RU2012130138A - Способ управления прямым преобразователем и устройство для его осуществления - Google Patents

Способ управления прямым преобразователем и устройство для его осуществления Download PDF

Info

Publication number
RU2012130138A
RU2012130138A RU2012130138/07A RU2012130138A RU2012130138A RU 2012130138 A RU2012130138 A RU 2012130138A RU 2012130138/07 A RU2012130138/07 A RU 2012130138/07A RU 2012130138 A RU2012130138 A RU 2012130138A RU 2012130138 A RU2012130138 A RU 2012130138A
Authority
RU
Russia
Prior art keywords
ref
phase
current
voltage
phase module
Prior art date
Application number
RU2012130138/07A
Other languages
English (en)
Other versions
RU2537963C2 (ru
Inventor
Манфред ВИНКЕЛЬНКЕМПЕР
Артур КОРН
Original Assignee
Абб Швайц Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Абб Швайц Аг filed Critical Абб Швайц Аг
Publication of RU2012130138A publication Critical patent/RU2012130138A/ru
Application granted granted Critical
Publication of RU2537963C2 publication Critical patent/RU2537963C2/ru

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/297Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal for conversion of frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

1. Способ управления прямым преобразователем, содержащим по меньшей мере два фазовых модуля (1) для соединения фаз (U, V, W) первой системы тока или системы напряжения с фазами (R, S, Т) второй системы тока или системы напряжения, причем каждый фазовый модуль (1) содержит множество двухполюсных коммутационных ячеек (2), соединенных последовательно, и каждая коммутационная ячейка (2) включает в себя управляемые двунаправленные силовые полупроводниковые ключи с управляемым однонаправленным протеканием тока и емкостной накопитель энергии, включающий управление силовыми полупроводниковыми ключами коммутационных ячеек (2) соответствующего фазового модуля (1) с помощью управляющего сигнала (S1) и подключение индуктивности (L, L, L; L, L, L; L, L, L) в каждом фазовом модуле (1) последовательно к указанной последовательной схеме включения коммутационных ячеек,отличающийся тем, что для каждого фазового модуля (1) управляющий сигнал (S1) формируют на основе разности между опорным сигналом (V, V, V, V, V, V, V, V, V) в отношении напряжения (U, U, U; U, U, U; U, U, U) на фазовом модуле (1) и сигналом напряжения (V, V, V, V, V, V, V, V, V) на индуктивности (L, L, L; L, L, L; L, L, L), асигнал напряжения (V, V, V, V, V, V, V, V, V) на индуктивности (L, L, L; L, L, L; L, L, L) формируют из опорного сигнала (i, l, i, I, i, i, i, i, i) в отношении тока (i, i, i; i, i, i; i, i, i) через фазовый модуль (1), причемопорный сигнал (i, i, i, i, i, i, i, i, i) в отношении тока (i, i, i; i, i, i; i, i, i) через фазовый модуль (1) формируют из среднего значенияили мгновенного значения (P, P, P) мощности фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), из среднего значенияили мгновенного значения, (P, P, P) мощности фазы (R, S, Т) второй системы тока ил

Claims (8)

1. Способ управления прямым преобразователем, содержащим по меньшей мере два фазовых модуля (1) для соединения фаз (U, V, W) первой системы тока или системы напряжения с фазами (R, S, Т) второй системы тока или системы напряжения, причем каждый фазовый модуль (1) содержит множество двухполюсных коммутационных ячеек (2), соединенных последовательно, и каждая коммутационная ячейка (2) включает в себя управляемые двунаправленные силовые полупроводниковые ключи с управляемым однонаправленным протеканием тока и емкостной накопитель энергии, включающий управление силовыми полупроводниковыми ключами коммутационных ячеек (2) соответствующего фазового модуля (1) с помощью управляющего сигнала (S1) и подключение индуктивности (LUR, LUS, LUT; LVR, LVS, LVT; LWR, LWS, LWT) в каждом фазовом модуле (1) последовательно к указанной последовательной схеме включения коммутационных ячеек,
отличающийся тем, что для каждого фазового модуля (1) управляющий сигнал (S1) формируют на основе разности между опорным сигналом (Vref,UR, Vref,US, Vref,UT, Vref,VR, Vref,VS, Vref,VT, Vref,WR, Vref,WS, Vref,WT) в отношении напряжения (UUR, UUS, UUT; UVR, UVS, UVT; UWR, UWS, UWT) на фазовом модуле (1) и сигналом напряжения (VLUR, VLUS, VLUT, VLVR, VLVS, VLVT, VLWR, VLWS, VLWT) на индуктивности (LUR, LUS, LUT; LVR, LVS, LVT; LWR, LWS, LWT), а
сигнал напряжения (VLUR, VLUS, VLUT, VLVR, VLVS, VLVT, VLWR, VLWS, VLWT) на индуктивности (LUR, LUS, LUT; LVR, LVS, LVT; LWR, LWS, LWT) формируют из опорного сигнала (iref,UR, lref,US, iref,UT, Iref,VR, iref,VS, iref,VT, iref,WR, iref,WS, iref,WT) в отношении тока (iUR, iUS, iUT; iVR, iVS, iVT; iWR, iWS, iWT) через фазовый модуль (1), причем
опорный сигнал (iref,UR, iref,US, iref,UT, iref,VR, iref,VS, iref,VT, iref,WR, iref,WS, iref,WT) в отношении тока (iUR, iUS, iUT; iVR, iVS, iVT; iWR, iWS, iWT) через фазовый модуль (1) формируют из среднего значения
Figure 00000001
или мгновенного значения (PU, PV, PW) мощности фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), из среднего значения
Figure 00000002
или мгновенного значения, (PR, PS, PT) мощности фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1), из суммы мгновенных значений (PUVW) или средних значений (PUVWM) мощностей фаз (U, V, W) первой системы тока или системы напряжения и из суммы мгновенных значений (PRST) или средних значений (PRSTM) мощностей фаз (R, S, Т) второй системы тока или системы напряжения.
2. Способ по п.1, отличающийся тем, что для каждого фазового модуля (1) опорный сигнал (Vref,UR, Vref,US, Vref,UT, Vref,VR, Vref,VS, Vref,VT, Vref,WR, Vref,WS, Vref,WT) в отношении тока (iUR, iUS, iUT; iVR, iVS, iVT; iWR, iWS, iWT) через фазовый модуль (1) дополнительно формируют из тока (iU, iV, iW) фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), и из тока (iR, iS, iT) фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1).
3. Способ по п.2, отличающийся тем, что для каждого фазового модуля (1) мгновенное значение (PU, PV, PW) мощности фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), формируют из опорного сигнала (Iref,U, Iref,V, Iref,W) в отношении тока (iU, iV, iW) фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), и из опорного сигнала (Vref,U, Vref,V, Vref,W) в отношении напряжения (UU, UV, UW) фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), а
мгновенное значение (PR, PS, РT) мощности фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1), формируют из опорного сигнала (Iref,R, Iref,S, Iref,T) в отношении тока (iR, iS, iT) фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1), и из опорного сигнала (Vref,R, Vref,S, Vref,T) в отношении напряжения (UR, US, UT) фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1).
4. Способ по п.2, отличающийся тем, что для каждого фазового модуля (1) мгновенное значение (РU, PV, PW) мощности фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), формируют из тока (iU, iV, iW) фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), и из напряжения (uU, uV, uW) фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), а
мгновенное значение (PR, PS, РT) мощности фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1), формируют из тока (iR, iS, iT) фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1), и из напряжения (uR, uS, uT) фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1).
5. Устройство для осуществления способа управления прямым преобразователем, содержащим по меньшей мере два фазовых модуля (1) для соединения фаз (U, V, W) первой системы тока или системы напряжения с фазами (R, S, Т) второй системы тока или системы напряжения, причем каждый фазовый модуль (1) содержит множество двухполюсных коммутационных ячеек (2), соединенных последовательно, и каждая коммутационная ячейка (2) включает в себя управляемые двунаправленные силовые полупроводниковые ключи с управляемым однонаправленным протеканием тока и емкостной накопитель энергии,
содержащее схему (3) управления для каждого фазового модуля (1), выполненную с возможностью формирования управляющего сигнала (S1), причем указанная схема (3) управления подключена к силовым полупроводниковым ключам коммутационных ячеек (2) фазового модуля (1) и каждый фазовый модуль (1) содержит индуктивность (LUR, LUS, LUT; LVR, LVS, LVT; LWR, LWS, LWT), последовательно подключенную к последовательной схеме включения коммутационных ячеек,
отличающееся тем, что для формирования управляющего сигнала (S1) на схему (3) управления для каждого фазового модуля (1) подается разность между опорным сигналом (Vref,UR, Vref,US, Vref,UT, Vref,VR, Vref,VS, Vref,VT, Vref,WR, Vref,WS, Vref,WT) в отношении напряжения (UUR, UUS, UUT; UVR, UVS, UVT; UWR, UWS, UWT) на фазовом модуле (1) и сигналом напряжения (VLUR, VLUS, VLUT, VLVR, VLVS, VLVT, VLWR, VLWS, VLWT) на индуктивности (LUR, LUS, LUT; LVR, LYS, LVT; LWR, LWS, LWT),
при этом устройство содержит общий первый вычислительный блок (4) для всех фазовых модулей (1), выполненный с возможностью формирования сигнала напряжения (VLUR, VLUS, VLUT, VLVR, VLVS, VLVT, VLWR, VLWS, VLWT) на индуктивности (LUR, LUS, LUT; LVR, LVS, LVT; LWR, LWS, LWT) из опорного сигнала (iref,UR, iref,US, iref,UT, iref,VR, iref,VS, iref,VT, iref,WR, iref,WS, iref,WT) в отношении тока (iUR, iUS, iUT; iVR, iVS, iVT; iWR, iWS, iWT) через фазовый модуль (1), и
общий второй вычислительный блок для всех фазовых модулей (1), выполненный с возможностью формирования указанного опорного сигнала (iref,UR, iref,US, iref,UT, iref,VR, iref,VS, iref,VT, iref,WR, iref,WS, iref,WT) в отношении тока (iUR, iUS, iUT; iVR, iVS, iVT; iWR, iWS, iWT) через фазовый модуль (1) из среднего значения
Figure 00000003
Figure 00000004
или мгновенного значения (PU, PV, PW) мощности фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), из среднего значения
Figure 00000005
или мгновенного значения (PR, PS, PT) мощности фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1), из суммы мгновенных значений (PUVW) или средних значений (PUVWM) мощностей фаз (U, V, W) первой системы тока или системы напряжения и из суммы мгновенных значений (PRST) или средних значений (PRSTM) мощностей фаз R, S, Т второй системы тока или системы напряжения.
6. Устройство по п.5, отличающееся тем, что общий второй вычислительный блок выполнен с возможностью формирования указанного опорного сигнала (iref,UR, iref,US, iref,UT, iref,VR, iref,VS, iref,VT, iref,WR, iref,WS, iref,WT) в отношении тока (iUR, iUS, iUT; iVR, iVS, iVT; iWR, iWS, iWT) через фазовый модуль (1), также из тока (iU, iV, iW) фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), и из тока (iR, iS, iT) фазы (R, S, Т) второй системы тока или напряжения, подключенной к фазовому модулю (1).
7. Устройство по п.6, отличающееся тем, что содержит общий третий вычислительный блок (6) для всех фазовых модулей (1), выполненный с возможностью формирования указанного мгновенного значения (PU, PV, PW) мощности фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), из опорного сигнала (Iref,U, Iref,V, Iref,W) в отношении тока (iU, iV, iW) фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), и из опорного сигнала (V ref,U, V ref,V, V ref,W) в отношении напряжения (UU, UV, UW) фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), а также с возможностью формирования указанного мгновенного значения (PR, PS, PT) мощности фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1), из опорного сигнала (Iref,R, Iref,S, Iref,T) в отношении тока (iR, iS, iT) фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1), и из опорного сигнала (Vref,R, Vref,S, Vref,T) в отношении напряжения (UR, US, UT) фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1).
8. Устройство по п.6, отличающееся тем, что содержит общий третий вычислительный блок (6) для всех фазовых модулей (1), выполненный с возможностью формирования указанного мгновенного значения (PU, PV, PW) мощности фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), из тока (iU, iV, iW) фазы (U, V, W) первой системы тока или системы напряжения и из напряжения (uU, uV, uW) фазы (U, V, W) первой системы тока или системы напряжения, подключенной к фазовому модулю (1), а также с возможностью формировать указанного мгновенное значение (PR, PS, RT) мощности фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1), из тока (iR, iS, iT) фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю (1), и из напряжения (uR, uS, uT) фазы (R, S, Т) второй системы тока или системы напряжения, подключенной к фазовому модулю 1.
RU2012130138/07A 2009-12-17 2010-12-09 Способ управления прямым преобразователем и устройство для его осуществления RU2537963C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09179643.3 2009-12-17
EP09179643 2009-12-17
PCT/EP2010/069277 WO2011082935A1 (de) 2009-12-17 2010-12-09 Verfahren zum betrieb einer direktumrichterschaltung sowie vorrichtung zur durchführung des verfahrens

Publications (2)

Publication Number Publication Date
RU2012130138A true RU2012130138A (ru) 2014-01-27
RU2537963C2 RU2537963C2 (ru) 2015-01-10

Family

ID=42199660

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012130138/07A RU2537963C2 (ru) 2009-12-17 2010-12-09 Способ управления прямым преобразователем и устройство для его осуществления

Country Status (12)

Country Link
US (1) US8687397B2 (ru)
EP (1) EP2514087B1 (ru)
JP (1) JP5752704B2 (ru)
KR (1) KR101628431B1 (ru)
CN (1) CN102754323B (ru)
BR (1) BR112012014835A2 (ru)
CA (1) CA2783184A1 (ru)
DK (1) DK2514087T3 (ru)
ES (1) ES2546736T3 (ru)
PL (1) PL2514087T3 (ru)
RU (1) RU2537963C2 (ru)
WO (1) WO2011082935A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5872480B2 (ja) * 2009-12-01 2016-03-01 アーベーベー・シュバイツ・アーゲー コンバータ回路を作動するための方法、およびこの方法を実行するための装置
EP2887524B1 (en) 2012-08-20 2021-08-11 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power converter
KR101935988B1 (ko) * 2014-06-13 2019-01-07 지멘스 악티엔게젤샤프트 무효 전력을 출력하기 위한 컨버터, 및 상기 컨버터를 제어하기 위한 방법
FR3039940B1 (fr) * 2015-08-03 2017-08-11 Inst Supergrid Capacite virtuelle
CN113054856B (zh) * 2019-12-27 2022-08-23 新疆金风科技股份有限公司 变流器换流阀塔、变流器换流系统及风力发电机组

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000287453A (ja) * 1999-03-31 2000-10-13 Mitsubishi Electric Corp 多重電力変換装置
US6566764B2 (en) * 2000-05-23 2003-05-20 Vestas Wind Systems A/S, R&D Variable speed wind turbine having a matrix converter
DE10057785A1 (de) * 2000-11-22 2002-06-06 Siemens Ag Verfahren zur Steuerung eines Matrixumrichters
DE10217889A1 (de) * 2002-04-22 2003-11-13 Siemens Ag Stromversorgung mit einem Direktumrichter
US6900998B2 (en) * 2002-05-31 2005-05-31 Midwest Research Institute Variable-speed wind power system with improved energy capture via multilevel conversion
RU2251199C1 (ru) * 2004-01-20 2005-04-27 Ульяновский государственный технический университет Матричный преобразователь частоты и способ управления им
DE102005040543A1 (de) 2005-08-26 2007-03-01 Siemens Ag Stromrichterschaltung mit verteilten Energiespeichern
JP2007082321A (ja) * 2005-09-14 2007-03-29 Fuji Electric Fa Components & Systems Co Ltd 電動機駆動装置
DE102005045090B4 (de) * 2005-09-21 2007-08-30 Siemens Ag Verfahren zur Steuerung eines mehrphasigen Stromrichters mit verteilten Energiespeichern
JP4999930B2 (ja) * 2006-12-08 2012-08-15 シーメンス アクチエンゲゼルシヤフト 変換器の相モジュールにおける有効電力均衡の生成
JP5012309B2 (ja) * 2007-08-13 2012-08-29 株式会社明電舎 交流−交流直接変換装置のスイッチングパターン切替方法
JP5872480B2 (ja) * 2009-12-01 2016-03-01 アーベーベー・シュバイツ・アーゲー コンバータ回路を作動するための方法、およびこの方法を実行するための装置

Also Published As

Publication number Publication date
RU2537963C2 (ru) 2015-01-10
PL2514087T3 (pl) 2015-12-31
KR101628431B1 (ko) 2016-06-08
JP5752704B2 (ja) 2015-07-22
CA2783184A1 (en) 2011-07-14
EP2514087A1 (de) 2012-10-24
WO2011082935A1 (de) 2011-07-14
EP2514087B1 (de) 2015-07-15
US8687397B2 (en) 2014-04-01
US20120249113A1 (en) 2012-10-04
BR112012014835A2 (pt) 2016-08-16
ES2546736T3 (es) 2015-09-28
JP2013514752A (ja) 2013-04-25
CN102754323B (zh) 2015-02-18
DK2514087T3 (en) 2015-10-19
CN102754323A (zh) 2012-10-24
KR20120093371A (ko) 2012-08-22

Similar Documents

Publication Publication Date Title
Sahoo et al. Review and comparative study of single-stage inverters for a PV system
Debnath et al. Two-stage solar photovoltaic-based stand-alone scheme having battery as energy storage element for rural deployment
US9425681B2 (en) Battery energy storage and power system
US20090244936A1 (en) Three-phase inverter
EP3098953A2 (en) Pre-charge circuit and photovoltaic inverter
US20150097434A1 (en) Method and apparatus for independent control of multiple power converter sources
US9531297B2 (en) Solar power conversion system
AU2012332123B2 (en) System and method for power conversion for renewable energy sources
US20110242857A1 (en) Maximum power point tracker, power conversion controller, power conversion device having insulating structure, and method for tracking maximum power point thereof
CN108702104A (zh) 五电平逆变器拓扑电路及三相五电平逆变器拓扑电路
KR101830666B1 (ko) 전력 변환 장치
KR101476099B1 (ko) 3레벨 전력변환기를 이용한 하이브리드 무변압기형 무정전 전원장치
KR101388698B1 (ko) 전력 변환 장치와 그 동작 방법 및 태양광 발전 시스템
KR20170071491A (ko) 변환 장치
RU2012130138A (ru) Способ управления прямым преобразователем и устройство для его осуществления
US20170214321A1 (en) System and method for controlling a converter circuit
CN102593868A (zh) 一种兼有电能调节功能的分布式三相四线光伏并网装置
RU2012127384A (ru) Способ работы преобразовательной схемы и устройство для его осуществления
CN111464050A (zh) Ac/dc换流器控制方法、装置、ac/dc换流设备和存储介质
Kumar et al. Design and implementation of single-phase inverter without transformer for PV applications
US10205407B2 (en) Inverter device, energy storage system and method of controlling an inverter device
CN102801350A (zh) H桥光伏并网逆变器
CN107078654A (zh) 电力转换装置
US9774256B2 (en) Dual source DC to DC converter
US10033182B2 (en) Bidirectional electrical signal converter

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20161210