RU2013149544A - Газотурбинный двигатель - Google Patents

Газотурбинный двигатель Download PDF

Info

Publication number
RU2013149544A
RU2013149544A RU2013149544/06A RU2013149544A RU2013149544A RU 2013149544 A RU2013149544 A RU 2013149544A RU 2013149544/06 A RU2013149544/06 A RU 2013149544/06A RU 2013149544 A RU2013149544 A RU 2013149544A RU 2013149544 A RU2013149544 A RU 2013149544A
Authority
RU
Russia
Prior art keywords
engine
gas
turbine engine
modes
gas turbine
Prior art date
Application number
RU2013149544/06A
Other languages
English (en)
Other versions
RU2556090C2 (ru
Inventor
Александр Викторович Артюхов
Дмитрий Юрьевич Еричев
Владимир Валентинович Кирюхин
Игорь Александрович Кондрашов
Николай Александрович Кононов
Виктор Викторович Куприк
Ирик Усманович Манапов
Евгений Ювенальевич Марчуков
Константин Сергеевич Поляков
Сергей Анатольевич Симонов
Николай Павлович Селиванов
Original Assignee
Открытое Акционерное Общество "Уфимское Моторостроительное Производственное Объединение" (Оао "Умпо")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое Акционерное Общество "Уфимское Моторостроительное Производственное Объединение" (Оао "Умпо") filed Critical Открытое Акционерное Общество "Уфимское Моторостроительное Производственное Объединение" (Оао "Умпо")
Priority to RU2013149544/06A priority Critical patent/RU2556090C2/ru
Publication of RU2013149544A publication Critical patent/RU2013149544A/ru
Application granted granted Critical
Publication of RU2556090C2 publication Critical patent/RU2556090C2/ru

Links

Abstract

1. Газотурбинный двигатель, характеризующийся тем, что выполнен двухконтурным, двухвальным и содержит не менее восьми модулей, смонтированных, предпочтительно, по модульно-узловой системе, включая компрессор низкого давления (КНД) со статором, имеющим входной направляющий аппарат (ВНА), не более трех промежуточных направляющих и выходной спрямляющий аппараты, а также с ротором, имеющим вал и систему наделенных лопатками, предпочтительно, четырех рабочих колес; промежуточный корпус; газогенератор, включающий сборочные единицы - компрессор высокого давления (КВД), имеющий статор, включающий входной направляющий аппарат, не более восьми промежуточных направляющих и выходной спрямляющий аппараты, а также ротор с валом и системой оснащенных лопатками рабочих колес, число которых не менее чем в два раза превышает число упомянутых рабочих колес КНД; основную камеру сгорания и турбину высокого давления (ТВД); за газогенератором последовательно соосно установлены турбина низкого давления (ТНД), смеситель, фронтовое устройство, форсажная камера сгорания и соединенное с последней всережимное реактивное сопло; причем вокруг корпуса основной камеры сгорания во внешнем контуре установлен воздухо-воздушный теплообменник, собранный не менее чем из шестидесяти трубчатых блок-модулей; кроме того, двигатель содержит коробку приводов двигательных агрегатов; при этом КНД объединен с ТНД по валу с возможностью передачи от указанной турбины крутящего момента, а КВД объединен с ТВД с возможностью получения последним крутящего момента от турбины высокого давления через автономный вал ротора КВД-ТВД, коаксиально с возможност

Claims (12)

1. Газотурбинный двигатель, характеризующийся тем, что выполнен двухконтурным, двухвальным и содержит не менее восьми модулей, смонтированных, предпочтительно, по модульно-узловой системе, включая компрессор низкого давления (КНД) со статором, имеющим входной направляющий аппарат (ВНА), не более трех промежуточных направляющих и выходной спрямляющий аппараты, а также с ротором, имеющим вал и систему наделенных лопатками, предпочтительно, четырех рабочих колес; промежуточный корпус; газогенератор, включающий сборочные единицы - компрессор высокого давления (КВД), имеющий статор, включающий входной направляющий аппарат, не более восьми промежуточных направляющих и выходной спрямляющий аппараты, а также ротор с валом и системой оснащенных лопатками рабочих колес, число которых не менее чем в два раза превышает число упомянутых рабочих колес КНД; основную камеру сгорания и турбину высокого давления (ТВД); за газогенератором последовательно соосно установлены турбина низкого давления (ТНД), смеситель, фронтовое устройство, форсажная камера сгорания и соединенное с последней всережимное реактивное сопло; причем вокруг корпуса основной камеры сгорания во внешнем контуре установлен воздухо-воздушный теплообменник, собранный не менее чем из шестидесяти трубчатых блок-модулей; кроме того, двигатель содержит коробку приводов двигательных агрегатов; при этом КНД объединен с ТНД по валу с возможностью передачи от указанной турбины крутящего момента, а КВД объединен с ТВД с возможностью получения последним крутящего момента от турбины высокого давления через автономный вал ротора КВД-ТВД, коаксиально с возможностью вращения охватывающий на части длины вал ротора КНД-ТНД и выполненный короче последнего, по меньшей мере, на совокупную осевую длину промежуточного корпуса, основной камеры сгорания и турбины низкого давления, кроме того, входной направляющий аппарат КНД снабжен состоящими из неподвижного и управляемого подвижного элементов радиальными стойками, равномерно разнесенными, преимущественно, в нормальной к оси двигателя плоскости входного сечения, с угловой частотой (3,0÷4,0) ед/рад, причем двигатель испытан, по меньшей мере, по одной из программ - многоцикловой, на газодинамическую устойчивость, на влияние климатических условий на основные эксплуатационные характеристики двигателя.
2. Газотурбинный двигатель по п.1, отличающийся тем, что содержит электрическую, пневматическую, гидравлическую - топливную и масляную системы, а также датчики, командные блоки, исполнительные механизмы и кабели систем диагностики и автоматического управления двигателем, объединяющие указанные сборочные единицы и модули.
3. Газотурбинный двигатель по п.1, отличающийся тем, что входной направляющий аппарат (ВНА) КНД содержит, предпочтительно, двадцать три радиальные стойки, длина которых ограничена наружным и внутренним кольцами ВНА, при этом, по меньшей мере, часть радиальных стоек совмещена с каналами масляной системы, размещенными в неподвижных элементах стоек, с возможностью подачи и отвода масла, а также суфлирования масляной и предмасляных полостей передней опоры ротора КНД.
4. Газотурбинный двигатель по п.3, отличающийся тем, что площадь фронтальной проекции входного проема Fвх.пр ВНА КНД, геометрически определяющая поперечное сечение входного устья воздухозаборного канала, ограниченного на большем радиусе внутренним контуром наружного кольца ВНА, а на меньшем радиусе контуром внутреннего кольца ВНА, выполнена превышающей суммарную площадь аэродинамического затенения Fзт, создаваемого фронтальной проекцией кока и радиальных стоек, в (2,54÷2,72) раза и составляет (0,67÷0,77) от полной площади круга Fплн, ограниченного радиусом внутреннего контура наружного кольца ВНА в плоскости входного проема.
5. Газотурбинный двигатель по п.1, отличающийся тем, что статоры КНД и КВД выполнены каждый в виде продольно-сегментных блоков в количестве не менее двух, объединенных, преимущественно, на разъемных соединениях с возможностью разборки для ремонта или замены деталей соответствующего модуля или сборочной единицы, кроме того, в виде аналогичных продольно-сегментных блоков выполнены и объединены на разъемных соединениях сопловые аппараты турбин ТНД и ТВД.
6. Газотурбинный двигатель по п.1, отличающийся тем, что практически каждый модуль двигателя, преимущественно, выполнен технологически автономным, оснащен элементами разъемного фланцевого соединения со смежными модулями и разъемными элементами крепления внутримодульных деталей, обеспечивающими возможность, в том числе ремонтной взаимозаменяемости модулей и при необходимости замены внутримодульных узлов и деталей.
7. Газотурбинный двигатель по п.1, отличающийся тем, что собранный ГТД проверен на газодинамическую устойчивость работы компрессора, по крайней мере, на стадии серийного промышленного производства, для чего конкретный или идентичные для статистической репрезентативности результатов три-пять экземпляров двигателя из партии серийно произведенных, испытаны на стенде, снабженном входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно, дистанционно управляемым выдвижным интерцептором с отградуированной шкалой положений интерцептора, имеющей фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж, при необходимости, с повтором испытаний на определенном по регламенту наборе режимов, соответствующих режимам, характерным для последующей реальной работы ГТД в полетных условиях.
8. Газотурбинный двигатель по п.7, отличающийся тем, что при испытаниях экспериментально подтверждена область газодинамической устойчивости работы двигателя, в том числе для режима с наименьшим запасом газодинамической устойчивости при встречной приемистости, проверенной по регламенту: выдержка на максимальном режиме, сброс частоты вращения путем установки рычага управления двигателем в положение «малый газ» и в фазах частоты вращения, соответствующего значениям промежуточных неравномерностей с проверкой приемистости двигателя на максимальный режим при установке рычага управления двигателем в положение «максимальные обороты» с результирующим определением запасов газодинамической устойчивости двигателя.
9. Газотурбинный двигатель по п.1, отличающийся тем, что собранный двигатель проверен, по крайней мере, на стадии промышленного производства, на влияние климатических условий на основные характеристики работы компрессора, для чего конкретный или при необходимости статистически репрезентативное количество - три-пять идентичных экземпляров из партии серийно произведенных двигателей испытаны на стенде на различных режимах, параметры которых адекватны параметрам полетных режимов в диапазоне, запрограммированном для конкретной серии двигателей, при этом в испытаниях выполнены замеры и приведение полученных значений параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части турбореактивного двигателя при изменении атмосферных условий, и по результатам стендовых испытаний создана и скорректирована математическая модель турбореактивного двигателя, а затем по математической модели определены параметры турбореактивного двигателя при стандартных атмосферных условиях и различных температурах атмосферного воздуха из заданного рабочего диапазона температур стендовых испытаний с учетом принятой программы регулирования двигателя на максимальных и форсированных режимах, причем фактические значения параметров при конкретных температурах атмосферного воздуха каждого режима испытаний отнесены к значениям параметров при стандартных атмосферных условиях и вычислены поправочные коэффициенты к измеренным параметрам в зависимости от температуры атмосферного воздуха, а приведение измеренных параметров к стандартным атмосферным условиям выполнено умножением измеренных значений на коэффициенты, учитывающие отклонение атмосферного давления от стандартного, и на поправочный коэффициент, отражающий зависимость измеренных значений параметров от температуры атмосферного воздуха, зарегистрированной при конкретных испытаниях турбореактивных двигателей.
10. Газотурбинный двигатель по п.1, отличающийся тем, что собранный двигатель испытан по многоцикловой программе, включающей чередование режимов при выполнении этапов испытания длительностью работы турбореактивного двигателя, превышающей программное время полета, по программе до испытаний сформированы типовые полетные циклы и определена повреждаемость наиболее нагруженных деталей, исходя из этого определено необходимое количество циклов нагружения при испытании, а затем сформирован и произведен полный объем испытаний, включающий выполнение последовательности испытательных циклов - быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим «малого газа», останов и цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов работы турбореактивного двигателя, в совокупности превышающем время полета в 5-6 раз, при этом различный размах диапазона изменения режимов работы двигателя реализован, изменением уровня перепада газа в конкретных режимах испытания от начального до наибольшего - максимального или полного форсированного режима работы двигателя путем переноса начальной точки отсчета при выполнении соответствующего режима, принимая последнюю в одном из режимов в положении, соответствующем уровню «малый газ», а в других режимах - в промежуточных или конечном положениях, соответствующих различным процентным долям или полному значению уровня газа максимального или полного форсированного режима, причем быстрый выход на максимальный или форсированный режимы на части испытательного цикла осуществлен в темпе приемистости с последующим сбросом.
11. Газотурбинный двигатель по п.10, отличающийся тем, что часть испытательных циклов выполнена без прогрева на режиме «малый газ» после запуска.
12. Газотурбинный двигатель по п.10, отличающийся тем, что испытательный цикл сформирован на основе полетных циклов для боевого и учебного применения турбореактивного двигателя.
RU2013149544/06A 2013-11-07 2013-11-07 Газотурбинный двигатель RU2556090C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013149544/06A RU2556090C2 (ru) 2013-11-07 2013-11-07 Газотурбинный двигатель

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013149544/06A RU2556090C2 (ru) 2013-11-07 2013-11-07 Газотурбинный двигатель

Publications (2)

Publication Number Publication Date
RU2013149544A true RU2013149544A (ru) 2015-05-20
RU2556090C2 RU2556090C2 (ru) 2015-07-10

Family

ID=53283623

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013149544/06A RU2556090C2 (ru) 2013-11-07 2013-11-07 Газотурбинный двигатель

Country Status (1)

Country Link
RU (1) RU2556090C2 (ru)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946554A (en) * 1974-09-06 1976-03-30 General Electric Company Variable pitch turbofan engine and a method for operating same
RU2074968C1 (ru) * 1993-10-18 1997-03-10 Валерий Туркубеевич Пчентлешев Газотурбинный двигатель
US5806303A (en) * 1996-03-29 1998-09-15 General Electric Company Turbofan engine with a core driven supercharged bypass duct and fixed geometry nozzle
RU2199727C2 (ru) * 2001-04-25 2003-02-27 Самарский институт инженеров железнодорожного транспорта Стенд для испытания турбокомпрессора двигателя внутреннего сгорания
ES2306149T3 (es) * 2004-06-01 2008-11-01 Volvo Aero Corporation Sistema de compresion de turbina de gas y estructura de compresor.
FR2907519B1 (fr) * 2006-10-20 2011-12-16 Snecma Nageoire de plateforme de soufflante
RU2350787C2 (ru) * 2007-04-13 2009-03-27 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Высокопроизводительный малошумящий компрессор низкого давления газотурбинного двигателя с высокой степенью двухконтурности
RU2447308C2 (ru) * 2010-07-09 2012-04-10 Федеральное государственное унитарное предприятие "Летно-исследовательский институт имени М.М. Громова" Турбореактивный двухконтурный двигатель с перераспределением энергии потока воздуха на входе
US9068460B2 (en) * 2012-03-30 2015-06-30 United Technologies Corporation Integrated inlet vane and strut

Also Published As

Publication number Publication date
RU2556090C2 (ru) 2015-07-10

Similar Documents

Publication Publication Date Title
RU2013149497A (ru) Способ доводки опытного турбореактивного двигателя
RU2013149456A (ru) Турбореактивный двигатель
RU142807U1 (ru) Турбореактивный двигатель
RU2551013C1 (ru) Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом
RU144434U1 (ru) Газотурбинный двигатель
RU2551142C1 (ru) Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом
RU2555939C2 (ru) Турбореактивный двигатель
RU2013149544A (ru) Газотурбинный двигатель
RU2555935C2 (ru) Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом
RU2013149458A (ru) Турбореактивный двигатель
RU144425U1 (ru) Турбореактивный двигатель
RU2544638C1 (ru) Газотурбинный двигатель
RU2013149460A (ru) Турбореактивный двигатель
RU142812U1 (ru) Турбореактивный двигатель, стенд для испытания турбореактивного двигателя на газодинамическую устойчивость, входное аэродинамическое устройство стенда для испытания турбореактивного двигателя на газодинамическую устойчивость и интерцептор входного аэродинамического устройства стенда для испытания турбореактивного двигателя на газодинамическую устойчивость
RU144431U1 (ru) Турбореактивный двигатель
RU2555940C2 (ru) Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом
RU2545110C1 (ru) Газотурбинный двигатель
RU2551247C1 (ru) Турбореактивный двигатель
RU2555941C2 (ru) Турбореактивный двигатель
RU144429U1 (ru) Газотурбинный двигатель
RU2551005C1 (ru) Турбореактивный двигатель
RU142811U1 (ru) Газотурбинный двигатель
RU2555942C2 (ru) Способ серийного производства турбореактивного двигателя и турбореактивный двигатель, выполненный этим способом
RU2544409C1 (ru) Способ серийного производства турбореактивного двигателя и турбореактивный двигатель, выполненный этим способом
RU2551915C1 (ru) Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner