с высокой проводимостью. При одновременной подаче излучения одинаковой интенсивности на оба свободных для доступа светового потока участка 9 за счет их симметричного расположения работа фотосимисторов по фиг. 4-7 аналогична работе фотосимисторов по фиг. 1-3.
Кроме этого, для повышения стойкости прибора к высоким скоростям нарастания тока (di/dt) в каждом варианте фотосимистора (см., например, фиг. 2) металлические контакты 6 можно использовать в качестве распределенных шунтов, соединяющих эмиттерные области 3 с участками смежных базовых областей 2.
В случае расположения свободного (свободных) для доступа светового потока участка (участков) 9 со стороны поверхности структуры, противоположной поверхности, со стороны которой расположены базовые 2 и эмиттерные 3 области (см. фиг. 2, 5), для эффективной генерации объемных зарядов толщина общей полупроводниковой подложки 1 может быть уменьшена до оптимальной величины.
Таким образом, благодаря расположению с одной стороны структуры выполненных в слое исходного материала базовых областей 2 с размещенными в них внешними эмиттерными областями 3 симметрично относительно плоскости симметрии структуры 4 или оси симметрии структуры 5 обеспечивается доступ излучения в наиболее фоточувствительную высокоомную среднюю n2-область, что ведет к повышению фоточувствительности прибора, а за счет симметричного расположения базовых 2 и эмиттерных 3 областей и свободных для доступа светового потока участков 9, а также одинаковых концентраций легирующих примесей и электрофизических параметров в одноименных областях, обеспечивается симметрия токов управления при использовании постоянной интенсивности излучения и не требуется их выравнивание, что упрощает управление прибором с помощью светового потока.
Экспериментально исследованы фотосимисторы, выполненные на основе двух симметричных планарно-диффузионных тиристорных структур, использующихся в гибридных пороговых переключателях 2У106, содержащих по два р-n-перехода и интегрально объединенных в одном монокристалле. В качестве источника излучения использовали GaAlAs-диоды от транзисторных оптопар АОТ123, размещенные симметрично относительно плоскости симметрии структуры и оси симметрии структуры фотосимистора над наиболее фоточувствительной средней n-областью. Источник излучения размещался над поверхностью, со стороны которой расположены базовые и эмиттерные области При использовании одного излучающего диода фотосимистор имел высокую чувствительность к световому потоку, обуславливая легкий переход во включенное состояние, и коммутировал ток до 200 мА и более при остаточном падении напряжения в открытом состоянии 1,5 В и действующем значении знакопеременного напряжения в закрытом состоянии 150-450 В. Излучающий диод возбуждался от источника постоянного тока до 20 мА при напряжении 2 В, его излучение обеспечивало симметрию токов управления без их выравнивания, что позволило упростить управление прибором и осуществлять его сигналом одной полярности и постоянной амплитуды, совместимой с уровнями серийно выпускаемых микросхем. Также исследовались конструкции фотосимисторов с раздельным управлением, в которых использовали два излучающих диода, диаграммы направленности излучения которых ориентировались на торцевые поверхности структуры фотосимистора, параллельные плоскости симметрии структуры. Возбуждением соответствующего излучающего диода обеспечивалось раздельное управление переменным током в одном из направлений. При одновременном возбуждении обоих излучающих диодов сигналами одинаковой амплитуды фотосимистор работал аналогично фотосимистору с одним излучающим диодом. При этом исследованные фотосимисторы с одним и двумя излучающими диодами работали как с зашунтированными, так и с незашунтированными эмиттерными переходами. В последнем случае значение остаточного напряжения включенного фотосимистора составляло 9 В. При этом фотосимисторы имели в 4-10 раз более высокую фоточувствительность, обеспечивая возможность их использования в качестве более эффективных фотодатчиков переменного тока.

Claims (1)

  1. ФОТОСИМИСТОР НА ОСНОВЕ ПОЛУПРОВОДНИКОВОЙ СТРУКТУРЫ, содержащий выполненные в исходном материале базовые области с размещенными в них эмиттерными областями, металлические контакты и по крайней мере один свободный для доступа светового потока участок, расположенный симметрично относительно оси или плоскости симметрии структуры, отличающийся тем, что базовые области расположенные с одной стороны структуры симметрично относительно оси или плоскости ее симметрии.
SU5017423 1991-12-19 1991-12-19 Фотосимистор на основе полупроводниковой структуры RU2022412C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5017423 RU2022412C1 (ru) 1991-12-19 1991-12-19 Фотосимистор на основе полупроводниковой структуры

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5017423 RU2022412C1 (ru) 1991-12-19 1991-12-19 Фотосимистор на основе полупроводниковой структуры

Publications (1)

Publication Number Publication Date
RU2022412C1 true RU2022412C1 (ru) 1994-10-30

Family

ID=21592005

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5017423 RU2022412C1 (ru) 1991-12-19 1991-12-19 Фотосимистор на основе полупроводниковой структуры

Country Status (1)

Country Link
RU (1) RU2022412C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2445725C1 (ru) * 2010-10-07 2012-03-20 Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный университет Двухполюсный полупроводниковый позиционно-чувствительный фотоприемник с отрицательной дифференциальной проводимостью

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. Заявка ФРГ N 2645513, кл. H 01L 31/10, 02.11.78. *
2. Авторское свидетельство СССР N 435745, кл. H 01L 31/10, 1985. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2445725C1 (ru) * 2010-10-07 2012-03-20 Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный университет Двухполюсный полупроводниковый позиционно-чувствительный фотоприемник с отрицательной дифференциальной проводимостью

Similar Documents

Publication Publication Date Title
US4224634A (en) Externally controlled semiconductor devices with integral thyristor and bridging FET components
US4329625A (en) Light-responsive light-emitting diode display
US4240088A (en) Semiconductor high-voltage switch
US4975755A (en) Optically controllable static induction thyristor device
US4894699A (en) Optical control circuit and semiconductor device for realizing the circuit
US4110781A (en) Bidirectional grooved thyristor fired by activation of the beveled surfaces
KR870009550A (ko) 고체릴레이 및 이를 제조하는 방법
US7619284B2 (en) Over charge protection device
US4825081A (en) Light-activated series-connected pin diode switch
EP0012585A1 (en) A semiconductor optical device
US4916323A (en) Optical control circuit and a semiconductor device for realizing same
EP0324484B1 (en) Light sensible semiconductor device
US6365951B1 (en) Methods on constructing an avalanche light emitting diode
RU2022412C1 (ru) Фотосимистор на основе полупроводниковой структуры
KR850005737A (ko) 광기전련 릴레이
US3918083A (en) Bilateral switching integrated circuit
US5345094A (en) Light triggered triac device and method of driving the same
RU2309487C2 (ru) Фотоприемник с отрицательной проводимостью на основе полупроводниковой структуры
JPS623987B2 (ru)
US4081820A (en) Complementary photovoltaic cell
JPS606112B2 (ja) 半導体感光発光素子
RU2050032C1 (ru) Фотосимистор
JPS61113280A (ja) 光点弧サイリスタならびにそのスイツチング方法
EP0052633B1 (en) Optically switched device
JP2973679B2 (ja) 半導体リレー