RU2013104364A - Компьютерный программный продукт, осуществляемый компьютером способ и система магнитно-резонансной визуализации для получения магнитно-резонансного изображения - Google Patents

Компьютерный программный продукт, осуществляемый компьютером способ и система магнитно-резонансной визуализации для получения магнитно-резонансного изображения Download PDF

Info

Publication number
RU2013104364A
RU2013104364A RU2013104364/28A RU2013104364A RU2013104364A RU 2013104364 A RU2013104364 A RU 2013104364A RU 2013104364/28 A RU2013104364/28 A RU 2013104364/28A RU 2013104364 A RU2013104364 A RU 2013104364A RU 2013104364 A RU2013104364 A RU 2013104364A
Authority
RU
Russia
Prior art keywords
coil
data
matrix
coils
magnetic resonance
Prior art date
Application number
RU2013104364/28A
Other languages
English (en)
Inventor
Фэн ХУАН
Мария ДОНЕВА
Петер БУРНЕРТ
Жюльен СЕНЕГАС
Original Assignee
Конинклейке Филипс Электроникс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Электроникс Н.В. filed Critical Конинклейке Филипс Электроникс Н.В.
Publication of RU2013104364A publication Critical patent/RU2013104364A/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/24Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/246Spatial mapping of the RF magnetic field B1
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5611Parallel magnetic resonance imaging, e.g. sensitivity encoding [SENSE], simultaneous acquisition of spatial harmonics [SMASH], unaliasing by Fourier encoding of the overlaps using the temporal dimension [UNFOLD], k-t-broad-use linear acquisition speed-up technique [k-t-BLAST], k-t-SENSE
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5608Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

1. Считываемый компьютером носитель данных, содержащий сохраненные на нем выполняемые машиной команды, чтобы заставить процессор осуществлять способ получения магнитно-резонансного изображения (1342), при этом способ содержит этапы:получения (100, 200, 300) набора данных (1334) матрицы катушек визуализируемого объема (1304), используя матрицу (1314) катушек, причем набор данных матрицы катушек содержит данные элемента-катушки, полученные для каждого антенного элемента (1316) матрицы катушек;получения (102, 202, 302) данных (1336) катушки для тела визуализируемого объема катушкой (1318) для тела, причем данные катушки для тела и/или данные катушки матрицы субдискретизированы;причем и данные элемента-катушки и данные катушки для тела грубо дискретизированы в k-пространстве и грубо дискретизированы в различной степени, иреконструкции (104, 204, 206, 304, 306, 308) набора карт (1338) чувствительности катушек, используя набор данных матрицы катушек и данные катушки для тела, причем имеется карта чувствительности катушек для каждого антенного элемента матрицы катушек;получения (106, 208, 310) данных (1340) магнитно-резонансной визуализации визуализируемого объема, используя способ (1332) параллельной визуализации; иреконструкции (108, 210, 312) магнитно-резонансного изображения, используя данные магнитно-резонансной визуализации и набор карт чувствительности катушек.2. Считываемый компьютером носитель данных по п. 1, в котором набор данных катушки для тела субдискретизирован грубой дискретизацией в k-пространстве.3. Считываемый компьютером носитель данных по п. 1 или 2, в котором набор данных матрицы катушек субдискретизирован грубой дискретизацией в k-пространстве.4. С�

Claims (14)

1. Считываемый компьютером носитель данных, содержащий сохраненные на нем выполняемые машиной команды, чтобы заставить процессор осуществлять способ получения магнитно-резонансного изображения (1342), при этом способ содержит этапы:
получения (100, 200, 300) набора данных (1334) матрицы катушек визуализируемого объема (1304), используя матрицу (1314) катушек, причем набор данных матрицы катушек содержит данные элемента-катушки, полученные для каждого антенного элемента (1316) матрицы катушек;
получения (102, 202, 302) данных (1336) катушки для тела визуализируемого объема катушкой (1318) для тела, причем данные катушки для тела и/или данные катушки матрицы субдискретизированы;
причем и данные элемента-катушки и данные катушки для тела грубо дискретизированы в k-пространстве и грубо дискретизированы в различной степени, и
реконструкции (104, 204, 206, 304, 306, 308) набора карт (1338) чувствительности катушек, используя набор данных матрицы катушек и данные катушки для тела, причем имеется карта чувствительности катушек для каждого антенного элемента матрицы катушек;
получения (106, 208, 310) данных (1340) магнитно-резонансной визуализации визуализируемого объема, используя способ (1332) параллельной визуализации; и
реконструкции (108, 210, 312) магнитно-резонансного изображения, используя данные магнитно-резонансной визуализации и набор карт чувствительности катушек.
2. Считываемый компьютером носитель данных по п. 1, в котором набор данных катушки для тела субдискретизирован грубой дискретизацией в k-пространстве.
3. Считываемый компьютером носитель данных по п. 1 или 2, в котором набор данных матрицы катушек субдискретизирован грубой дискретизацией в k-пространстве.
4. Считываемый компьютером носитель данных по п. 2, в котором грубая дискретизация k-пространства катушки для тела неоднородно распределена в k-пространстве.
5. Считываемый компьютером носитель данных по п. 1, в котором субдискретизация содержит дискретизацию k-пространства для значений k ниже заданного порога.
6. Считываемый компьютером носитель данных по п. 1, в котором набор карт чувствительности катушек реконструируют, используя способ регуляризации.
7. Считываемый компьютером носитель данных по п. 6, в котором регуляризацию выполняют на поднаборах набора данных матрицы катушек, причем поднаборы определяют группированием данных элемента-катушки от физически смежных антенных элементов матрицы катушек.
8. Считываемый компьютером носитель данных по п. 1, в котором k-пространство данных катушки для тела грубо дискретизировано посредством получения данных k-пространства от центрального ядра (402), используя катушку для тела.
9. Считываемый компьютером носитель данных по п.8, в котором набор карт чувствительности катушек и составное изображение оценивают совместно, используя нелинейную оценку.
10. Считываемый компьютером носитель данных по п. 9, в котором способ дополнительно содержит этапы:
вычисления (304) набора весовых коэффициентов для каждого из антенных элементов матрицы катушек, используя данные k-пространства от центрального ядра;
вычисления (306) составного изображения посредством применения набора весовых коэффициентов к каждому изображению из набора изображений матрицы катушек, причем набор изображений матрицы катушек реконструируют из набора данных матрицы катушек; и
причем набор карт чувствительности катушек вычисляют, используя составное изображение и набор данных матрицы катушек.
11. Считываемый компьютером носитель данных по п. 1, в котором способ параллельной визуализации является любым из следующих: SENSE, PARS, и Одновременное Получение Пространственных Гармоник, или GRAPPA.
12. Считываемый компьютером носитель данных по п. 1, в котором грубую дискретизацию k-пространства осуществляют с использованием любого из следующего: заданной картины дискретизации, случайной картины дискретизации, посредством дискретизации по элементам k-пространства, определенным круговым распределением (404) Пуассона, и посредством полной дискретизации ядра k-пространства (402) ниже заданного значения k и разреженной дискретизации выше значения k.
13. Осуществляемый компьютером способ получения магнитно-резонансного изображения (1342), причем способ содержит этапы:
получения (100, 200, 300) набора данных (1334) матрицы катушек визуализируемого объема (1304), используя матрицу (1314) катушек, причем набор данных матрицы катушек содержит данные элемента-катушки, полученные для каждого антенного элемента (1316) матрицы катушек;
получения (102, 202, 302) данных (1336) катушки для тела визуализируемого объема катушкой (1318) для тела, причем данные катушки для тела и/или данные катушки матрицы субдискретизированы,
причем и данные элемента-катушки и данные катушки для тела грубо дискретизированы в k-пространстве и грубо дискретизированы в различной степени и
реконструкции (104, 204, 206, 304, 306, 308) набора карт (1338) чувствительности катушек, используя набор данных матрицы катушек и данные катушки для тела, причем имеется карта чувствительности катушек для каждого антенного элемента (1316) матрицы катушек;
получения (106, 208, 310) данных (1340) магнитно-резонансной визуализации визуализируемого объема, используя способ параллельной визуализации; и
реконструкции магнитно-резонансного изображения, используя данные магнитно-резонансной визуализации и набор карт чувствительности катушек.
14. Система (1300) магнитно-резонансной визуализации, содержащая:
магнит (1302) магнитно-резонансной визуализации для создания главного магнитного поля для ориентации ядерных магнитных спинов пациента (1306), расположенного в пределах визуализируемого объема (1304);
катушка (1310) градиента магнитного поля для создания градиента магнитного поля для пространственного кодирования магнитно-резонансного сигнала ядерных спинов в пределах визуализируемого объема;
источник (1312) электропитания градиентной катушки для подачи тока на катушку градиента магнитного поля;
радиочастотную систему (1320) для получения данных магнитно-резонансной визуализации, причем радиочастотная система приспособлена для соединения с катушкой (1318) для тела и матрицей (1314) катушек;
компьютерную систему (1321), содержащую процессор (1324), причем компьютерная система приспособлена для создания изображений (1348) по данным магнитно-резонансной визуализации и для управления (1344) работой системы магнитно-резонансной визуализации; и
считываемый компьютером носитель (1330) данных, содержащий команды (1346) для выполнения процессором, причем при их выполнении процессор осуществляет этапы:
получения (100, 200, 300) набора данных (1334) матрицы катушек визуализируемого объема, используя матрицу катушек, причем набор данных матрицы катушек содержит данные элемента-катушки, полученные для каждого антенного элемента матрицы катушек;
получения (102, 202, 302) данных (1336) катушки для тела визуализируемого объема катушкой для тела, причем данные катушки для тела и/или данные катушки матрицы субдискретизированы; причем и данные элемента-катушки и данные катушки для тела грубо дискретизированы в k-пространстве и грубо дискретизированы в различной степени и
реконструкции (104, 204, 206, 304, 306, 308) набора карт (1338) чувствительности катушек, используя набор данных элемента-катушки и данные матрицы катушек, причем имеется карта чувствительности катушек для каждого антенного элемента матрицы катушек;
получения (106, 208, 310) данных (1340) магнитно-резонансной визуализации визуализируемого объема, используя способ (1332) параллельной визуализации; и
реконструкции (108, 210, 312) магнитно-резонансного изображения, используя данные магнитно-резонансной визуализации и набор карт чувствительности катушек.
RU2013104364/28A 2010-07-02 2011-06-22 Компьютерный программный продукт, осуществляемый компьютером способ и система магнитно-резонансной визуализации для получения магнитно-резонансного изображения RU2013104364A (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US36104610P 2010-07-02 2010-07-02
US61/361,046 2010-07-02
PCT/IB2011/052724 WO2012001583A1 (en) 2010-07-02 2011-06-22 Parallel magnetic resonance imaging using undersampled coil data for coil sensitivity estimation

Publications (1)

Publication Number Publication Date
RU2013104364A true RU2013104364A (ru) 2014-08-10

Family

ID=44546322

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013104364/28A RU2013104364A (ru) 2010-07-02 2011-06-22 Компьютерный программный продукт, осуществляемый компьютером способ и система магнитно-резонансной визуализации для получения магнитно-резонансного изображения

Country Status (6)

Country Link
US (1) US20130099786A1 (ru)
EP (1) EP2588878A1 (ru)
CN (1) CN102959426A (ru)
IN (1) IN2013CN00309A (ru)
RU (1) RU2013104364A (ru)
WO (1) WO2012001583A1 (ru)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8717024B2 (en) * 2010-12-31 2014-05-06 General Electric Company System and method for generating a magnetic resonance image using compressed sensing and parallel imaging
EP2686698A1 (en) * 2011-03-17 2014-01-22 Koninklijke Philips N.V. A mri method of faster channel - by - channel reconstruction without image degradation
US8723518B2 (en) 2011-03-18 2014-05-13 Nicole SEIBERLICH Nuclear magnetic resonance (NMR) fingerprinting
US10627468B2 (en) 2011-03-18 2020-04-21 Case Western Reserve University Nuclear magnetic resonance (NMR) fingerprinting
DE102011081413B8 (de) * 2011-08-23 2013-08-14 Friedrich-Alexander-Universität Erlangen-Nürnberg Iteratives Rekonstruktionsverfahren mit Straftermen aus Untersuchungsobjekten und Magnetresonanzanlage zur Durchführung eines solchen Verfahrens
US10459043B2 (en) * 2011-08-30 2019-10-29 Profound Medical Inc. Real time control of high intensity focused ultrasound using magnetic resonance imaging
US8948480B2 (en) * 2011-11-10 2015-02-03 Siemens Aktiengesellschaft Image reconstruction using redundant Haar wavelets
US9146293B2 (en) 2012-02-27 2015-09-29 Ohio State Innovation Foundation Methods and apparatus for accurate characterization of signal coil receiver sensitivity in magnetic resonance imaging (MRI)
US9427171B2 (en) * 2012-03-19 2016-08-30 Koninklijke Philips N.V. Magnetic resonance image reconstruction method with respiratory MOT detection during sampling of central and peripheral K-space areas
US20130289912A1 (en) * 2012-03-30 2013-10-31 Siemens Aktiengesellschaft Eigen-vector approach for coil sensitivity maps estimation
DE102012205811B4 (de) * 2012-04-10 2014-12-11 Siemens Aktiengesellschaft Bestimmen von Abtastungspunkten eines zufälligen Unterabtastungsschemas in der MR-Bildgebung
US9632156B2 (en) * 2012-06-01 2017-04-25 Siemens Healthcare Gmbh Efficient redundant haar minimization for parallel MRI reconstruction
JP5897415B2 (ja) * 2012-06-29 2016-03-30 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 磁気共鳴装置およびプログラム
WO2014047498A1 (en) * 2012-09-20 2014-03-27 The Johns Hopkins University Methods and apparatus for accelerated, motion-corrected high-resolution mri employing internal detectors or mri endoscopy
US9097780B2 (en) * 2012-11-09 2015-08-04 Siemens Aktiengesellschaft Multi-stage magnetic resonance reconstruction for parallel imaging applications
WO2014115043A1 (en) 2013-01-25 2014-07-31 Koninklijke Philips N.V. Metal resistant mr imaging
WO2014165050A1 (en) * 2013-03-12 2014-10-09 The General Hospital Corporation Method for increasing signal-to-noise ratio in magnetic resonance imaging using per-voxel noise covariance regularization
EP2976654A2 (en) * 2013-03-21 2016-01-27 Koninklijke Philips N.V. Mr image reconstruction using compressed sensing
CN103632367B (zh) * 2013-11-27 2016-04-13 中国科学技术大学 一种基于多组织区域拟合的mri线圈灵敏度估计方法
CN103698732B (zh) * 2013-12-12 2016-03-09 深圳先进技术研究院 磁共振射频线圈性能评测方法和系统
US10310042B2 (en) 2014-04-24 2019-06-04 The General Hospital Corporation Hierrarchical mapping framework for coil compression in magnetic resonance image reconstruction
WO2015167307A1 (ko) * 2014-04-30 2015-11-05 삼성전자 주식회사 자기 공명 영상 장치 및 자기 공명 영상의 생성 방법
RU2568929C1 (ru) 2014-04-30 2015-11-20 Самсунг Электроникс Ко., Лтд. Способ и система для быстрой реконструкции изображения мрт из недосемплированных данных
WO2015179049A1 (en) * 2014-05-19 2015-11-26 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Magnetic resonance 2d relaxometry reconstruction using partial data
US20150346305A1 (en) * 2014-05-28 2015-12-03 General Electric Company System and method for generating a magnetic resonance image
KR101630762B1 (ko) * 2014-07-30 2016-06-15 삼성전자주식회사 자기 공명 영상 생성 장치 및 방법
DE102014224651A1 (de) * 2014-12-02 2016-03-31 Siemens Aktiengesellschaft Verfahren zur Ermittlung einer Sensitivitätskarte für wenigtens eine Lokalspule in einer Magnetresonanzeinrichtung und Magnetresonanzeinrichtung
US9846214B2 (en) * 2014-12-29 2017-12-19 Toshiba Medical Systems Corporation Magnetic resonance image reconstruction for undersampled data acquisitions
DE102015204483A1 (de) * 2015-03-12 2016-09-15 Siemens Healthcare Gmbh Magnetresonanz-Vorschau-Abbildung
WO2016188974A1 (en) * 2015-05-27 2016-12-01 Koninklijke Philips N.V. Mri using sense with acquisition of undersampled reference data via an ultrashort echo time sequence
US20170059680A1 (en) * 2015-08-31 2017-03-02 General Electric Company Fast spin magnetic resonance imaging method and system
RU2626184C2 (ru) * 2015-09-04 2017-07-24 Самсунг Электроникс Ко., Лтд. Способ, устройство и система для реконструкции магнитно-резонансного изображения
CN109791187B (zh) * 2016-08-25 2022-03-29 皇家飞利浦有限公司 用于b0校正灵敏度编码磁共振成像的系统和方法
US11694373B2 (en) * 2017-04-07 2023-07-04 Regents Of The University Of Minnesota Methods for scan-specific k-space interpolation reconstruction in magnetic resonance imaging using machine learning
CN107563988A (zh) * 2017-07-31 2018-01-09 上海东软医疗科技有限公司 一种磁共振图像的均匀度校正方法及装置
EP3457160A1 (en) * 2017-09-14 2019-03-20 Koninklijke Philips N.V. Parallel magnetic resonance imaging with archived coil sensitivity maps
EP3692381B1 (en) 2017-10-06 2023-12-06 University of Cincinnati Systems and methods for estimating complex radiofrequency fields in a magnetic resonance imaging
CN108154484B (zh) * 2017-12-01 2021-12-17 深圳先进技术研究院 一种基于自适应联合稀疏编码的并行磁共振成像方法、装置及计算机可读介质
CN108287325B (zh) * 2018-01-03 2020-08-11 上海东软医疗科技有限公司 一种图像重建方法、装置及设备
CN108305221B (zh) * 2018-01-03 2021-10-12 上海东软医疗科技有限公司 一种磁共振并行成像方法和装置
US11354586B2 (en) 2019-02-15 2022-06-07 Q Bio, Inc. Model parameter determination using a predictive model
US11360166B2 (en) 2019-02-15 2022-06-14 Q Bio, Inc Tensor field mapping with magnetostatic constraint
EP3709040A1 (de) * 2019-03-13 2020-09-16 Siemens Healthcare GmbH Passive magnetfeldkamera und verfahren zum betrieb der passiven magnetfeldkamera
BR112022004126A2 (pt) * 2019-09-27 2022-05-31 Q Bio Inc Imageamento paralelo de maxwell
US11614509B2 (en) 2019-09-27 2023-03-28 Q Bio, Inc. Maxwell parallel imaging
CN113009398B (zh) * 2021-04-08 2021-12-17 浙江大学 结合k空间和图像空间重建的成像方法和装置
US11614508B1 (en) 2021-10-25 2023-03-28 Q Bio, Inc. Sparse representation of measurements
CN114879107B (zh) * 2022-05-27 2023-01-03 浙江大学 一种fMRI中射频接收线圈本征时域稳定性参数的测量方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054746A1 (en) * 1998-04-17 1999-10-28 Koninklijke Philips Electronics N.V. Magnetic resonance imaging method and apparatus
JP3814157B2 (ja) * 2001-04-17 2006-08-23 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Mri装置
WO2004031793A1 (en) * 2002-10-01 2004-04-15 Koninklijke Philips Electronics N.V. A method for k-space data acquisition and mri device
WO2004048991A1 (en) * 2002-11-26 2004-06-10 Koninklijke Philips Electronics N.V. Determination of subencoding mri coil sensitivities in a lower order magnetic field
DE10326174B4 (de) * 2003-06-10 2008-11-27 Siemens Ag Verfahren zur Verhinderung des Doppeldeutigkeitsartefaktes in der Magnetresonanz-Tomographie-Bildgebung
WO2007023435A1 (en) * 2005-08-23 2007-03-01 Koninklijke Philips Electronics N.V. Device and method for parallel magnetic resonance imaging
US8587307B2 (en) * 2009-07-09 2013-11-19 Uwm Research Foundation, Inc. Systems and methods for accelerating the acquisition and reconstruction of magnetic resonance images with randomly undersampled and uniformly undersampled data

Also Published As

Publication number Publication date
EP2588878A1 (en) 2013-05-08
IN2013CN00309A (ru) 2015-07-03
US20130099786A1 (en) 2013-04-25
CN102959426A (zh) 2013-03-06
WO2012001583A1 (en) 2012-01-05

Similar Documents

Publication Publication Date Title
RU2013104364A (ru) Компьютерный программный продукт, осуществляемый компьютером способ и система магнитно-резонансной визуализации для получения магнитно-резонансного изображения
US10803631B2 (en) Systems and methods for magnetic resonance imaging
Huang et al. Swin transformer for fast MRI
Blaimer et al. 2D‐GRAPPA‐operator for faster 3D parallel MRI
US10101427B2 (en) Magnetic resonance imaging method and apparatus
CN104714199A (zh) 一种磁共振成像方法和装置
Zhang et al. Parallel reconstruction using null operations
JP2009268901A5 (ru)
US9958523B2 (en) Magnetic resonance imaging system using sub-volumes and magnetic resonance imaging method using sub-volumes
US20170067979A1 (en) System and method for image warp correction for magnetic resonance imaging
WO2016055462A1 (en) Propeller mr imaging with artefact suppression
Virtue Complex-valued deep learning with applications to magnetic resonance image synthesis
CN107430179B (zh) 使用阵列空间伪灵敏度编码技术的多次激发扩散加权成像的设备和方法
US10877122B2 (en) Ultrafast MRI system and method
Mani et al. Fast iterative algorithm for the reconstruction of multishot non‐cartesian diffusion data
US20180210059A1 (en) Magnetic resonance imaging apparatus and method of controlling the same
US11360176B2 (en) Reconstruction of magnetic-resonance datasets using machine learning
CN110542872B (zh) 磁共振成像方法及设备、相位信息的获取方法及装置
JP7237515B2 (ja) 磁気共鳴イメージングシステム、方法及びプログラム
Jin et al. 3D BBPConvNet to reconstruct parallel MRI
EP4399537A1 (en) Dual-domain self-supervised learning for accelerated non-cartesian magnetic resonance imaging reconstruction
KR20130071572A (ko) 방사형 좌표계에서의 자기공명 영상 방법
US10782375B2 (en) Multi-contrast images from a magnetic resonance imaging scan
CN114062988B (zh) 磁共振波谱成像方法、装置、计算机设备和存储介质
Zhao et al. Convolutional Framework for Accelerated Magnetic Resonance Imaging

Legal Events

Date Code Title Description
FA94 Acknowledgement of application withdrawn (non-payment of fees)

Effective date: 20160418