RU144431U1 - Турбореактивный двигатель - Google Patents

Турбореактивный двигатель Download PDF

Info

Publication number
RU144431U1
RU144431U1 RU2013149525/06U RU2013149525U RU144431U1 RU 144431 U1 RU144431 U1 RU 144431U1 RU 2013149525/06 U RU2013149525/06 U RU 2013149525/06U RU 2013149525 U RU2013149525 U RU 2013149525U RU 144431 U1 RU144431 U1 RU 144431U1
Authority
RU
Russia
Prior art keywords
engine
impellers
shaft
gas generator
turbojet engine
Prior art date
Application number
RU2013149525/06U
Other languages
English (en)
Inventor
Александр Викторович Артюхов
Дмитрий Юрьевич Еричев
Игорь Николаевич Иванов
Владимир Валентинович Кирюхин
Игорь Александрович Кондрашов
Андрей Ростиславович Котельников
Виктор Викторович Куприк
Ирик Усманович Манапов
Евгений Ювенальевич Марчуков
Сергей Анатольевич Симонов
Николай Павлович Селиванов
Original Assignee
Открытое Акционерное Общество "Уфимское Моторостроительное Производственное Объединение" (Оао "Умпо")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое Акционерное Общество "Уфимское Моторостроительное Производственное Объединение" (Оао "Умпо") filed Critical Открытое Акционерное Общество "Уфимское Моторостроительное Производственное Объединение" (Оао "Умпо")
Priority to RU2013149525/06U priority Critical patent/RU144431U1/ru
Application granted granted Critical
Publication of RU144431U1 publication Critical patent/RU144431U1/ru

Links

Abstract

1. Турбореактивный двигатель, характеризующийся тем, что выполнен двухконтурным, двухвальным и содержит не менее восьми модулей, включая компрессор низкого давления (КНД) со статором, имеющим входной направляющий аппарат (ВНА), не более трех промежуточных направляющих и выходной спрямляющий аппараты, а также с ротором, имеющем вал и систему наделенных лопатками, предпочтительно, четырех рабочих колес; промежуточный корпус; газогенератор, включающий сборочные единицы - компрессор высокого давления (КВД) со статором, содержащим входной направляющий аппарат, не более восьми промежуточных направляющих и выходной спрямляющий аппараты, а также ротор с валом и системой оснащенных лопатками рабочих колес, число которых не менее чем в два раза превышает число упомянутых рабочих колес КНД; кроме того газогенератор содержит основную камеру сгорания и турбину высокого давления (ТВД); за газогенератором последовательно соосно установлены турбина низкого давления (ТНД), смеситель, фронтовое устройство, форсажная камера сгорания и поворотное реактивное сопло, включающее поворотное устройство, неподвижно, предпочтительно, разъемно прикрепленное к форсажной камере сгорания, и регулируемое реактивное сопло, прикрепленное к поворотному устройству с возможностью выполнения совместно с подвижным элементом последнего поворотов для изменения направления вектора тяги, причем ось вращения поворотного устройства относительно горизонтальной оси повернута на угол не менее 30°, предпочтительно, на (32÷34)° по часовой стрелке для правого двигателя и на угол не менее 30°, предпочтительно, на (32÷34)° против часовой стрелки для левого д

Description

Полезная модель относится к области авиадвигателестроения, а именно, к авиационным турбореактивным двигателям.
Известен двухконтурный, двухвальный турбореактивный двигатель (ТРД), включающий турбокомпрессорные комплексы, один из которых содержит установленные на одном валу компрессор и турбину низкого давления, а другой содержит аналогично объединенные на другом валу, соосном с первым, компрессор и турбину высокого давления, промежуточный разделительный корпус между упомянутыми компрессорами, наружный и внутренние контуры, основную и форсажную камеры сгорания, камеру смешения газовоздушных потоков рабочего тела и регулируемое сопло (Н.Н. Сиротин и др. Основы конструирования производства и эксплуатации авиационных газотурбинных двигателей и энергетических установок в системе CALS технологий. Книга 1. Москва, изд. «Наука», 2011 г., стр.41-46, рис.1.24).
Известен турбореактивный двигатель, который выполнен двухконтурным, содержит корпус, опертые на него компрессоры и турбины, охлаждаемую камеру сгорания, топливно-насосную группу, реактивные сопла, а также систему управления с командными и исполнительными органами (Шульгин В.А., Гайсинский С.Я. Двухконтурные турбореактивные двигатели малошумных самолетов. М, изд. Машиностроение, 1984, стр.17-120).
Известен турбореактивный двигатель, испытание которого по определению ресурса и надежности работы заключается в чередовании режимов при выполнении этапов длительностью, превышающей время полета. Двигатель испытывают поэтапно. Длительность безостановочной работы на стенде и чередование режимов устанавливают в зависимости от назначения двигателя (Л.С. Скубачевский. Испытание воздушно-реактивных двигателей. Москва, Машиностроение, 1972, с.13-15).
Известны разработка и испытание авиационных двигателей типа турбореактивных, включающий отработку заданных режимов, контроль параметров и оценку по ним ресурса и надежности работы двигателя. С целью сокращения времени испытаний при доводке двигателей 10-20% испытания проводят с температурой газа перед турбиной, превышающей максимальную рабочую температуру на 45-65°C (SU 1151075 A1, опубл. 10.08.2004).
Общими недостатками указанных известных технических решений являются повышенная трудо- и энергоемкость испытаний и недостаточно высокая оценка ресурса и надежности работы двигателя в широком диапазоне полетных режимов и условий эксплуатации, вследствие неотработанности программы приведения конкретных результатов испытаний к результатам, отнесенным к стандартным условиям эксплуатации двигателя известными способами, которые не учитывают с достаточной корректностью изменение параметров и режимов работы двигателя. Это осложняет возможность приведения экспериментальных параметров испытаний к параметрам, максимально приближенным к реальной структуре и удельному соотношению режимов работы двигателя в процессе эксплуатации.
Задача полезной модели состоит в разработке авиационного турбореактивного двигателя с улучшенными эксплуатационными характеристиками и повышенной достоверностью экспериментально проверенного ресурса и надежности двигателя в условиях, максимально приближенных к реальной структуре и удельному соотношению режимов работы двигателя в процессе эксплуатации.
Поставленная задача решается тем, что турбореактивный двигатель, согласно полезной модели, выполнен двухконтурным, двухвальным и содержит не менее восьми модулей, включая компрессор низкого давления (КНД) со статором, имеющем входной направляющий аппарат (ВНА), не более трех промежуточных направляющих и выходной спрямляющий аппараты, а также с ротором, имеющем вал и систему наделенных лопатками, предпочтительно, четырех рабочих колес; промежуточный корпус; газогенератор, включающий сборочные единицы - компрессор высокого давления (КВД) со статором, содержащим входной направляющий аппарат, не более восьми промежуточных направляющих и выходной спрямляющий аппараты, а также ротор с валом и системой оснащенных лопатками рабочих колес, число которых не менее чем в два раза превышает число упомянутых рабочих колес КНД; кроме того газогенератор содержит основную камеру сгорания и турбину высокого давления (ТВД); за газогенератором последовательно соосно установлены турбина низкого давления (ТНД), смеситель, фронтовое устройство, форсажная камера сгорания и поворотное реактивное сопло, включающее поворотное устройство, неподвижно, предпочтительно, разъемно прикрепленное к форсажной камере сгорания, и регулируемое реактивное сопло, прикрепленное к поворотному устройству с возможностью выполнения совместно с подвижным элементом последнего поворотов для изменения направления вектора тяги, причем ось вращения поворотного устройства относительно горизонтальной оси повернута на угол не менее 30°, предпочтительно, на (32÷34)° по часовой стрелке для правого двигателя и на угол не менее 30°, предпочтительно, на (32÷34)° против часовой стрелки для левого двигателя; кроме того двигатель содержит коробку приводов двигательных агрегатов, установленную над промежуточным корпусом, а промежуточный корпус наделен функцией силового узла двигателя с возможностью восприятия суммарных осевых и радиальных нагрузок от компрессоров и турбин с последующей передачей на внешние силовые элементы и установлен между КНД и КВД, разделяя поступающий из КНД воздух на два потока - наружный и внутренний контуры, при этом в наружном контуре вокруг корпуса основной камеры сгорания установлен воздухо-воздушный теплообменник, собранный не менее чем из шестидесяти трубчатых блок-модулей.
При этом каждый модуль ТРД может быть выполнен с элементами разъемного фланцевого соединения со смежными модулями и элементами конструктивного крепления внутримодульных деталей, обеспечивающими возможность геометрической и функциональной монтажной и/или ремонтной взаимозаменяемости модулей и, по меньшей мере, частично ремонтной заменяемости внутримодульных узлов и деталей.
Входной направляющий аппарат компрессора низкого давления может быть снабжен состоящими из неподвижного и управляемого подвижного элементов радиальными стойками, равномерно разнесенными в плоскости входного сечения с угловой частотой в диапазоне (3,0÷4,0) ед/рад.
Ось поворотного реактивного сопла может быть выполнена отклоненной от оси двигателя вниз на угол, составляющий в нейтральном положении двигателя (2°÷3°30′).
Технический результат, обеспечиваемый приведенной совокупностью признаков, состоит в разработке авиационного турбореактивного двигателя с улучшенными эксплуатационными характеристиками и повышенной достоверностью экспериментально проверенного ресурса и надежности двигателя в условиях, максимально приближенных к реальной структуре и удельному соотношению режимов работы двигателя в процессе эксплуатации.
Технический результат достигается также за счет применения в разработанном турбореактивном двигателе модулей и узлов с принятыми в полезной модели характеристиками, включая конструктивное решение всережимного поворотного реактивного сопла, обеспечивающего регулирование вектора тяги, а также количество и соотношение рабочих колес роторов КВД и КНД и аналогичное соотношение промежуточных направляющих аппаратов статоров указанных компрессов, что обеспечивает необходимое повышение компрессии рабочего тела в каждом из контуров двигателя. Одновременно в полезной модели обеспечена повышенная достоверность экспериментально проверенных характеристик двигателя с включением в объем испытаний быструю смену циклов в полном регистре от быстрого выхода на максимальный, либо полный форсированный режим до полного останова двигателя, а также цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов, что позволяет повысить корректность оценки ресурса и надежности работы двигателя на всех этапах от доводки до серийного промышленного производства и летной эксплуатации ТРД и обеспечивает повышенный ресурс двигателя в полетных условиях на высокоманевренных самолетах.
Сущность полезной модели поясняется чертежом, на котором изображен турбореактивный двигатель, продольный разрез.
Турбореактивный двигатель выполнен двухконтурным, двухвальным. Турбореактивный двигатель содержит не менее восьми модулей, в состав которых входят компрессор 1 низкого давления, промежуточный корпус 2 и газогенератор.
КНД 1 выполнен со статором, имеющем входной направляющий аппарат 3, не более трех промежуточных направляющих аппаратов 4 и выходной спрямляющий аппарат 5, а также с ротором, имеющем вал 6 и систему предпочтительно, четырех рабочих колес 7, наделенных лопатками 8.
Газогенератор содержит сборочные единицы - компрессор 9 высокого давления со статором, основную камеру 10 сгорания и турбину 11 высокого давления.
КВД 9 включает статор, а также ротор с валом 12 и системой оснащенных лопатками 13 рабочих колес 14. При этом число рабочих колес 14 КВД 9 не менее чем в два раза превышает число рабочих колес 7 КНД 1.
За газогенератором последовательно соосно установлены турбина 15 низкого давления, смеситель 16, фронтовое устройство 17, форсажная камера 18 сгорания и поворотное реактивное сопло, включающее поворотное устройство 19, неподвижно, предпочтительно, разъемно прикрепленное к форсажной камере 18 сгорания, и регулируемое реактивное сопло 20, прикрепленное к поворотному устройству 19 с возможностью выполнения совместно с подвижным элементом последнего поворотов для изменения направления вектора тяги. Ось вращения поворотного устройства 19 относительно горизонтальной оси повернута на угол не менее 30°, предпочтительно, на (32÷34)° по часовой стрелке (вид по направлению полета) для правого двигателя и на угол не менее 30°, предпочтительно, на (32÷34)° против часовой стрелки (вид по направлению полета) для левого двигателя.
Двигатель содержит коробку приводов двигательных агрегатов (на чертежах не показано), установленную над промежуточным корпусом 2. Промежуточный корпус 2 наделен функцией силового узла двигателя с возможностью восприятия суммарных осевых и радиальных нагрузок от компрессоров и турбин с последующей передачей на внешние силовые элементы и установлен между КНД 1 и КВД 9, разделяя поступающий из КНД воздух на два потока - наружный и внутренний контуры 21 и 22 соответственно. В наружном контуре 21 вокруг корпуса основной камеры 10 сгорания установлен воздухо-воздушный теплообменник 23, собранный не менее чем из шестидесяти трубчатых блок-модулей.
Статоры КНД 1 и КВД 9 выполнены каждый в виде продольно-сегментных блоков в количестве не менее двух, объединенных, преимущественно, на разъемных соединениях с возможностью разборки для ремонта или замены деталей соответствующего модуля или сборочной единицы. В виде аналогичных продольно-сегментных блоков выполнены и объединены на разъемных соединениях сопловые аппараты 24 турбин 11 и 15 соответственно высокого и низкого давления.
Каждый модуль ТРД выполнен с элементами разъемного фланцевого соединения со смежными модулями и элементами конструктивного крепления внутримодульных деталей, обеспечивающими возможность геометрической и функциональной монтажной и/или ремонтной взаимозаменяемости модулей и, по меньшей мере, частично ремонтной заменяемости внутримодульных узлов и деталей.
Компрессор 1 низкого давления объединен с турбиной 15 низкого давления по валу 6 с возможностью передачи от турбины 15 крутящего момента. Компрессор 9 высокого давления объединен с турбиной 11 высокого давления с возможностью получения последним крутящего момента от турбины 11 через автономный вал 12 ротора КВД-ТВД, коаксиально с возможностью вращения охватывающий вал 6 ротора КНД-ТНД на части длины и выполненный короче последнего, по меньшей мере, на совокупную осевую длину промежуточного корпуса 2, основой камеры 10 сгорания и турбины 15 низкого давления.
Статор КВД 9 содержит входной направляющий аппарат 25, не более восьми промежуточных направляющих аппаратов 26 и выходной спрямляющий аппарат 27.
Входной направляющий аппарат 3 КНД 1 снабжен состоящими из неподвижного и управляемого подвижного элементов радиальными стойками (на чертеже не показано), равномерно разнесенными в плоскости входного сечения с угловой частотой в диапазоне (3,0÷4,0) ед/рад.
Ось поворотного реактивного сопла выполнена отклоненной от оси ТРД вниз на угол, составляющий в нейтральном положении двигателя (2°÷3°30′).
Турбореактивный двигатель испытан по многоцикловой программе. Программа включает чередование режимов при выполнении этапов испытания длительностью работы двигателя, превышающей программное время полета. По программе до испытаний сформированы типовые полетные циклы и определена повреждаемость наиболее нагруженных деталей. Исходя из этого определено необходимое количество циклов нагружения при испытании. Затем сформирован и произведен полный объем испытаний, включающий выполнение последовательности испытательных циклов - быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим «малого газа», останов и цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов работы турбореактивного двигателя, в совокупности превышающем время полета в 5-6 раз. Различный размах диапазона изменения режимов работы двигателя реализован изменением уровня перепада газа в конкретных режимах испытания от начального до наибольшего - максимального или полного форсированного режима работы двигателя путем переноса начальной точки отсчета при выполнении соответствующего режима, принимая последнюю в одном из режимов в положении, соответствующем уровню «малый газ». В других режимах - в промежуточных или конечном положениях, соответствующих различным процентным долям или полному значению уровня газа максимального или полного форсированного режима. Быстрый выход на максимальный или форсированный режимы на части испытательного цикла осуществлен в темпе приемистости с последующим сбросом.
Часть испытательных циклов выполнена без прогрева на режиме «малый газ» после запуска.
Испытательный цикл сформирован на основе полетных циклов для боевого и учебного применения турбореактивного двигателя.
Пример реализации испытания турбореактивного двигателя по многоцикловой программе.
Испытанию подвергают ТРД с проектным ресурсом 500 часов общей наработки до первого капитального ремонта. В указанном ресурсе задана наработка 20 час на максимальном режиме, из них 5 час на полном форсированном режиме. Формируют типовые полетные циклы (ТПЦ) и устанавливают заданное время работы двигателя 1 ч, эквивалентное полетному времени летательного аппарата (ЛА) по принятому ТПЦ. На основании ТПЦ расчетным путем определяют повреждаемость наиболее нагруженных деталей. Исходя из этого определяют необходимое эквивалентное по повреждаемости количество циклов при испытаниях. В данном варианте принимают следующий состав нагрузочных испытательных циклов - выполнение 700 (400+300) запусков с выходом соответственно на максимальный и форсированные режимы, а также 400 приемистостей от режима «малый газ» (МГ) до максимального (Макс.) и 300 с режима 0,8 Макс, до форсированного (Фор) режима.
Устанавливают коэффициент запаса на требуемое количество испытательных нагрузочных циклов и времени наработки K=1,2.
Формируют полный объем ресурсных испытаний и разрабатывают программу проведения испытаний:
1. Общую наработку при проведении ресурсных испытаний принимают 500*1,2=600 ч, из них наработку на максимальном режиме принимают (20-5)*1,2=18 ч, а на форсированном режиме 5*1,2=6 ч.
2. Принимают продолжительность этапа испытаний 5 ч, и определяют количество пятичасовых этапов 600:5=120.
3. Устанавливают количество запусков с учетом коэффициента запаса 700*1,2=840, а также от МГ до Макс 400*1,2=480 и от 0,8 Макс до Фор 300*1,2=360.
4. Каждый пятичасовой этап включает 840:120=7, приемистостей от режима МГ до Макс 480:120=4 и приемистостей с режима 0,8 Макс до Фор 360:120=3, а также наработку на максимальном и форсированном режимах 18*60:120=9 мин. 360:120=3 мин.
5. Устанавливают последовательность испытательных циклов - быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим МГ и останов. Затем предусматривают цикл длительной работы с многократным чередованием нагрузочных циклов с размахом диапазонов изменения режимов от МГ до Макс и 0,8 Макс до Фор в пределах установленного выше объема испытательных этапов.
Выполняют испытания ТРД по указанной программе. Затем проводят дефектацию двигателя и анализ результатов испытаний, по которым принимают решение о признании двигателя выдержавшим испытания.

Claims (4)

1. Турбореактивный двигатель, характеризующийся тем, что выполнен двухконтурным, двухвальным и содержит не менее восьми модулей, включая компрессор низкого давления (КНД) со статором, имеющим входной направляющий аппарат (ВНА), не более трех промежуточных направляющих и выходной спрямляющий аппараты, а также с ротором, имеющем вал и систему наделенных лопатками, предпочтительно, четырех рабочих колес; промежуточный корпус; газогенератор, включающий сборочные единицы - компрессор высокого давления (КВД) со статором, содержащим входной направляющий аппарат, не более восьми промежуточных направляющих и выходной спрямляющий аппараты, а также ротор с валом и системой оснащенных лопатками рабочих колес, число которых не менее чем в два раза превышает число упомянутых рабочих колес КНД; кроме того газогенератор содержит основную камеру сгорания и турбину высокого давления (ТВД); за газогенератором последовательно соосно установлены турбина низкого давления (ТНД), смеситель, фронтовое устройство, форсажная камера сгорания и поворотное реактивное сопло, включающее поворотное устройство, неподвижно, предпочтительно, разъемно прикрепленное к форсажной камере сгорания, и регулируемое реактивное сопло, прикрепленное к поворотному устройству с возможностью выполнения совместно с подвижным элементом последнего поворотов для изменения направления вектора тяги, причем ось вращения поворотного устройства относительно горизонтальной оси повернута на угол не менее 30°, предпочтительно, на (32÷34)° по часовой стрелке для правого двигателя и на угол не менее 30°, предпочтительно, на (32÷34)° против часовой стрелки для левого двигателя; кроме того двигатель содержит коробку приводов двигательных агрегатов, установленную над промежуточным корпусом, а промежуточный корпус наделен функцией силового узла двигателя с возможностью восприятия суммарных осевых и радиальных нагрузок от компрессоров и турбин с последующей передачей на внешние силовые элементы и установлен между КНД и КВД, разделяя поступающий из КНД воздух на два потока - наружный и внутренний контуры, при этом в наружном контуре вокруг корпуса основной камеры сгорания установлен воздухо-воздушный теплообменник, собранный не менее чем из шестидесяти трубчатых блок-модулей.
2. Турбореактивный двигатель по п.1, отличающийся тем, что каждый модуль ТРД выполнен с элементами разъемного фланцевого соединения со смежными модулями и элементами конструктивного крепления внутримодульных деталей, обеспечивающими возможность геометрической и функциональной монтажной и/или ремонтной взаимозаменяемости модулей и, по меньшей мере, частично ремонтной заменяемости внутримодульных узлов и деталей.
3. Турбореактивный двигатель по п.1, отличающийся тем, что входной направляющий аппарат компрессора низкого давления снабжен состоящими из неподвижного и управляемого подвижного элементов радиальными стойками, равномерно разнесенными в плоскости входного сечения с угловой частотой в диапазоне (3,0÷4,0) ед./рад.
4. Турбореактивный двигатель по п.1, отличающийся тем, что ось поворотного реактивного сопла выполнена отклоненной от оси двигателя вниз на угол, составляющий в нейтральном положении двигателя (2°÷3°30′).
Figure 00000001
RU2013149525/06U 2013-11-07 2013-11-07 Турбореактивный двигатель RU144431U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013149525/06U RU144431U1 (ru) 2013-11-07 2013-11-07 Турбореактивный двигатель

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013149525/06U RU144431U1 (ru) 2013-11-07 2013-11-07 Турбореактивный двигатель

Publications (1)

Publication Number Publication Date
RU144431U1 true RU144431U1 (ru) 2014-08-20

Family

ID=51385065

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013149525/06U RU144431U1 (ru) 2013-11-07 2013-11-07 Турбореактивный двигатель

Country Status (1)

Country Link
RU (1) RU144431U1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2674848C1 (ru) * 2017-11-17 2018-12-13 Публичное акционерное общество "ОДК - Уфимское моторостроительное производственное объединение" (ПАО "ОДК - УМПО") Двухконтурный турбореактивный двигатель

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2674848C1 (ru) * 2017-11-17 2018-12-13 Публичное акционерное общество "ОДК - Уфимское моторостроительное производственное объединение" (ПАО "ОДК - УМПО") Двухконтурный турбореактивный двигатель

Similar Documents

Publication Publication Date Title
RU144434U1 (ru) Газотурбинный двигатель
RU144431U1 (ru) Турбореактивный двигатель
RU2551013C1 (ru) Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом
RU142920U1 (ru) Турбореактивный двигатель
RU142807U1 (ru) Турбореактивный двигатель
RU144426U1 (ru) Газотурбинный двигатель
RU2551142C1 (ru) Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом
RU2551247C1 (ru) Турбореактивный двигатель
RU144423U1 (ru) Турбореактивный двигатель
RU144425U1 (ru) Турбореактивный двигатель
RU2544638C1 (ru) Газотурбинный двигатель
RU2551005C1 (ru) Турбореактивный двигатель
RU142961U1 (ru) Турбореактивный двигатель
RU2555931C2 (ru) Турбореактивный двигатель
RU2555940C2 (ru) Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом
RU2544409C1 (ru) Способ серийного производства турбореактивного двигателя и турбореактивный двигатель, выполненный этим способом
RU2551915C1 (ru) Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом
RU2544639C1 (ru) Способ серийного производства турбореактивного двигателя и турбореактивный двигатель, выполненный этим способом
RU144419U1 (ru) Турбореактивный двигатель
RU144428U1 (ru) Газотурбинный двигатель
RU142812U1 (ru) Турбореактивный двигатель, стенд для испытания турбореактивного двигателя на газодинамическую устойчивость, входное аэродинамическое устройство стенда для испытания турбореактивного двигателя на газодинамическую устойчивость и интерцептор входного аэродинамического устройства стенда для испытания турбореактивного двигателя на газодинамическую устойчивость
RU2551019C1 (ru) Способ доводки опытного турбореактивного двигателя
RU144429U1 (ru) Газотурбинный двигатель
RU2550999C1 (ru) Способ доводки опытного турбореактивного двигателя
RU2555941C2 (ru) Турбореактивный двигатель

Legal Events

Date Code Title Description
PD9K Change of name of utility model owner