RU2017139548A - Способы уплотнения и уплотняющие устройства - Google Patents
Способы уплотнения и уплотняющие устройства Download PDFInfo
- Publication number
- RU2017139548A RU2017139548A RU2017139548A RU2017139548A RU2017139548A RU 2017139548 A RU2017139548 A RU 2017139548A RU 2017139548 A RU2017139548 A RU 2017139548A RU 2017139548 A RU2017139548 A RU 2017139548A RU 2017139548 A RU2017139548 A RU 2017139548A
- Authority
- RU
- Russia
- Prior art keywords
- particles
- electrode
- heating
- phase
- temperature
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims 12
- 238000007789 sealing Methods 0.000 title claims 3
- 239000002245 particle Substances 0.000 claims 48
- 239000012071 phase Substances 0.000 claims 24
- 230000007704 transition Effects 0.000 claims 22
- 238000010438 heat treatment Methods 0.000 claims 17
- 238000001816 cooling Methods 0.000 claims 15
- 239000007790 solid phase Substances 0.000 claims 14
- 230000006835 compression Effects 0.000 claims 9
- 238000007906 compression Methods 0.000 claims 9
- 230000005679 Peltier effect Effects 0.000 claims 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims 2
- 238000005056 compaction Methods 0.000 claims 2
- 239000011159 matrix material Substances 0.000 claims 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 229910001006 Constantan Inorganic materials 0.000 claims 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 125000004122 cyclic group Chemical group 0.000 claims 1
- 229910002804 graphite Inorganic materials 0.000 claims 1
- 239000010439 graphite Substances 0.000 claims 1
- 229910052750 molybdenum Inorganic materials 0.000 claims 1
- 239000011733 molybdenum Substances 0.000 claims 1
- 229910052763 palladium Inorganic materials 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- 239000010936 titanium Substances 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 claims 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims 1
- 229910052721 tungsten Inorganic materials 0.000 claims 1
- 239000010937 tungsten Substances 0.000 claims 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B15/00—Details of, or accessories for, presses; Auxiliary measures in connection with pressing
- B30B15/34—Heating or cooling presses or parts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/003—Apparatus, e.g. furnaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
- B22F3/087—Compacting only using high energy impulses, e.g. magnetic field impulses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B11/00—Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/02—Details
- H05B3/03—Electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
- B22F2003/1051—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2202/00—Treatment under specific physical conditions
- B22F2202/06—Use of electric fields
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/045—Alloys based on refractory metals
- C22C1/0458—Alloys based on titanium, zirconium or hafnium
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/0004—Devices wherein the heating current flows through the material to be heated
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/0019—Circuit arrangements
- H05B3/0023—Circuit arrangements for heating by passing the current directly across the material to be heated
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/60—Heating arrangements wherein the heating current flows through granular powdered or fluid material, e.g. for salt-bath furnace, electrolytic heating
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Claims (41)
1. Способ, включающий:
размещение электропроводящих частиц между первым электродом (32) и вторым электродом (34) с обеспечением контакта частиц с электродами, при этом частицы обеспечивают проводящий канал между первым электродом (32) и вторым электродом (34), первый электрод (32) имеет первый коэффициент термоэдс, второй электрод (34) имеет второй коэффициент термоэдс, превышающий первый коэффициент термоэдс, а частицы имеют третий коэффициент термоэдс, значение которого находится между первым и вторым коэффициентами термоэдс;
сжатие частиц при их нагреве до более высокой температуры, превышающей температуру фазового перехода с нагревом из низкотемпературной твердой фазы в высокотемпературную твердую фазу, при этом нагрев включает подачу электрического тока от второго электрода (34) через частицы к первому электроду (32), что обеспечивает выделение тепла вследствие эффекта Пельтье в месте контакта между первым электродом (32) и частицами и в месте контакта между вторым электродом (34) и частицами;
при этом в результате нагрева происходит фазовый переход частиц из низкотемпературной твердой фазы в высокотемпературную твердую фазу;
осуществление сжатия частиц после их фазового перехода с нагревом при охлаждении частиц до более низкой температуры, которая ниже температуры фазового перехода с охлаждением из высокотемпературной твердой фазы в низкотемпературную твердую фазу, при этом охлаждение включает подачу электрического тока от первого электрода (32) через частицы к второму электроду (34), что обеспечивает отвод тепла вследствие эффекта Пельтье в месте контакта между первым электродом (32) и частицами и в месте контакта между вторым электродом (34) и частицами;
при этом в результате охлаждения происходит фазовый переход частиц из высокотемпературной твердой фазы в низкотемпературную твердую фазу; и
уплотнение частиц вследствие фазовых переходов с нагревом и охлаждением при сжатии частиц.
2. Способ по п. 1, согласно которому
второй коэффициент термоэдс превышает первый коэффициент термоэдс на 5 мкВ/К или более при температурах фазовых переходов с нагревом и охлаждением, а
третий коэффициент термоэдс отличается по меньшей мере на 20% от первого и второго коэффициентов термоэдс при температурах фазовых переходов с нагревом и охлаждением.
3. Способ по любому из предыдущих пунктов, согласно которому
частицы в основном содержат титан,
низкотемпературная твердая фаза представляет собой альфа-фазу, а
высокотемпературная твердая фаза представляет собой бета-фазу.
4. Способ по любому из предыдущих пунктов, согласно которому сжатие частиц при их нагреве и сжатие частиц при их охлаждении включают сжатие частиц при давлении менее 7 тысяч фунтов на квадратный дюйм (48,26 МПа).
5. Способ по любому из предыдущих пунктов, согласно которому нагрев дополнительно включает кондуктивный перенос тепла к частицам с помощью средств, отличных от средств на основе эффекта Пельтье.
6. Способ по любому из предыдущих пунктов, согласно которому
температура фазового перехода с нагревом и температура фазового перехода с охлаждением имеют одинаковые значения,
нагрев включает нагрев частиц до температуры, превышающей температуру фазового перехода на 1-10%, а
охлаждение включает охлаждение частиц до температуры, которая ниже температуры фазового перехода на 1-10%.
7. Способ по любому из предыдущих пунктов, согласно которому электрический ток, подаваемый от второго электрода (34) через частицы к первому электроду (32), и электрический ток, подаваемый от первого электрода (32) через частицы ко второму электроду (34), представляет собой переменный электрический ток.
8. Способ по п. 7, согласно которому переменный электрический ток подают с частотой, согласованной с расстоянием между электродами и силой тока 1-15 А/мм2 в месте контакта между первым электродом (32) и частицами и в месте контакта между вторым электродом (34) и частицами.
9. Способ по любому из предыдущих пунктов, согласно которому
частицы заключены в общем объеме незавершенной детали,
фазовый переход частиц из низкотемпературной твердой фазы в высокотемпературную твердую фазу включает фазовый переход более 95% от общего объема, а
фазовый переход частиц из высокотемпературной твердой фазы в низкотемпературную твердую фазу включает фазовый переход более 95% от общего объема.
10. Способ по любому из предыдущих пунктов, согласно которому уплотнение частиц включает многократное циклическое выполнение фазового перехода с нагревом и фазового перехода с охлаждением, что обеспечивает сверхпластичное формование частиц с получением цельной детали вследствие фазовых переходов с нагревом и охлаждением при сжатии частиц.
11. Способ по п. 10, согласно которому циклическое выполнение фазового перехода с нагревом и фазового перехода с охлаждением повторяют более чем 10 раз.
12. Устройство, содержащее:
первый электрод (32), имеющий первый коэффициент термоэдс, и второй электрод (34), имеющий второй коэффициент термоэдс, превышающий первый коэффициент термоэдс;
полость матрицы между первым электродом (32) и вторым электродом (34), выполненную таким образом, что электропроводящие частицы, размещенные в этой полости матрицы, контактируют с первым электродом (32) и вторым электродом (34) и обеспечивают проводящий канал между первым и вторым электродами;
источник (70) питания переменного тока, электрически соединенный с первым электродом (32) и вторым электродом (34) и выполненный с возможностью выборочного изменения направления протекания электрического тока для подачи электрического тока от второго электрода (34) через частицы к первому электроду (32) или от первого электрода (32) через частицы к второму электроду (34); при этом
источник (70) питания выполнен с возможностью создания частоты тока и силы тока, достаточных для осуществления нагрева на основе эффекта Пельтье и охлаждения на основе эффекта Пельтье в зависимости от направления протекания электрического тока в месте контакта между первым электродом (32) и частицами и в месте контакта между вторым электродом (34) и частицами, при этом достаточность частоты тока зависит от расстояния между первым и вторым электродами через частицы;
уплотняющий пресс, выполненный с возможностью обеспечения достаточного сжатия частиц при подаче переменного электрического тока для уплотнения частиц вследствие фазовых переходов с нагревом и охлаждением при сжатии частиц.
13. Устройство по п. 12, в котором второй коэффициент термоэдс превышает первый коэффициент термоэдс на 5 мкВ/К или более при измерении при температуре 20°С.
14. Устройство по любому из пп. 12-13, в котором
первый электрод (32) по существу состоит из молибдена или вольфрама в месте контакта между первым электродом (32) и частицами, и/или
второй электрод (34) по существу состоит из палладия, графита или константана в месте контакта между вторым электродом (34) и частицами.
15. Устройство по любому из пп. 12-14, в котором
достаточная частота тока согласована с расстоянием между электродами, достаточная сила тока составляет 1-15 А/мм2 в месте контакта между первым электродом (32) и частицами и в месте контакта между вторым электродом (34) и частицами, а
достаточное сжатие, прикладываемое первым электродом и/или вторым электродом (34) к частицам, составляет менее чем 7 тысяч фунтов на квадратный дюйм (48,26 МПа).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/431,413 | 2017-02-13 | ||
US15/431,413 US10549497B2 (en) | 2017-02-13 | 2017-02-13 | Densification methods and apparatuses |
Publications (3)
Publication Number | Publication Date |
---|---|
RU2017139548A3 RU2017139548A3 (ru) | 2019-05-14 |
RU2017139548A true RU2017139548A (ru) | 2019-05-14 |
RU2703466C2 RU2703466C2 (ru) | 2019-10-17 |
Family
ID=60673451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017139548A RU2703466C2 (ru) | 2017-02-13 | 2017-11-14 | Способы уплотнения и уплотняющие устройства |
Country Status (6)
Country | Link |
---|---|
US (2) | US10549497B2 (ru) |
EP (1) | EP3360625B1 (ru) |
JP (1) | JP7143086B2 (ru) |
CN (1) | CN108421975B (ru) |
ES (1) | ES2760569T3 (ru) |
RU (1) | RU2703466C2 (ru) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU201841U1 (ru) * | 2020-10-05 | 2021-01-14 | федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ) | Устройство для электроимпульсного прессования порошковых материалов |
CN112964745B (zh) * | 2021-01-31 | 2022-01-04 | 华中科技大学 | 一种放电等离子烧结制备非晶合金内部温度场的标定方法 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5169572A (en) * | 1991-01-10 | 1992-12-08 | Matthews M Dean | Densification of powder compacts by fast pulse heating under pressure |
US5989721A (en) | 1996-05-15 | 1999-11-23 | Tapeswitch Corporation Of America | Device and method for generating electrical energy |
US6514453B2 (en) * | 1997-10-21 | 2003-02-04 | Nanoproducts Corporation | Thermal sensors prepared from nanostructureed powders |
US6001304A (en) * | 1998-12-31 | 1999-12-14 | Materials Modification, Inc. | Method of bonding a particle material to near theoretical density |
JP4015796B2 (ja) * | 1999-03-31 | 2007-11-28 | Spsシンテックス株式会社 | 自動パルス通電加圧焼結方法及びそのシステム |
WO2006043514A1 (ja) * | 2004-10-18 | 2006-04-27 | Meidensha Corporation | ペルチェ素子又はゼーベック素子の構造及びその製造方法 |
WO2008048302A2 (en) * | 2005-11-29 | 2008-04-24 | Nanodynamics Inc. | Bulk thermoelectric compositions from coated nanoparticles |
US20100047527A1 (en) * | 2007-02-12 | 2010-02-25 | Vacuumschmeize GmbH & Co. KG | Article for Magnetic Heat Exchange and Methods of Manufacturing the Same |
KR100803049B1 (ko) * | 2007-08-31 | 2008-02-22 | (주)제이피에스 마이크로텍 | 마이크로파를 이용한 박편상의 산화알루미늄 제조방법 |
JP4848394B2 (ja) * | 2008-05-21 | 2011-12-28 | 秋田県 | W−Ti−C系複合体及びその製造方法 |
US7905128B2 (en) * | 2008-07-24 | 2011-03-15 | The Boeing Company | Forming method and apparatus and an associated preform having a hydrostatic pressing medium |
CN101521260B (zh) * | 2009-03-25 | 2010-08-04 | 中国科学院上海微系统与信息技术研究所 | 一种纳米复合相变材料及其制备方法 |
US20110297203A1 (en) * | 2010-06-04 | 2011-12-08 | Gm Global Technology Operations, Inc. | Formation of thermoelectric elements by net shape sintering |
JP5206768B2 (ja) * | 2010-11-08 | 2013-06-12 | トヨタ自動車株式会社 | ナノコンポジット熱電変換材料、その製造方法および熱電変換素子 |
US8940220B2 (en) * | 2011-07-29 | 2015-01-27 | The Regents Of The University Of Colorado, A Body Corporate | Methods of flash sintering |
US20130126800A1 (en) * | 2011-11-17 | 2013-05-23 | Monika Backhaus-Ricoult | Niobium oxide-based thermoelectric composites |
DE102012205087A1 (de) * | 2012-03-29 | 2013-10-02 | Evonik Industries Ag | Pulvermetallurgische Herstellung eines thermoelektrischen Bauelements |
US9457404B2 (en) * | 2013-02-04 | 2016-10-04 | The Boeing Company | Method of consolidating/molding near net-shaped components made from powders |
US9709040B2 (en) * | 2013-10-11 | 2017-07-18 | University Of Dayton | Reconfigurable skin system based on spatially targeted activation of shape memory polymers |
US10189087B2 (en) * | 2013-10-22 | 2019-01-29 | The Boeing Company | Methods of making parts from at least one elemental metal powder |
DE102016004548A1 (de) * | 2016-04-13 | 2017-10-19 | Forschungszentrum Jülich GmbH | Verfahren zur Herstellung von metallischen oder keramischen Bauteilen sowie Bauteile |
CN106048437A (zh) * | 2016-07-10 | 2016-10-26 | 上海大学 | 一种在氢气气氛下对殷瓦钢热处理的方法 |
US10946592B2 (en) * | 2016-09-11 | 2021-03-16 | Impossible Objects, Inc. | Resistive heating-compression method and apparatus for composite-based additive manufacturing |
EP3391982B1 (en) * | 2017-04-21 | 2023-08-16 | Raytheon Technologies Corporation | Systems, devices and methods for spark plasma sintering |
WO2018213718A1 (en) * | 2017-05-19 | 2018-11-22 | Essentium Materials, Llc | Three dimensional printer apparatus |
US11167348B2 (en) * | 2017-06-28 | 2021-11-09 | Rolls-Royce Corporation | Joining metal or alloy components using electric current |
-
2017
- 2017-02-13 US US15/431,413 patent/US10549497B2/en active Active
- 2017-11-14 RU RU2017139548A patent/RU2703466C2/ru active
- 2017-12-01 EP EP17204952.0A patent/EP3360625B1/en active Active
- 2017-12-01 ES ES17204952T patent/ES2760569T3/es active Active
- 2017-12-25 CN CN201711416775.7A patent/CN108421975B/zh active Active
-
2018
- 2018-02-09 JP JP2018021646A patent/JP7143086B2/ja active Active
-
2019
- 2019-12-18 US US16/719,357 patent/US11584101B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
RU2017139548A3 (ru) | 2019-05-14 |
JP2018186265A (ja) | 2018-11-22 |
US20180229463A1 (en) | 2018-08-16 |
ES2760569T3 (es) | 2020-05-14 |
US11584101B2 (en) | 2023-02-21 |
JP7143086B2 (ja) | 2022-09-28 |
EP3360625A1 (en) | 2018-08-15 |
US10549497B2 (en) | 2020-02-04 |
EP3360625B1 (en) | 2019-08-28 |
RU2703466C2 (ru) | 2019-10-17 |
CN108421975B (zh) | 2022-06-14 |
CN108421975A (zh) | 2018-08-21 |
US20200130314A1 (en) | 2020-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim | Analysis and modeling of effective temperature differences and electrical parameters of thermoelectric generators | |
RU2017139548A (ru) | Способы уплотнения и уплотняющие устройства | |
CN104620402B (zh) | 热电部件的粉末冶金制造 | |
CN112390629B (zh) | 一种快速烧结陶瓷装置及方法 | |
CN104014792B (zh) | 采用放电等离子烧结高性能铜钨电工触头材料的方法 | |
Li et al. | Multiphysics simulations of a thermoelectric generator | |
US20130255740A1 (en) | Thermogenerator and process for producing a thermogenerator | |
RU2011123784A (ru) | Способ преобразования тепловой энергии в электрическую энергию | |
JP2018186265A5 (ru) | ||
Moumouni et al. | Concise thermal to electrical parameters extraction of thermoelectric generator for spice modeling | |
JPWO2013150773A1 (ja) | パイプ形状の熱発電デバイスを製造する方法 | |
CN207304944U (zh) | 一种ptc发热器件的固化成型设备的电联接装置 | |
CN208507728U (zh) | 一种效率较高的半导体制冷器件与发电器件 | |
Grishchenko et al. | Increasing the cooling efficiency of power semiconductor devices | |
CN103122241A (zh) | 一种高导热复合材料及制备方法 | |
CN204801240U (zh) | 多温区烫金版电加热装置 | |
KR101814105B1 (ko) | 배향성이 증가된 열전재료 제조방법 | |
JP2010238741A (ja) | 熱電変換素子の製造方法及び装置 | |
CN105305886A (zh) | 用于弹性检测设备的热能处理装置 | |
RU2012133740A (ru) | Устройство для генерирования электрической энергии из теплопроводного материала | |
Bulat et al. | Targeted use of SPS method for improvement of thermoelectrics | |
CN206077706U (zh) | 一种车用高电压ptc发热体 | |
JP2016127033A (ja) | 熱発電装置及びこれを用いた熱発電方法並びに熱発電システム | |
RU207206U1 (ru) | Термоэлектрический модуль | |
CN107454683A (zh) | 一种ptc发热器件的固化成型设备的电联接装置 |