RU2017101876A - Панель, обеспечивающая ламинарный поток - Google Patents

Панель, обеспечивающая ламинарный поток Download PDF

Info

Publication number
RU2017101876A
RU2017101876A RU2017101876A RU2017101876A RU2017101876A RU 2017101876 A RU2017101876 A RU 2017101876A RU 2017101876 A RU2017101876 A RU 2017101876A RU 2017101876 A RU2017101876 A RU 2017101876A RU 2017101876 A RU2017101876 A RU 2017101876A
Authority
RU
Russia
Prior art keywords
aerodynamic body
main cross
panel skin
cross members
outer panel
Prior art date
Application number
RU2017101876A
Other languages
English (en)
Other versions
RU2017101876A3 (ru
RU2732160C2 (ru
Inventor
Генри Дж. КОППЕЛМАН
Майкл К. КЛЕЙН
Original Assignee
Зе Боинг Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/043,152 external-priority patent/US10556670B2/en
Application filed by Зе Боинг Компани filed Critical Зе Боинг Компани
Publication of RU2017101876A publication Critical patent/RU2017101876A/ru
Publication of RU2017101876A3 publication Critical patent/RU2017101876A3/ru
Application granted granted Critical
Publication of RU2732160C2 publication Critical patent/RU2732160C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/26Construction, shape, or attachment of separate skins, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/0009Aerodynamic aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/10Shape of wings
    • B64C3/14Aerofoil profile
    • B64C3/141Circulation Control Airfoils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/12Construction or attachment of skin panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C21/00Influencing air flow over aircraft surfaces by affecting boundary layer flow
    • B64C21/02Influencing air flow over aircraft surfaces by affecting boundary layer flow by use of slot, ducts, porous areas or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C21/00Influencing air flow over aircraft surfaces by affecting boundary layer flow
    • B64C21/02Influencing air flow over aircraft surfaces by affecting boundary layer flow by use of slot, ducts, porous areas or the like
    • B64C21/06Influencing air flow over aircraft surfaces by affecting boundary layer flow by use of slot, ducts, porous areas or the like for sucking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/10Shape of wings
    • B64C3/14Aerofoil profile
    • B64C2003/143Aerofoil profile comprising interior channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2230/00Boundary layer controls
    • B64C2230/08Boundary layer controls by influencing fluid flow by means of surface cavities, i.e. net fluid flow is null
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2230/00Boundary layer controls
    • B64C2230/22Boundary layer controls by using a surface having multiple apertures of relatively small openings other than slots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Moulding By Coating Moulds (AREA)

Claims (52)

1. Аэродинамическое тело, задающее направление вдоль хорды относительно потока воздуха поверх указанного аэродинамического тела и содержащее:
- наружную панельную обшивку, имеющую внутреннюю поверхность, наружную поверхность и множество отверстий, проходящих от внутренней поверхности к наружной поверхности, причем наружная панельная обшивка проходит вокруг внутренней поверхности аэродинамического тела и образует переднюю кромку аэродинамического тела; и
- микрорешеточную конструкцию из элементов жесткости, содержащую:
множество основных поперечин, каждая из которых имеет по меньшей мере первый конец, соединенный с внутренней поверхностью наружной панельной обшивки, и
множество диагональных опорных раскосов, каждый из которых проходит по диагонали между смежными основными поперечинами и соединен с ними;
причем микрорешеточная конструкция из элементов жесткости проходит вдоль внутренней поверхности наружной панельной обшивки ниже по потоку относительно указанного множества отверстий,
при этом между множеством основных поперечин и множеством диагональных опорных раскосов образованы промежутки для потока воздуха для сообщения указанного множества отверстий по текучей среде с внутренней поверхностью аэродинамического тела ниже по потоку относительно микрорешеточной конструкции из элементов жесткости.
2. Аэродинамическое тело по п. 1, в котором
указанное множество основных поперечин расположен на внутренней поверхности наружной панельной обшивки в рядах вдоль линий сопряжения, которые по существу параллельны направлению вдоль хорды.
3. Аэродинамическое тело по п. 1, в котором
множество основных поперечин расположено в форме плоской матрицы на внутренней поверхности наружной панельной обшивки, причем
каждая группа из четырех поперечин указанного множества основных поперечин образует углы четырехугольника, при этом
два раскоса из указанного множества диагональных опорных раскосов проходят между основными поперечинами в противоположных углах указанного четырехугольника, и
эти два раскоса из указанного множества диагональных опорных раскосов пересекаются в узле внутри четырехугольника.
4. Аэродинамическое тело по п. 1, в котором
множество основных поперечин расположено в форме плоской матрицы на внутренней поверхности наружной панельной обшивки, причем
каждая группа из четырех поперечин указанного множества основных поперечин образует углы четырехугольника, при этом
два раскоса из указанного множества диагональных опорных раскосов проходят между основными поперечинами в смежных углах четырехугольника, и
эти два раскоса из указанного множества диагональных опорных раскосов, пересекаются в узлах вдоль сторон четырехугольника.
5. Аэродинамическое тело по п. 1, дополнительно содержащее боковые опорные раскосы, соединенные со смежными основными поперечинами из указанного множества основных поперечин на вторых концах, которые противоположны первым концам указанного множества основных поперечин, соединенным с внутренней поверхностью наружной панельной обшивки.
6. Аэродинамическое тело по п. 1, дополнительно содержащее внутреннюю панельную обшивку, расположенную внутри аэродинамического тела рядом с передней кромкой и проходящую назад, причем
внутренняя панельная обшивка соединена с соответствующими поперечинами из указанного множества основных поперечин на вторых концах, которые противоположны первым концам соответствующих поперечин из указанного множества основных поперечин, и
между наружной панельной обшивкой и внутренней панельной обшивкой образован канал для потока воздуха для сообщения указанного множества отверстий по текучей среде с внутренней поверхностью аэродинамического тела ниже по потоку относительно внутренней панельной обшивки.
7. Аэродинамическое тело по п. 1, в котором каждая поперечина из указанного множества основных поперечин по существу перпендикулярна соответствующей части внутренней поверхности наружной панельной обшивки, с которой соединена эта основная поперечина.
8. Аэродинамическое тело по п. 1, в котором указанное множество основных поперечин по существу параллельны направлению вдоль хорды аэродинамического тела.
9. Аэродинамическое тело по п. 8, дополнительно содержащее множество слоев диагональных опорных раскосов, соединенных с указанным множеством основных поперечин, а множество основных поперечин проходит ниже по потоку от передней кромки аэродинамического тела.
10. Аэродинамическое тело по п. 1, в котором указанное множество основных поперечин по существу перпендикулярны направлению вдоль хорды, а вторые концы множества основных поперечин соединены с внутренней поверхностью наружной панельной обшивки.
11. Способ создания ламинарного потока из потока воздуха, проходящего поверх наружной части аэродинамического тела, задающего направление вдоль хорды относительно потока воздуха, согласно которому:
пропускают часть потока воздуха через отверстия, выполненные в наружной панельной обшивке аэродинамического тела, которая проходит вокруг внутренней поверхности аэродинамического тела;
направляют указанную часть потока воздуха от указанных отверстий через микрорешеточную конструкцию из элементов жесткости, в которой образованы промежутки для потока воздуха, проходящие через нее, и которая проходит по существу в направлении вдоль хорды от передней кромки аэродинамического тела; и
принимают поток воздуха на внутренней поверхности аэродинамического тела через промежутки для потока воздуха в микрорешеточной конструкции из элементов жесткости.
12. Способ создания по п. 11, также включающий придание жесткости аэродинамическому телу путем соединения микрорешеточной конструкции из элементов жесткости с внутренней поверхностью наружной панельной обшивки.
13. Способ создания по п. 12, согласно которому микрорешеточная конструкция из элементов жесткости образована множеством основных поперечин и множеством диагональных опорных раскосов, соединенных с множеством основных поперечин,
причем первые концы указанного множества основных поперечин имеют соединения с внутренней поверхностью наружной панельной обшивки.
14. Способ создания по п. 11, также включающий пропуск потока воздуха через микрорешеточную конструкцию из элементов жесткости в нагнетательную камеру.
15. Аэродинамическое тело, задающее направление вдоль хорды относительно потока воздуха поверх указанного аэродинамического тела и содержащее:
- наружную панельную обшивку, имеющую внутреннюю поверхность, наружную поверхность и множество отверстий, проходящих от внутренней поверхности к наружной поверхности, причем наружная панельная обшивка проходит вокруг внутренней поверхности аэродинамического тела и образует переднюю кромку аэродинамического тела;
- микрорешеточную конструкцию из элементов жесткости, содержащую:
множество основных поперечин, каждая из которых имеет по меньшей мере первый конец, соединенный с внутренней поверхностью наружной панельной обшивки, и
множество диагональных опорных раскосов, каждый из которых проходит по диагонали между смежными основными поперечинами и соединен с ними,
причем микрорешеточная конструкция из элементов жесткости проходит вдоль внутренней поверхности наружной панельной обшивки ниже по потоку относительно указанного множества отверстий,
при этом между множеством основных поперечин и множеством диагональных опорных раскосов образованы промежутки для потока воздуха для сообщения указанного множества отверстий по текучей среде с внутренней поверхностью аэродинамического тела ниже по потоку относительно микрорешеточной конструкции из элементов жесткости; и
- внутреннюю панельную обшивку, расположенную внутри аэродинамического тела рядом с передней кромкой и проходящую назад, причем
внутренняя панельная обшивка соединена с соответствующими поперечинами из указанного множества основных поперечин на вторых концах, которые противоположны первым концам соответствующих поперечин из указанного множества основных поперечин, и
между наружной панельной обшивкой и внутренней панельной обшивкой образован канал для потока воздуха для сообщения указанного множества отверстий по текучей среде с внутренней поверхностью аэродинамического тела ниже по потоку относительно внутренней панельной обшивки.
16. Аэродинамическое тело по п. 15, в котором внутренняя панельная обшивка проходит ниже по потоку относительно указанного множества отверстий.
17. Аэродинамическое тело по п. 16, в котором:
внутренняя панельная обшивка проходит к концам микрорешеточной конструкции из элементов жесткости, и
внутренняя панельная обшивка соединена со вторыми концами каждой из указанного множества основных поперечин.
18. Аэродинамическое тело по п. 15, в котором каждая из указанного множества основных поперечин по существу перпендикулярна соответствующей части внутренней поверхности наружной панельной обшивки, с которой соединена эта основная поперечина.
19. Аэродинамическое тело по п. 15, в котором указанное множество основных поперечин по существу параллельны направлению вдоль хорды аэродинамического тела.
20. Аэродинамическое тело по п. 15, дополнительно содержащее нагнетательную камеру, расположенную в пределах внутренней поверхности аэродинамического тела и непосредственно сообщающуюся по текучей среде с каналом для потока воздуха.
RU2017101876A 2016-02-12 2017-01-20 Аэродинамическое тело и способ создания ламинарного потока с использованием такого тела RU2732160C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/043,152 2016-02-12
US15/043,152 US10556670B2 (en) 2010-08-15 2016-02-12 Laminar flow panel

Publications (3)

Publication Number Publication Date
RU2017101876A true RU2017101876A (ru) 2018-07-23
RU2017101876A3 RU2017101876A3 (ru) 2020-03-16
RU2732160C2 RU2732160C2 (ru) 2020-09-14

Family

ID=57906532

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017101876A RU2732160C2 (ru) 2016-02-12 2017-01-20 Аэродинамическое тело и способ создания ламинарного потока с использованием такого тела

Country Status (7)

Country Link
EP (1) EP3205575B1 (ru)
JP (1) JP6910801B2 (ru)
CN (1) CN107082111B (ru)
AU (1) AU2017200151B2 (ru)
BR (1) BR102017001471B1 (ru)
CA (1) CA2949257C (ru)
RU (1) RU2732160C2 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2567683A (en) * 2017-10-20 2019-04-24 Airbus Operations Ltd Apparatus for laminar flow control
US10913216B2 (en) * 2017-11-21 2021-02-09 General Electric Company Methods for manufacturing wind turbine rotor blade panels having printed grid structures
DE102017128497A1 (de) * 2017-11-30 2019-06-06 Airbus Operations Gmbh Vorderkantenanordnung für einen Strömungskörper eines Fahrzeugs
EP3539863B1 (en) * 2018-03-15 2021-06-30 Airbus Operations GmbH A leading edge structure for a flow control system of an aircraft
EP3702263A1 (en) * 2019-02-28 2020-09-02 Airbus Operations GmbH Aircraft structure for flow control
CN110481761B (zh) * 2019-08-20 2021-07-13 空气动力学国家重点实验室 一种利用表面开孔/槽的流动转捩被动控制装置
CN111591433B (zh) * 2019-11-12 2021-10-22 中国科学院兰州化学物理研究所 一种柔性蒙皮及其制备方法和应用
JP7240559B2 (ja) * 2020-03-31 2023-03-15 川崎重工業株式会社 航空機部品の中間生成品の製造方法および航空機部品
EP4032805B1 (en) * 2021-01-22 2023-11-08 Airbus Operations GmbH Leading edge structure for a flow control system of an aircraft
EP4032806A1 (en) 2021-01-22 2022-07-27 Airbus Operations GmbH Leading edge structure for a flow control system of an aircraft

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2643832A (en) * 1949-01-26 1953-06-30 Imp Trust For The Encouragemen Aerodynamic lift-producing device
US2742247A (en) * 1950-10-31 1956-04-17 Handley Page Ltd Outer surfaces for craft moving in one fluid
US5167387A (en) * 1991-07-25 1992-12-01 Vigyan, Inc. Porous airfoil and process
WO1998019843A1 (en) * 1996-11-08 1998-05-14 Nu-Cast Inc. Improved truss structure design
DE19649132C2 (de) * 1996-11-27 1999-09-02 Daimler Chrysler Aerospace Nase für eine aerodynamische Fläche und Verfahren zu ihrer Herstellung
US5833389A (en) * 1996-12-09 1998-11-10 Orlev Scientific Computing Ltd. Apparatus for controlling turbulence in boundary layer and other wall-bounded fluid flow fields
US6655633B1 (en) * 2000-01-21 2003-12-02 W. Cullen Chapman, Jr. Tubular members integrated to form a structure
US7866609B2 (en) * 2007-06-15 2011-01-11 The Boeing Company Passive removal of suction air for laminar flow control, and associated systems and methods
US8783624B2 (en) * 2010-08-15 2014-07-22 The Boeing Company Laminar flow panel
DE102010036154B4 (de) * 2010-09-02 2017-01-26 Airbus Operations Gmbh Luft absaugende Fahrzeugrumpfkomponente, Verfahren zum Herstellen einer Luft absaugenden Fahrzeugrumpfkomponente und Fahrzeug, insbesondere Flugzeug, mit einer Luft absaugenden Fahrzeugrumpfkomponente
CN102114910A (zh) * 2010-12-14 2011-07-06 大连海事大学 一种等离子体机翼流动控制方法
US9321241B2 (en) * 2012-05-11 2016-04-26 The Boeing Company Ventilated aero-structures, aircraft and associated methods
RU2503590C1 (ru) * 2012-10-25 2014-01-10 Юлия Алексеевна Щепочкина Летательный аппарат
EP2945761A1 (en) * 2013-01-16 2015-11-25 General Electric Company Metallic structure

Also Published As

Publication number Publication date
AU2017200151A1 (en) 2017-08-31
EP3205575A1 (en) 2017-08-16
JP6910801B2 (ja) 2021-07-28
BR102017001471B1 (pt) 2023-05-09
CA2949257C (en) 2020-12-22
CN107082111A (zh) 2017-08-22
EP3205575B1 (en) 2020-11-04
RU2017101876A3 (ru) 2020-03-16
JP2017197165A (ja) 2017-11-02
CN107082111B (zh) 2020-12-01
AU2017200151B2 (en) 2021-06-24
RU2732160C2 (ru) 2020-09-14
CA2949257A1 (en) 2017-08-12
BR102017001471A2 (pt) 2018-04-03

Similar Documents

Publication Publication Date Title
RU2017101876A (ru) Панель, обеспечивающая ламинарный поток
UA89470C2 (ru) Устройство управления ламинарным течением и летательный аппарат, использующий подобное устройство
JP2017538924A5 (ru)
JP2019515786A5 (ru)
US20220227131A1 (en) Nozzle arrangements and supply channels
JP2017532790A5 (ru)
JP6013808B2 (ja) 多ノズル式スプレーヘッド
JP2019521034A5 (ru)
JP2016117234A5 (ru)
RU2012107068A (ru) Головка для выброса жидкости и способ ее изготовления
WO2020028668A4 (en) System and method for cooling computing devices within a facility
JPH11290746A (ja) 流体の吐出路構造
EP3167954B1 (en) Static mixer
RU2015141461A (ru) Абсорбирующее изделие, демонстрирующее управляемую деформацию и продольное распределение текучей среды
US11807005B2 (en) Nozzle arrangements
RU2015141462A (ru) Абсорбирующее изделие, демонстрирующее управляемую деформацию и продольное распределение текучей среды
JP5832272B2 (ja) 液体吐出ヘッド
CN110963021A (zh) 用于飞行器的导流体
US20150030964A1 (en) Method of making a fuel cell component having an interdigitated flow field configuration
JP2015202485A (ja) 湿式電気集塵機
RU2015138792A (ru) Кровельная пешеходная дорожка
KR101267464B1 (ko) 유체 분사 장치
US1818971A (en) Airplane wing construction
SU757674A1 (ru) Мачта 1
JP6833346B2 (ja) 記録素子基板、液体吐出ヘッドおよび液体吐出装置