RU2018064C1 - Способ эксплуатации гибридных компрессионно-абсорбционных тепловых насосов или холодильных машин и гибридный тепловой насос или холодильная машина - Google Patents

Способ эксплуатации гибридных компрессионно-абсорбционных тепловых насосов или холодильных машин и гибридный тепловой насос или холодильная машина Download PDF

Info

Publication number
RU2018064C1
RU2018064C1 SU874202650A SU4202650A RU2018064C1 RU 2018064 C1 RU2018064 C1 RU 2018064C1 SU 874202650 A SU874202650 A SU 874202650A SU 4202650 A SU4202650 A SU 4202650A RU 2018064 C1 RU2018064 C1 RU 2018064C1
Authority
RU
Russia
Prior art keywords
working medium
heat
liquid
compression
compressor
Prior art date
Application number
SU874202650A
Other languages
English (en)
Inventor
Бергманн Дьердь
Хивешши Геза
Original Assignee
Энергиагаздалкодаши Интезет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Энергиагаздалкодаши Интезет filed Critical Энергиагаздалкодаши Интезет
Application granted granted Critical
Publication of RU2018064C1 publication Critical patent/RU2018064C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

Использование: в холодильной технике для получения тепла или холода. Сущность изобретения: в компрессионной машине, работающей на рабочей среде, представляющей собой неазеотропную смесь хорошо растворяющихся друг в друге компонентов различной летучести, в конденсаторе-абсорбере осуществляют конденсацию и растворение компонентов рабочей среды, которая выходит из него в двухфазном состоянии. Окончательную конденсацию и растворение осуществляют за счет внутреннего теплообмена в теплообменниках, причем второй теплообменник выполняет функции переохладителя жидкой фазы. 2 с. и 5 з.п. ф-лы, 6 ил.

Description

Изобретение относится к холодильной технике, в частности к гибридным компрессионно-абсорбционным тепловым насосам и холодильным машинам.
Известен способ эксплуатации гибридных компресионно-абсорбционных тепловых насосов или холодильных машин с применением в качестве рабочей среды неазеотропной смеси хорошо растворяющихся друг в друге компонентов различной летучести путем конденсации с одной стороны менее летучего компонента при отводе тепла от среды в первом теплообменном процессе и растворения с другой стороны пара более летучего компонента в жидкости, снижения давления рабочей среды в процессе ее расширения, по меньшей мере частичного выпаривания из раствора более летучего компонента во втором теплообменном процессе с одной стороны и испарения по меньшей мере частично менее летучего компонента с другой стороны и сжатия рабочей среды с повышением давления.
Известен также гибридный насос или холодильная машина, содержащая замкнутый контур с последовательно включенными в него компрессором-абсорбером, конденсатоохлаждающим внутренним теплообменником, элементом расширения, испарителем-десорбером и компрессором, выход которого подключен к входу конденсатора-абсорбера.
Недостаток известного решения заключается в невысоком коэффициенте мощности, что обусловлено невысокой эффективностью внутреннего теплообмена, который на стороне высокого давления протекает в уже полностью сконденсированной рабочей среде.
Цель изобретения - повышение коэффициента мощности тепловых насосов и холодильных машин.
Для этого в способе эксплуатации гибридных компрессионно-абсорбционных тепловых насосов или холодильных машин с применением в качестве рабочей среды неазеотропной смеси хорошо растворяющихся друг в друге компонентов различной летучести путем конденсации с одной стороны менее летучего компонента при отводе тепла от среды в первом теплообменном процессе и растворения с другой стороны пара более летучего компонента в жидкости, снижая давления рабочей среды в процессе ее расширения, по меньшей мере частичного выпаривания из раствора более летучего компонента во втором теплообменном процессе с одной стороны и испарения по меньшей мере частично менее летучего компонента с другой стороны и сжатия рабочей среды с повышением давления, рабочая среда выводится из первого теплообменника в виде смеси двух различных фаз с различной концентрацией, причем между двухфазной рабочей средой, выходящей из первого процесса теплообмена перед ее расширением, и рабочей средой перед ее сжатием осуществляют внутренний теплообмен, при котором в рабочей среде, выходящей из первого процесса теплообмена, продолжаются процессы растворения и конденсации. Кроме того, внутренний теплообмен осуществляют в два этапа, при этом на первом этапе заканчивается конденсация и растворение с переходом всей рабочей среды в жидкую фазу, которая на втором этапе охлаждается дальше, причем из влажного пара рабочей среды перед ее сжатием жидкость частично или полностью отделяется, оставшийся сухой или влажный пар сжимается, а отделенную жидкость впрыскивают в движущийся пар, при этом отделенную жидкость возвращают в пар перед его сжатием или в процессе его сжатия, по крайней мере на одном уровне давления, или после его сжатия.
Для достижения поставленной цели в гибридном тепловом насосе или холодильной машине, содержащей замкнутый контур с последовательно включенными в него конденсатором-абсорбером, конденсатоохлаждающим внутренним теплообменником, элементом расширения, испарителем-десорбером и компрессором, выход которого подключен к входу конденсатора-абсорбера, между конденсатором-абсорбером и конденсатоохлаждающим внутренним теплообменником помещен переохлаждающий внутренний теплообменник, кроме того, во всасывающий трубопровод компрессора включен сепаратор, на стороне выхода которого имеется отдельный трубопровод пара и отдельный трубопровод жидкости, первый из которых подключен к компрессору, а во втором установлен насос, подключенный к форсункам, размещенным в трубопроводе пара перед компрессором и/или помещенным в компрессор, и/или размещенным в трубопроводе пара после компрессора, причем перед форсунками установлена регулирующая арматура.
На фиг.1 приведена схема компрессионной машины и T, S-диаграмма осуществляемого в ней цикла; на фиг.2- схема компрессионной машины с внутренними теплообменниками и Т,S-диаграмма осуществляемого в ней цикла; на фиг.3 - Т, S-диаграмма, где приведен процесс из- энтропической компрессии рабочей среды из двух компонентов с промежуточным охлаждением в замкнутой круговой системе; на фиг.4 - участок компрессионной машины для влажной компрессии с подачей жидкости в паровой трубопровод; на фиг.5 и 6 - то же, варианты выполнения.
Компрессионная машина содержит замкнутый контур, который включает конденсатор-абсорбер 1, элемент 2 расширения, испаритель-десорбер 3 и компрессор 4. В зависимости от варианта конструктивного исполнения компрессионная машина может также включать в себя внутренние теплообменники 5 и 6, сепаратор 7 жидкости, насос 8, форсунки 9, 10 и 11, регулирующую арматуру 12, паровой трубопровод 13 и жидкостный трубопровод 14.
Компрессионная машина работает следующим образом.
Рабочая среда поступает в конденсатор-абсорбер 1 в состоянии А с давлением Р1, где ее более летучий компонент при отдаче количества тепла Q1 в менее летучем компоненте переходит в раствор, при этом пары последнего одновременно конденсируются. Одновременно при этом постепенно уменьшается температура рабочей среды. По окончании растворения и конденсации рабочая среда в двухфазном состоянии В выходит из конденсатора-абсорбера. При этом точка В не лежит на граничной кривой Н.
В элементе 2 расширения, которым может быть расширительный клапан, давление рабочей среды уменьшается до Ро. Из элемента 2 расширения рабочая среда в состоянии С поступает в испаритель-десорбер 3. Здесь из рабочей среды при подведении количества тепла Q3 удаляется большая часть более летучего компонента, при этом температура рабочей среды постепенно повышается. Рабочая среда выходит из испарителя-десорбера 3 в состоянии D, после чего в компрессоре 4 благодаря подведению работы сжатия Q4 вновь достигается ее состояние А с давлением Р1 .
Для описанного выше кругового процесса целесообразно использовать внутренний теплообмен между рабочими средами в состоянии В и D так, как это показано на фиг.2. В этом случае рабочая среда в состоянии А с давлением Р1 поступает в конденсатор-абсорбер 1, где при отдаче количества тепла Q1 температура рабочей среды постепенно уменьшается, причем при этом идет конденсация и растворение. Влажный пар в состоянии В выходит из конденсатора-абсорбера 1 и поступает на сторону высокого давления охлаждающего паром внутреннего теплообменника 6, охлаждается дальше до окончания процессов конденсации и растворения. Рабочая среда в состоянии G (насыщенная жидкость) отсюда переводится на сторону высокого давления охлаждающегося жидкостью внутреннего теплообменника 5, где при отдаче количества тепла Q5 охлаждается до состояния Е. Далее рабочая среда расширяется в элементе 2 расшиpения до давления Ро, и часть среды переходит в паровую фазу (точка С). Затем рабочая среда поступает в испаритель-десорбер 3, в котором при подведении количества тепла Q3 доля паровой фазы увеличивается и среда нагревается. В состоянии D рабочая среда подается на сторону низкого давления внутреннего теплообменника 5, где она поглощает количество тепла Q5, отданного жидкостью высокого давления, после чего в состоянии F подается на сторону низкого давления внутреннего теплообменника 6, где она поглощает количество тепла Q6, отданное паром высокого давления. Подогретая таким образом рабочая среда сжимается компрессором 4 с подведением количества тепла до состояния А с давлением Р1.
На фиг. 3 показан процесс изэнтропического сжатия пара, состоящего из двух компонентов, с одноступенчатым промежуточным охлаждением в пределах давлений Р1 и Р3 на уровне давления Р2. Заштрихованная область Δ W иллюстрирует уменьшение в таком процессе работы сжатия. Промежуточное охлаждение с многими до бесконечности ступенями охлаждения теоретически можно осуществить при влажной компрессии, в частности, путем внесения в поток сжимаемого пара мелких капель жидкости.
На фиг. 4 из рабочей среды после испарителя-десорбера 3 в отделителе 7 жидкости частично или полностью отделяется жидкая фаза, отделенная жидкость насосом 8 по трубопроводу 14 подается к форсункам 9 и впрыскивается в потом пара в трубопроводе 13 (см. фиг.4).
При использовании винтового компрессора, в котором капли жидкости имеют тенденцию к осаждению на стенках корпуса компрессора, форсунки 10 могут быть помещены в корпусе компрессора 4 (см. фиг.5). Возможно размещение этих форсунок в отверстиях роторного вала. Форсунки 10 могут подавать жидкость в пар на одном или нескольких уровнях компрессии. В определенных случаях форсунки 9 может и не быть.
В том случае, когда возвращаемая в пар жидкость до и во время компрессии уже не улучшает, а ухудшает коэффициент полезного действия компрессии, можно подавать жидкость насосом 8 через форсунку 11 ниже байпаса компрессора 4 в трубопровод нагнетания компрессора 4 (см. фиг.6).
Целесообразно помещать в ведущие к отдельным форсункам или группам форсунок ответвления трубопровода давления насоса 8 регулирующую арматуру 12. Это позволяет добиться требуемого распределения жидкости между форсунками и регулировать их работу с имеющимися условиями работы, при этом некоторые форсунки могут быть даже выключены.

Claims (8)

1. Способ эксплуатации гибридных компрессионно-абсорбционных тепловых насосов или холодильных машин с применением в качестве рабочей среды неазеотропной смеси хорошо растворяющихся друг в друге компонентов различной летучести путем конденсации, с одной стороны, менее летучего компонента при отводе тепла от среды в первом теплообменном процессе и растворения, с другой стороны, пара более летучего компонента в жидкости, снижения давления рабочей среды в процессе ее расширения, по меньшей мере частичного выпаривания из раствора более летучего компонента во втором теплообменном процессе, с одной стороны, и испарения по меньшей мере частично менее летучего компонента, с другой стороны, и сжатия рабочей среды с повышением давления, отличающийся тем, что, с целью повышения коэффициента мощности тепловых насосов и холодильных машин, рабочая среда выводится из первого теплообменного процесса в виде смеси двух различных фаз с различной концентрацией, причем между двухфазной рабочей средой , выходящей из первого процесса теплообмена перед ее расширением, и рабочей средой перед ее сжатием осуществляют внутренний теплообмен, при котором в рабочей среде, выходящей из первого процесса теплообмена, продолжаются процессы растворения и конденсации.
2. Способ по п. 1, отличающийся тем, что внутренний теплообмен осуществляют в два этапа, при этом на первом этапе заканчивается конденсация и растворение с переходом всей рабочей среды в жидкую фазу, которая на втором этапе охлаждается дальше.
3. Способ по пп.1 и 2, отличающийся тем, что из влажного пара рабочей среды перед ее сжатием жидкость частично или полностью отделяется, оставшийся сухой или влажный пар сжимается, а отделенную жидкость впрыскивают в движущийся пар.
4. Способ по п.3, отличающийся тем, что отделенную жидкость возвращают в пар перед его сжатием или в процессе его сжатия, по крайней мере на одном уровне давления, или после его сжатия.
5. Гибридный тепловой насос или холодильная машина, содержащий замкнутый контур с последовательно включенными в него конденсатором-абсорбером, конденсатоохлаждающим внутренним теплообменником, элементом расширения, испарителем-десорбером и компрессором, выход которого подключен к входу конденсатора-абсорбера, отличающийся тем, что, с целью повышения коэффициента мощности тепловых насосов и холодильных машин, между конденсатором-абсорбером и конденсатоохлаждающим внутренним теплообменником помещен переохлаждающий внутренний теплообменник.
6. Насос или машина по п.5, отличающийся тем, что во всасывающий трубопровод компрессора включен сепаратор, на стороне выхода которого имеются отдельные трубопроводы пара и жидкости, первый из которых подключен к компрессору, а во втором установлен насос, подключенный к форсункам, размещенным в трубопроводе пара перед компрессором, и/или помещенным в компрессор, и/или размещенным в трубопроводе пара после компрессора.
7. Насос или машина по п.6, отличающийся тем, что перед форсунками установлена регулирующая арматура.
Приоритет по пунктам:
23.05.86 по пп. 1,2 и 5.
24.03.87 по пп. 3,4,6 и 7.
SU874202650A 1986-05-23 1987-05-22 Способ эксплуатации гибридных компрессионно-абсорбционных тепловых насосов или холодильных машин и гибридный тепловой насос или холодильная машина RU2018064C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
HU2182/87 1986-05-23
HU862182A HU198329B (en) 1986-05-23 1986-05-23 Method and apparatus for increasing the power factor of compression hybrid refrigerators or heat pumps operating by solution circuit
HU2182/86 1986-05-23

Publications (1)

Publication Number Publication Date
RU2018064C1 true RU2018064C1 (ru) 1994-08-15

Family

ID=10958168

Family Applications (1)

Application Number Title Priority Date Filing Date
SU874202650A RU2018064C1 (ru) 1986-05-23 1987-05-22 Способ эксплуатации гибридных компрессионно-абсорбционных тепловых насосов или холодильных машин и гибридный тепловой насос или холодильная машина

Country Status (10)

Country Link
US (1) US4967566A (ru)
EP (1) EP0248296B1 (ru)
JP (1) JPS6325463A (ru)
AT (1) ATE85695T1 (ru)
CA (1) CA1317771C (ru)
DD (1) DD262478A5 (ru)
DK (1) DK168675B1 (ru)
FI (1) FI91441C (ru)
HU (1) HU198329B (ru)
RU (1) RU2018064C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2788268C1 (ru) * 2022-07-07 2023-01-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Энергокомплекс

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931587A (ja) * 1982-08-12 1984-02-20 松下電器産業株式会社 ヒ−タ
HU210994B (en) * 1990-02-27 1995-09-28 Energiagazdalkodasi Intezet Heat-exchanging device particularly for hybrid heat pump operated by working medium of non-azeotropic mixtures
US5367884B1 (en) 1991-03-12 1996-12-31 Phillips Eng Co Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
US5271235A (en) * 1991-03-12 1993-12-21 Phillips Engineering Company High efficiency absorption cycle of the gax type
US5570584A (en) 1991-11-18 1996-11-05 Phillips Engineering Co. Generator-Absorber heat exchange transfer apparatus and method using an intermediate liquor
DE4230818A1 (de) * 1992-09-15 1994-03-17 Fritz Egger Gmbh Verfahren und Einrichtung zur Leistungsregelung einer Kompressions-Wärmepumpe und/oder Kältemaschine
US5579652A (en) 1993-06-15 1996-12-03 Phillips Engineering Co. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
US5490393A (en) * 1994-03-31 1996-02-13 Robur Corporation Generator absorber heat exchanger for an ammonia/water absorption refrigeration system
US5582020A (en) * 1994-11-23 1996-12-10 Mainstream Engineering Corporation Chemical/mechanical system and method using two-phase/two-component compression heat pump
US5782097A (en) 1994-11-23 1998-07-21 Phillips Engineering Co. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
US5791157A (en) * 1996-01-16 1998-08-11 Ebara Corporation Heat pump device and desiccant assisted air conditioning system
US6073454A (en) * 1998-07-10 2000-06-13 Spauschus Associates, Inc. Reduced pressure carbon dioxide-based refrigeration system
US6112547A (en) * 1998-07-10 2000-09-05 Spauschus Associates, Inc. Reduced pressure carbon dioxide-based refrigeration system
DE19959439A1 (de) 1999-12-09 2001-06-21 Bosch Gmbh Robert Klimaanlage für Kraftfahrzeuge und Verfahren zum Betreiben einer Klimaanlage für Kraftfahrzeuge
WO2006102941A2 (de) * 2005-03-30 2006-10-05 Miwe Ökokälte Gmbh Vorrichtung zum austreiben von wasser aus einer wässrigen lösung
FR2922557A1 (fr) * 2007-10-19 2009-04-24 Denis Jean Christian Chretien Composition de refrigerant et cycle frigorifique associe pour air conditionne et surgeles
GB0817672D0 (en) * 2008-09-29 2008-11-05 Al Mayahi Abdulsalam Ammonia cerntrifugal heat pump
RU2528452C2 (ru) * 2013-01-10 2014-09-20 Закрытое акционерное общество Научно-производственное предприятие "Машпром" (ЗАО НПП "Машпром") Способ подогрева в паровых теплообменниках и установка для его осуществления
BE1021700B1 (nl) * 2013-07-09 2016-01-11 P.T.I. Inrichting voor energiebesparing
EP3228952B1 (en) * 2014-11-05 2021-03-24 Limited Liability Company "Research And Production Company "Dni-Pro-Mto" Method for obtaining low temperatures
JP7114079B2 (ja) * 2018-03-30 2022-08-08 満夫 山田 発電機能付き冷房装置
DE102020110357B4 (de) 2020-04-16 2024-06-20 Wolfram Ungermann Systemkälte GmbH & Co. KG Verfahren zur Regelung eines hybriden Kühlsystems

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2041725A (en) * 1934-07-14 1936-05-26 Walter J Podbielniak Art of refrigeration
US2945355A (en) * 1955-12-20 1960-07-19 Heat X Inc Capacity control of refrigeration system
DE1426956A1 (de) * 1964-07-17 1969-05-08 Fuderer Michael Verfahren zur Tiefkuehlung
US3470707A (en) * 1968-02-12 1969-10-07 Andrew F Lofgreen Refrigeration system
US3500656A (en) * 1968-04-18 1970-03-17 Andrew F Lofgreen Refrigeration system with liquid and vapor pumps
US3698202A (en) * 1971-08-16 1972-10-17 Gulf & Western Industries Control system for low temperature refrigeration system
US3733845A (en) * 1972-01-19 1973-05-22 D Lieberman Cascaded multicircuit,multirefrigerant refrigeration system
US3872682A (en) * 1974-03-18 1975-03-25 Northfield Freezing Systems In Closed system refrigeration or heat exchange
US4014181A (en) * 1974-11-05 1977-03-29 Burger Manfred R Air conditioning methods and apparatus
DE2850403A1 (de) * 1978-11-21 1980-05-29 Luft U Kaeltetechnik Veb K Kompressionskaeltemaschine mit loesungskreislauf
HU186726B (en) * 1979-06-08 1985-09-30 Energiagazdalkodasi Intezet Hybrid heat pump
DE3100019A1 (de) * 1981-01-02 1982-09-23 Werner Dr.-Ing. 1000 Berlin Malewski Verfahren zur durchfuehrung von kaelte- und waermepumpenprozessen nach dem kompressionsprinzip mit loesungskreislauf
FR2497931A1 (fr) * 1981-01-15 1982-07-16 Inst Francais Du Petrole Procede de chauffage et de conditionnement thermique au moyen d'une pompe a chaleur a compression fonctionnant avec un fluide mixte de travail et appareil pour la mise en oeuvre dudit procede
US4495776A (en) * 1981-10-13 1985-01-29 Vsesojuzny Nauchno-Issledovatelsky Experminetalno Konstruktorsky Institut Elektrobytovyky Machin I Priborov Method and cooling agent for freezing and storing products
CA1233655A (en) * 1983-09-29 1988-03-08 Arnold R. Vobach Chemically assisted mechanical refrigeration process
HU198328B (en) * 1984-12-03 1989-09-28 Energiagazdalkodasi Intezet Method for multiple-stage operating hibrid (compression-absorption) heat pumps or coolers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Европейский патент ЕР N 0021205, кл. F 25B 25/02, опубл.1980. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2788268C1 (ru) * 2022-07-07 2023-01-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Энергокомплекс

Also Published As

Publication number Publication date
FI91441C (fi) 1994-06-27
DK168675B1 (da) 1994-05-16
EP0248296A3 (en) 1988-05-25
EP0248296A2 (de) 1987-12-09
HUT44851A (en) 1988-04-28
DD262478A5 (de) 1988-11-30
ATE85695T1 (de) 1993-02-15
DK261887D0 (da) 1987-05-22
CA1317771C (en) 1993-05-18
EP0248296B1 (de) 1993-02-10
FI91441B (fi) 1994-03-15
JPS6325463A (ja) 1988-02-02
FI872281A (fi) 1987-11-24
HU198329B (en) 1989-09-28
DK261887A (da) 1987-11-24
FI872281A0 (fi) 1987-05-22
US4967566A (en) 1990-11-06

Similar Documents

Publication Publication Date Title
RU2018064C1 (ru) Способ эксплуатации гибридных компрессионно-абсорбционных тепловых насосов или холодильных машин и гибридный тепловой насос или холодильная машина
KR930005665B1 (ko) 흡착식 냉동기의 운전방법
US10646794B2 (en) Solid-liquid separation device
JPH0423185B2 (ru)
SU1486614A1 (ru) Способ использования тепла абсорбционной энергетической установкой для производства механической или электрической энергии .
SU674690A3 (ru) Способ получени тепла и холода и установка дл его осуществлени
EP0138041A2 (en) Chemically assisted mechanical refrigeration process
JP2008014598A (ja) 圧縮式冷凍機の抽気装置
JP3169441B2 (ja) 油吸収型熱サイクル
RU2745434C2 (ru) Абсорбционная холодильная машина
JPH04298605A (ja) 低沸点媒体システム
RU2071162C1 (ru) Установка для осушки водорода в системе охлаждения электрического генератора
DK178705B1 (en) A heat pump system using water as the thermal fluid
CN115876014B (zh) 双相冷板液冷系统的控制方法、系统和装置
JPS6353456B2 (ru)
JPH04116346A (ja) 凝縮器
SU1702124A1 (ru) Сорбционна холодильна машина и способ ее работы
JPH08100608A (ja) 混合媒体バイナリー発電システム
SU591667A1 (ru) Способ охлаждени рабочего тела
SU983399A1 (ru) Холодильна машина
JPH0894196A (ja) 混合媒体ヒートポンプ
WO2023163614A1 (ru) Установка генерации тепла и холода
RU2021113989A (ru) Способ работы теплового насоса
RU2008577C1 (ru) Холодильная установка
KR940011076B1 (ko) 흡수식 냉동기의 용액 진공 입출장치