PT2361981E - Mediadores de interferência por rna específicos de sequência de rna - Google Patents

Mediadores de interferência por rna específicos de sequência de rna Download PDF

Info

Publication number
PT2361981E
PT2361981E PT101846608T PT10184660T PT2361981E PT 2361981 E PT2361981 E PT 2361981E PT 101846608 T PT101846608 T PT 101846608T PT 10184660 T PT10184660 T PT 10184660T PT 2361981 E PT2361981 E PT 2361981E
Authority
PT
Portugal
Prior art keywords
dsrna
mrna
rna
rnai
luc
Prior art date
Application number
PT101846608T
Other languages
English (en)
Inventor
Thomas Tuschl
Phillip A Sharp
Philip D Zamore
David P Bartel
Original Assignee
Max Planck Gesellschaft
Univ Massachusetts
Massachusetts Inst Technology
Whitehead Biomedical Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41655850&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=PT2361981(E) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Max Planck Gesellschaft, Univ Massachusetts, Massachusetts Inst Technology, Whitehead Biomedical Inst filed Critical Max Planck Gesellschaft
Publication of PT2361981E publication Critical patent/PT2361981E/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1079Screening libraries by altering the phenotype or phenotypic trait of the host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/30Production chemically synthesised

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Virology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Description

ΡΕ2361981 1
DESCRIÇÃO "MEDIADORES DE INTERFERÊNCIA POR RNA ESPECÍFICOS DE SEQUÊNCIA DE RNA"
FUNDAMENTO DO INVENTO A interferência por RNA ou "RNAi" é um termo usado pela primeira vez por Fire e colaboradores para descrever a observação de que o RNA de cadeia dupla (dsRNA)
pode bloquear a expressão de genes quando é introduzido em vermes (Fire et ai., (1998) Nature 391, 806-811). dsRNA dirige o silenciamento pós-transcrição especifico de genes em muitos organismos, incluindo vertebrados, e proporcionou uma nova ferramenta para o estudo da função dos genes. RNAi envolve a degradação de mRNA, mas muitos dos mecanismos bioquímicos subjacentes a esta interferência são desconhecidos. A reconstituição das características essenciais de RNAi in vitro é necessária para uma análise bioquímica do fenómeno.
SUMÁRIO DO INVENTO O presente invento é definido pelas reivindicações apensas.
Descreve-se interferência mediada por dsRNA 2 ΡΕ2361981 específica de genes num sistema acelular derivado de embriões de Drosophila na fase de blastoderme sincicial. 0 sistema in vitro complementa abordagens genéticas para dissecar a base molecular de RNAi. Como aqui descrito, os mecanismos moleculares subjacentes foram examinados usando o sistema in vitro de Drosophila. Os resultados mostraram que RNAi é dependente de ATP, ainda que não acoplado à tradução de mRNA. Ou seja, a síntese proteica não é necessária para RNAi in vitro. Na reacção de RNAi, ambas as cadeias (codificadora e complementar da codificadora) do dsRNA foram processadas em pequenos RNAs, fragmentos ou segmentos entre cerca de 21 e cerca de 23 nucleótidos (nt) de comprimento (RNAs com mobilidade nos géis de sequen-ciação que correspondem a marcadores que têm 21-23 nt de comprimento, facultativamente referidos como RNAs de 21-23 nt). 0 processamento do dsRNA em pequenos fragmentos de RNA não requer o mRNA alvo, o que demonstra que as espécies de pequenos RNAs são geradas por processamento do dsRNA e não como produto da degradação do mRNA alvo com dsRNA. 0 RNA é clivado apenas dentro da região de identidade com dsRNA. A clivagem ocorre em locais fora dos 21-23 nucleótidos, o mesmo intervalo observado para o próprio dsRNA sugerindo que os fragmentos de 21-23 nucleótidos do dsRNA conduzem a clivagem do mRNA. Esses RNAs de 21-23 nt modificados confirmam que estes fragmentos conduzem a clivagem de mRNA.
Assim, o presente invento está relacionado com moléculas de RNA isoladas de cadeia dupla (ds), entre 21 e 23 nucleótidos, que medeiam RNAi. Ou seja, os dsRNAs 3 ΡΕ2361981 isolados do presente invento medeiam a degradação do mRNA de um gene ao qual o mRNA corresponde (degradação mediada do mRNA que é o produto da transcrição do gene, o qual também é referido como um gene alvo). Por conveniência, tal mRNA é igualmente aqui referido como mRNA a ser degradado. 0 RNA de cadeia dupla pode ser RNA parcialmente purificado, RNA essencialmente puro, RNA sintético ou RNA produzido por via recombinante. Os nucleótidos nas moléculas de dsRNA do presente invento podem também compreender nucleótidos não convencionais, incluindo nucleótidos ou desoxirribonucleó-tidos não naturais. Colectivamente, todos esses RNAs alterados são referidos como análogos ou análogos de RNA natural. 0 dsRNA de 21-31 nucleótidos necessita apenas de ser suficientemente similar ao RNA natural para ter capacidade para mediar (medeia) RNAi. Como aqui usada a frase "medeia RNAi" refere-se a (indica) a capacidade para distinguir quais os RNAs a serem degradados pela maquinaria ou processo de RNAi. 0 dsRNA que medeia RNAi interage com a maquinaria de RNAi de forma a dirigir a maquinaria para degradar mRNAs particulares. Numa realização, o presente invento está relacionado com moléculas de dsRNA entre cerca de 21 e cerca de 23 nucleótidos que dirigem a clivagem de mRNA especifico ao qual a sua sequência corresponde. Não é necessário que exista uma correspondência perfeita entre as sequências, mas a correspondência deve ser suficiente para permitir que o dsRNA dirija a clivagem por RNAi do mRNA alvo. Numa realização particular, as moléculas de dsRNA de 21-23 nt compreendem um grupo hidroxilo 3'. 4 ΡΕ2361981 0 presente invento também está relacionado com métodos para a produção de moléculas de RNA de cerca de 21 a cerca de 23 nucleótidos com capacidade para mediar a clivagem por RNAi. Numa realização, é usado o sistema in vitro de Drosophila. Nesta realização, dsRNA é combinado com um extracto solúvel derivado de embrião de Drosophila, produzindo assim uma combinação. A combinação é mantida em condições nas quais o dsRNA é processado em moléculas de RNA de 21 a 23 nucleótidos. Numa outra realização, o sistema in vitro de Drosophila é usado para obter sequências de RNA de 21 a 23 nucleótidos que medeiam a interferência por RNA do mRNA de um gene particular (e.g., oncogene, gene virai). Nesta realização, o RNA de cadeia dupla que corresponde a uma sequência do gene a ser atingido é combinado com um extracto solúvel derivado de embrião de Drosophila, produzindo assim uma combinação. A combinação é mantida em condições nas quais o RNA de cadeia dupla é processado em RNA de aproximadamenre 21 a cerca de 23 nucleótidos de comprimento. Como aqui mostrado, o RNA de 21-23 nt medeia RNAi do mRNA do gene alvo (o gene cujo mRNA se pretende degradar). 0 método de obtenção de RNAs de 21-23 nt usando o sistema in vitro de Drosophila pode, ainda, compreender o isolamento da sequência de RNA a partir da combinação.
0 presente invento também está relacionado com um dsRNA de 21-23 nt produzido pelos métodos do presente invento, assim como RNAs de 21-23 nt, produzidos por outros métodos, tais como síntese química ou técnicas de DNA 5 ΡΕ2361981 recombinante, que possuem as mesmas sequências ou substancialmente as mesmas sequências dos RNAs naturais que medeiam RNAi, como os produzidos pelos métodos do presente invento. Todos estes são referidos como dsRNAs de 21-23 nt que medeiam a interferência por RNA. Como aqui usado, o termo RNA isolado inclui RNA obtido por quaisquer métodos, incluindo processamento ou clivagem de dsRNA como aqui descrito; produção por métodos de síntese química; e produção por técnicas de DNA recombinante. 0 invento está ainda relacionado com utilizações de dsRNAs de 21-23 nt, tais como tratamento terapêutico ou profiláctico e composições compreendendo dsRNAs de 21-23 nt que medeiam RNAi, tais como composições farmacêuticas compreendendo dsRNAs de 21-23 nt e um veículo adequado (e.g., um tampão ou água). 0 presente invento também está relacionado com um método para mediar a interferência por RNA do mRNA de um gene numa célula ou organismo (e.g., mamífero como seja um murganho ou um ser humano). Numa realização do invento, RNA de cerca de 21 a cerca de 23 nt que tem como alvo o mRNA a ser degradado é introduzido na célula ou organismo. A célula ou organismo é mantido em condições nas quais ocorre a degradação do mRNA do gene na célula ou organismo. A célula ou organismo pode ser um em que ocorre RNAi como a célula ou organismo naturalmente obtido ou uma célula ou organismo pode ser um que tenha sido modificado de forma a ocorrer RNAi (e.g., através da adição de componentes obtidos a partir de uma célula ou extracto celular que medeia RNAi ou activação de componentes endógenos). Como 6 ΡΕ2361981 aqui usado, o termo "célula ou organismo em que ocorre RNAi" inclui uma célula ou organismo em que ocorre RNAi naturalmente na célula ou organismo ou uma célula ou organismo que foi modificado de forma a ocorrer RNAi. Numa outra realização do invento, o método de mediação da interferência por RNA de um gene numa célula compreende a combinação do RNA de cadeia dupla, que corresponde a uma sequência do gene, com um extracto solúvel derivado do embrião de Drosophila, produzindo assim uma combinação. A combinação é mantida em condições tais que o RNA de cadeia dupla seja processado em dsRNAs com aproximadamente 21 a cerca de 23 nucleótidos. 0 dsRNA de 21 a 23 nt é então isolado e introduzido na célula ou organismo. A célula ou organismo é mantido em condições tais que ocorra a degradação de mRNA do gene, mediando assim a interferência por RNA do gene na célula ou organismo. Como descrito para a realização anterior, a célula ou organismo é uma em que ocorra RNAi naturalmente (na célula ou organismo conforme adequado) ou que tenha sido modificada de forma que ocorra RNAi. Os dsRNAs de 21 a 23 nt podem também ser produzidom por outros métodos, tais como métodos de síntese química ou técnicas de DNA recombinante. São igualmente descritos componentes bioquímicos de uma célula, como seja uma célula de Drosophila, que processam dsRNA em dsRNA de 21 a 23 nucleótidos. Ainda, são descritos os componentes bioquímicos de uma célula que estão envolvidos na degradação do mRNA por dsRNA de 21 a 23 nucleótidos. Em ambas as realizações do invento, os componentes bioquímicos podem ser obtidos a partir de uma 7 ΡΕ2361981 célula em que surjam ou podem ser produzidos por outros métodos, tais como síntese química ou métodos de DNA recombinante. Como aqui usado, o termo "isolado" inclui materiais (e.g., componentes bioquímicos, RNA) obtidos a partir de uma fonte em que ocorrem e materiais produzidos por métodos tais como síntese química ou métodos de ácido nucleico (DNA, RNA) recombinante. 0 presente invento também está relacionado com um método para inactivar (parcialmente ou totalmente) o gene alvo, proporcionando assim uma alternativa para os métodos presentemente disponíveis de inactivação ("knocking down" ou "knocking out") de um gene ou genes. Este método de eliminação da expressão de um gene pode ser usado para fins terapêuticos ou para pesquisa (e.g., para gerar modelos de estado de doença, para examinar a função de um gene, para avaliar se um agente actua sobre um gene, para validar alvos para a descoberta de fármacos) . Nos casos em que a função do gene é eliminada, a célula ou organismo resultante pode também ser referido como "knockout". Uma realização do método de produção de células "knockdown" compreende a introdução numa célula, em que um gene (referido como gene alvo) deve ser inactivado, de dsRNA de 21 a 23 nt que se pretende atinja o gene e mantenha a célula ou organismo resultante em condições tais que ocorra RNAi, resultando na degradação do mRNA do gene alvo, produzindo assim células "knockdown". As células e organismoos "knockdown" produzidos pelo presente método são igualmente descritos. ΡΕ2361981 0 presente invento também está relacionado com um método de examinação ou avaliação da função de um gene numa célula ou organismo. Numa realização, dsRNA de 21 a 23 nt que tem como alvo mRNA do gene para degradação é introduzido numa célula ou organismo não humano em que ocorre RNAi. A célula ou organismo é referido como uma célula ou organismo a testar. A célula ou organismo a testar é mantido em condições nas quais ocorre degradação do mRNA do gene. 0 fenótipo da célula ou organismo a testar é então observado e comparado com o de uma célula ou organismo controlo adequado, como seja uma célula ou organismo correspondente, que é tratado da mesma forma excepto o gene alvo (especifico) não ser atingido. Um dsRNA de 21 a 23 nt que não tem como alvo o mRNA para degradação pode ser introduzido uma célula ou organismo não humano controlo em vez do dsRNA introduzido na célula ou organismo não humano a testar, ainda que não seja necessário fazê-lo. Uma diferença entre os fenótipos das células ou organismos a testar e controlo proporciona informação acerca da função do mRNA degradado. Numa outra realização do invento, RNA de cadeia dupla que corresponde a uma sequência do gene é combinado com um extracto solúvel que medeia RNAi, como seja o extracto solúvel derivado de embrião de Drosophila aqui descrito, em condições nas quais o RNA de cadeia dupla é processado para gerar dsRNA de 21 a 23 nucleótidos. 0 dsRNA de 21 a 23 nucleótidos é isolado e depois introduzido numa célula ou organismo em que ocorre RNAi (célula ou organismo a testar). A célula ou organismo a testar é 9 ΡΕ2361981 mantido em condições nas quais ocorre degradação do mRNA. 0 fenótipo da célula ou organismo a testar é então observado e comparado com a de um controlo adequado, como seja uma célula ou organismo correspondente, que é tratado da mesma forma que célula ou organismo a testar excepto o gene alvo não ser atingido. Uma diferença entre os fenótipos das células ou organismos a testar ou controlo proporciona informação acerca da função do gene alvo. A informação proporcionada pode ser suficiente para identificar (definir) a função do gene ou pode ser usada conjuntamente com a informação obtida noutros ensaios ou análises para o fazer.
Igualmente o objectivo do presente invento é um método para validar se um agente actua num gene. Neste método, o dsRNA de 21 a 23 nucleótidos que tem como alvo o mRNA a ser degradado é introduzido numa célula ou organismo em que ocorre RNAi. A célula ou organismo (que contem o RNA introduzido) é mantido em condições nas quais ocorre a degradação do mRNA e o agente é introduzido na célula ou organismo. Se o agente possuir um efeito na célula ou no organismo ele é determinado; se o agente não tiver efeito na célula ou organismo, então o agente actua no gene.
0 presente invento também está relacionado com um método de validação se um produto de um gene é um alvo para a descoberta ou desenvolvimento de fármacos. dsRNA de 21 a 23 nucleótidos que dirige o mRNA, que corresponde ao gene, para degradação é introduzido numa célula ou organismo. A 10 ΡΕ2361981 célula ou organismo é mantida em condições nas quais a degradação do RNA ocorre, resultando no decréscimo da expressão do gene. É determinado se o decréscimo na expressão do gene tem um efeito na célula ou organismo, pelo que se o decréscimo da expressão do gene tiver efeito, então o produto do gene é um alvo para a descoberta ou desenvolvimento de fármacos. O presente invento também está relacionado com um método de tratamento de uma doença ou condição, associada à presença de uma proteína num indivíduo, compreendendo a administração do dsRNA individual de 21 a 23 nucleótidos que tem como alvo o mRNA da proteína (o mRNA que codifica a proteína) para degradação. Como resultado, a proteína não é produzida ou não é produzida no grau em que seria na ausência do tratamento.
Está também incluído no presente invento um gene identificado por sequenciação das moléculas de dsRNA endógenas de 21 a 23 nucleótidos que medeiam a interferência por RNA.
Está também incluído no presente invento um método de identificação de locais alvo dentro de um mRNA, que sejam particularmente adequados para RNAi, assim como um método de avaliação da capacidade de RNAs de 21-23 nt para mediarem RNAi. 11 ΡΕ2361981
BREVE DESCRIÇÃO DOS DESENHOS O ficheiro desta patente contém pelo menos desenho a cores. As cópias desta patente com desenhos a cores serão fornecidas pelo Escritório de Patentes e Marcas registadas ("Patent and Trademark Office") quando solicitado e paga a quantia respectiva. A Figura 1 é uma representação esquemática de mRNAs repórteres e dsRNAs Rr-Luc e Pp-Luc. Os comprimentos e posições dos ssRNA, asRNA e dsRNAs estão apresentados como barras pretas relativamente às sequências de mRNA repórter Rr-Luc e Pp-Luc. Os rectângulos pretos indicam as duas sequências codificadoras da luciferase não relacionadas, as linhas correspondem às regiões não traduzidas 5' e 3' dos mRNAs. A Figura 2A é um gráfico do índice de actividade de luciferase, após tratamento do mRNA Pp-Luc 50 pM com ssRNA, asRNA ou dsRNA 10 nM do segmento de 505 pb do gene Pp-Luc, que mostra interferência específica por dsRNA in vitro. Os dados são os valores médios de sete ensaios ± desvio padrão. Foram usados quatro lisados preparados independentemente. A actividade de luciferase foi normalizada relativamente ao controlo de tampão; um índice igual a um indica que ausência de interferência específica de gene. A Figura 2B é um gráfico do índice de actividade de luciferase após tratamento de mRNA Rr-Luc 50 pM com 12 ΡΕ2361981 ssRNA, asRNA ou dsRNA 10 nM derivado do segmento de 501 pb do gene Rr-Luc mostrando interferência especifica por dsRNA in vitro. Os dados são os valores médios de seis ensaios ± desvio padrão. Foram usados quatro lisados preparados independentemente. Um índice igual a um indica ausência de interferência específica de gene.
Figura 3A é uma representação esquemática da estratégia experimental usada para mostrar que a incubação no lisado de embrião de Drosophila potência dsRNA para a interferência específica de gene. Os mesmos dsRNAs usados na Figura 2 (ou tampão) foram essencialmente pré-incubados, usando diluições de duas vezes, em seis reacções sucessivas com lisado de embrião de Drosophila, depois testados relativamente à sua capacidade para bloquear a expressão de mRNA. Como controlo, a mesma quantidade de dsRNA (10 nM) ou tampão foi diluída directamente em tampão e incubada com mRNAs PpLuc e Rr-Luc e lisado. A Figura 3B é um gráfico de potenciação quando se pretende atingir mRNA Pp-Luc. As colunas pretas indicam que o dsRNA ou tampão foi seriadamente pré-incubado; colunas brancas correspondem a uma diluição directa de 32 vezes do dsRNA. Os valores foram normalizados relativamente aos dos controlos tampão. A Figura 3C é um gráfico de potenciação quando se pretende atingir mRNA Rr-Luc. O controlo do tampão correspondente está apresentado na Figura 3B. 13 ΡΕ2361981
Figura 4 é um gráfico que mostra o efeito do dsRNA competidor na interferência especifica de gene. Concentrações crescentes de dsRNA nanos (508 pb) foram adicionadas a reacções contendo dsRNA 5 nM (os mesmos dsRNAs usados nas Figuras 2A e 2B) para atingir mRNA Pp-Luc (colunas a preto, eixo da esquerda) ou mRNA Rr-Luc (colunas brancas, eixo da direita). Cada uma das reacções continha um mRNA alvo (Pp-Luc para as colunas pretas, Rr-Luc para as brancas) e um mRNA controlo não relacionado (Rr-Luc para as colunas pretas, Pp-Luc para as brancas). Os valores foram normalizados relativamente ao controlo tampão (não apresentado) . As reacções foram incubadas em condições convencionais (ver Métodos). A Figura 5A é um gráfico que mostra o efeito de dsRNA na estabilidade do mRNA. Circulos, mRNA Pp-Luc; quadrados, mRNA Rr-Luc; símbolos preenchidos, incubação com tampão; símbolos vazios, incubação com Pp-dsRNA. A Figura 5B é um gráfico que mostra a estabilidade de mRNA Rr-Luc incubado com Rr-dsRNA ou Pp-dsRNA. Quadrados preenchidos, tampão; quadrados vazios, Pp-dsRNA (10 nM); círculos vazios, Rr-dsRNA (10 nM). A Figura 5C é um gráfico que mostra a dependência do comprimento do dsRNA: A estabilidade do mRNA Pp-Luc foi avaliada após incubação no lisado, na presença de tampão ou de dsRNAs de diferentes comprimentos. Quadrados preenchi- 14 ΡΕ2361981 dos, tampão; círculos vazios, dsRNA 49 pb (10 nM) ; triângulos invertidos vazios, dsRNA de 149 pb (10 nM); triângulos vazios, dsRNA de 505 pb (10 nM) ; losangos vazios, dsRNA de 997 pb (10 nM) . As reacções foram incubadas em condições convencionais (ver Métodos). A Figura 6 é um gráfico que mostra que RNAi requer ATP. A cinase de creatina (CK) usa fosfatase de creatina (CP) para regenerar ATP. Círculos, +ATP, +CP, +CK; quadrados, -ATP, +CP, +CK; triângulos, -TP, -CP, +CK; triângulos invertidos, -ATP, +CP, -CK. A Figura 7A é um gráfico de síntese proteica, reflectida pela actividade de luciferase após incubação de mRNA Rr-Luc na reacção de RNAi in vitro durante 1 hora, na presença dos inibidores de síntese proteica anisomicina, ciclo-heximida ou cloranfenicol, relativamente a uma reacção sem qualquer inibidor mostrando que RNAi não requer a tradução de mRNA. A Figura 7B é um gráfico que mostra a tradução de mRNAs Pp-Luc com a estrutura "cap" 7-metil-guanosina e adenosina (círculos e quadrados, respectivamente) na reacção RNAi na ausência de dsRNA, conforme medido pela actividade de luciferase produzida numa incubação de uma hora. A Figura 7C é um gráfico que mostra a incubação numa reacção de RNAi de mRNA Pp-Luc com "cap" 7-metil-guanosina (círculos) e de mRNA de Pp-Luc com "cap" de 15 ΡΕ2361981 adenosina (quadrados) marcados radioactivamente de forma uniforme com 32P, na presença (símbolos vazios) e ausência (símbolos preenchidos) de dsRNA Pp-luc de 505 pb. A Figura 8A é um gráfico da análise em gel de agarose desnaturante de mRNA Pp-luc incubado numa reacção de RNAi convencional com tampão, Pp-asRNA de 505 nt ou Pp-dsRNA de 505 pb durante os tempos indicados, mostrando que asRNA origina uma pequena quantidade RNAi in vitro. A Figura 8B é um gráfico da análise em gel de agarose desnaturante de mRNA Rr-Luc incubado numa reacção de RNAi convencional com tampão, Pp-asRNA de 505 nt ou Pp-dsRNA de 505 pb, durante os tempos indicados mostrando que asRNA provoca uma pequena quantidade de RNAi in vitro. A Figura 9 é uma representação esquemática das posições dos três dsRNAs, Ά, 'B' e 'C', relativamente ao mRNA de Rr-luc. A Figura 10 indica os locais de clivagem mapeados nos primeiros 267 nt do mRNA Rr-luc (SEQ ID NO:l). A barra azul por baixo da sequência indica a posição do dsRNA ' C' e os círculos azuis indicam a posição dos locais de clivagem causada por este dsRNA. A barra verde representa a posição de dsRNA 'B' e os círculos verdes, os locais de clivagem. A barra magenta indica a posição de dsRNA Ά' e os círculos magenta, as clivagens. Uma clivagem excepcional dentro de um segmento de 7 uracilos está assinalada com uma seta vermelha. 16 ΡΕ2361981 A Figura 11 é um modelo proposto para RNAi. RNAi é considerada como começando com clivagem do dsRNA em produtos de 21-23 nt por uma nuclease especifica de dsRNA, talvez num complexo multiproteico. Estes curtos dsRNAs devem então ser dissociados por uma helicase dependente de ATP, possivelmente um componente do complexo inicial, em asRNAs de 21-23 nt que poderão então dirigir o mRNA para clivagem. Os asRNAs curtos são imaginados como permanecendo associados com proteínas especificas de RNAi (círculos) que foram originalmente ligadas pelo dsRNA de tamanho completo, explicando assim a ineficiência de asRNA para induzir RNAi in vivo e in vitro. Finalmente, uma nuclease (triângulos) clivará o mRNA. A Figura 12 é um gráfico de barras que mostra o silenciamento de genes, específico de sequências, por fragmentos de 21-23 nt. A proporção de actividade de luciferase após os mRNAs Ρρ-Luc e Rr-Luc serem degradados por dsRNA Ρρ-Luc ou Rr-Luc (500 pb) ou fragmentos de 21-23 nt isolados a partir de uma incubação prévia do respectivo dsRNA em lisado de Drosophila. A quantidade de 21-23 meros isolados, presentes na reacção de incubação, corresponde a aproximadamente a mesma quantidade de 21-23 meros gerados durante a reacção de incubação com dsRNA de 500 pb 5 nM. Os dados são valores médios de 3 ensaios e o desvio padrão é representado por barras de erro. A actividade de luciferase foi normalizada relativamente ao controlo tampão. 17 ΡΕ2361981 A Figura 13A ilustra a purificação de fragmentos de RNA numa coluna de filtração em gel Superdex HR200 10/30 (Pharmacia) usando o método descrito no Exemplo 4. dsRNA foi marcado com 32P e a radioactividade recuperada em cada fracção da coluna está representada no gráfico. As fracções foram também analisadas através de electroforese num gel desnaturante (inserção). A Figura 13B demonstra a capacidade do RNA de Rr-luciferase, após incubação no lisado de Drosophila e frac-cionamento como na Fig. 13A, para mediar a interferência especifica de sequência com a expressão de um mRNA alvo de Rr-luciferase. Um microlitro de cada fracção ressuspensa foi testado numa reacção in vitro de RNAi de 10 microlitros (ver Exemplo 1). Este procedimento dá origem a uma concentração de RNA na reacção RNAi padrão in vitro que é aproximadamente igual à concentração daquela espécie de RNA na reacção original antes da aplicação na coluna. A luminescência relativa por segundo foi normalizada relativamente ao valor médio dos dois controlos tampão. A Figura 13 C é o controlo da especificidade para a Fig 13B. Demonstra que o RNA fraccionado da Fig. 13B não medeia eficazmente a interferência especifica de sequência com a expressão de um mRNA de Pp-luciferase. Os ensaios são como na Fig. 13B. AS Figuras 14A e 14B são representações esquemáticas de construções repórter e de duplas cadeias de siRNA. A Figura 14A ilustra as regiões dos genes repórter 18 ΡΕ2361981 para a luciferase do pirilampo (Pp-luc) e de amor-perfeito do mar (Rr-luc) dos plasmideos pGL2-Control, pGL3-Control e pRL-TK (Promega). Os elementos reguladores de SV40, o promotor da timidina-cinase de HSV e dois intrões (linhas) estão indicados. A sequência da luciferase GL3 é 95% idêntica à de GL2, mas RL é totalmente não relacionada com ambas. A expressão de luciferase a partir de pGL2 é aproximadamente 10 vezes inferior à de pGL3 em células de mamífero transfectadas. A região visada pelas duplas cadeias de siRNA está indicada como barras pretas abaixo da região codificadora dos genes da luciferase. A Figura 14B mostra as sequências codificadoras (parte de cima) e complementares (parte de baixo) das cadeias duplas de siRNA tendo como alvo GL2 (SEQ ID NOS: 10 e 11), GL3 (SEQ ID NOS: 12 e 13) e luciferase RL (SEQ ID NOS: 14 e 15). As duplas cadeias de siRNA GL2 e GL3 diferem apenas em 3 substituições de nucleótidos isoladas (assinalado com uma caixa cinzenta). Como controlo específico, foi sintetizada uma cadeia dupla com a sequência GL2 invertida, invGL2 (SEQ ID NOS: 16 e 17) . Os extremos salientes 3' de 2 nt de 2'-desoxitimidina estão indicados como TT; uGL2 (SEQ ID NOS: 18 e 19) é semelhante a siRNA de GL2 mas contem extremos salientes 3' de ribo-uridina.
As Figuras 15A-15J são gráficos que mostram a interferência por RNA através das cadeias duplas de siRNA. As razões entre luciferase alvo e controlo foram normalizadas relativamente a um controlo tampão (bu, barras negras); barras cinzentas indicam razões entre a luciferase 19 ΡΕ2361981 de Photinus pyrallis (Pp-Luc)GL2 ou GL3 e a Luciferase de Renilla reniformis (Rr-Luc) RL (eixo da esquerda), as barras brancas indicam as razões entre RL e GL2 ou GL3 (eixo da direita) . As Figuras 15A, 15C, 15E, 15G e 151 mostram resultados de experiências realizadas com a combinação dos plasmideos repórteres pGL2-Control e pRL-TK, as Figuras 15B, 15D, 15F, 15H e 15J com os plasmideos repórteres pGL3-Control e pRL-TK. A linha celular usada para a experiência de interferência está indicada no topo de cada gráfico. As razões entre Pp-luc/Rr-Luc para o controlo tampão (u) variaram entre 0,5 e 10 para GL2/pRL e entre 0,03 e 1 para pGL3/pRL, respectivamente, antes da normalização e entre as várias linhas celulares testadas. Os dados representados graficamente foram a média de três experiências independentes ± DP.
As Figuras 16-16F são gráficos que mostram os efeitos de siRNAs de 21 nt, 50 pb e 500 pb na expressão de luciferase em células HeLa. O comprimento exacto dos dsRNAs longos está indicado por baixo das barras. As Figuras 16A, 16C e 16E descrevem experiências realizadas com os plasmideos repórteres pGL2-Control e pRL-TK, as Figuras 16B, 16D e 16F com os plasmideos repórteres pGL3-Control e pRL-TK. Os dados foram a média de duas experiências independentes ± D.P. Figuras 16A, 16B, expressão absoluta de Pp-luc, apresentada em unidades arbitrárias de luminescênca. Figura 16C, 16D, expressão de Rr-luc, representada em unidades arbitrárias de luminescência. Figuras 16E, 16F, razões entre luciferase alvo normalizada e controlo. Os índices de 20 ΡΕ2361981 actividade de luciferase para as cadeias duplas de siRNA foram normalizados relativamente a um controlo tampão (bu, barras pretas); os índices de luminescência para dsRNA de 50 ou 500 pb foram normalizados relativamente às respecti-vas razões observadas para dsRNAs de 50 e 500 pb derivados de GFP humanizada (hG, barras pretas). Deve-se notar que as diferenças globais na sequência entre os dsRNA de 49 e 484 pb que têm como alvo GL2 e GL3 não são suficientes para conferir especificidade entre os alvos GL2 e GL3 (43 nt de identidade sem interrupção em segmento de 49 pb, 239 nt de comprimento de identidade sem interrupção em segmento de 484 pb) (Parrish, S., et al., Mol. Cell, 6:1077-1087 (2000)).
DESCRIÇÃO DETALHADA DO INVENTO A cadeia dupla (dsRNA) dirige a degradação específica de sequência de RNA através de um processo conhecido como interferência por RNA (RNAi). Sabe-se que o processo ocorre numa grande variedade de organismos, incluindo embriões de mamífero e outros vertebrados. Usando o sistema in vitro de Drosophila aqui descrito, foi demonstrado que dsRNA é processado em segmentos de RNA de 21-23 nt (nt) de comprimento e, ainda, que quando estes fragmentos de 21-23 nt são purificados e novamente adicionados aos extractos de Drosophila, eles medeiam a interferência por RNA na ausência de dsRNA mais longos. Assim, estes fragmentos de 21-23 nt são mediadores específicos de sequência da degradação de RNA. Um sinal molecular, o qual 21 ΡΕ2361981 pode ser o comprimento específico dos fragmentos, deve estar presente nestes fragmentos de 21-23 nt para recrutar factores celulares envolvidos em RNAi. Descrevemos aqui estes fragmentos de 21-23 nt e a sua utilização para especificamente inactivarem a função de genes. A utilização destes fragmentos (produzidos por via recombinante ou oligonucleótidos obtidos por síntese química da mesma natureza ou similares) permite que mRNAs específicos sejam dirigidos para degradação em células de mamífero. A utilização de dsRNAs longos em células de mamífero para induzir RNAi geralmente não é prática, presumivelmente devido aos efeitos adversos da resposta de interferão. A inactivação específica da função de um gene particular, a qual é possível com fragmentos de 21-23 nt, é útil em aplicações genómicas e terapêuticas funcionais.
Em particular, o presente invento está relacionado com moléculas de RNA entre cerca de 21 e cerca de 23 nucleótidos que medeiam RNAi. Numa realização, a descrição está relacionada com moléculas de RNA de aproximadamente 21 a 23 nucleótidos que dirigem a clivagem de mRNA específico às quais correspondem. As moléculas de dsRNA de 21-23 nt do presente invento podem também compreender um grupo hidro-xilo 3'. As moléculas de dsRNA de 21-23 nt podem ser dotadas de extremos cerses ou possuir extremos salientes (e.g. 5', 3').
Numa realização, pelo menos uma cadeia da molécula de DNA possui um extremo saliente 3' entre cerca de 1 22 ΡΕ2361981 e cerca de 6 nucleótidos (e.g., nucleótidos pirimidina, nucleótidos purina) de comprimento. Noutras realizações, o extremo saliente 3' tem entre cerca de 1 e cerca de 5 nucleótidos, entre cerca de 1 e cerca de 3 nucleótidos e entre cerca de 2 e cerca de 4 nucleótidos de comprimento. Numa realização, a molécula de dsRNA possui um extremo saliente 3' e a outra cadeia pode ter extremos cerses ou ter um extremo saliente. Na realização, em que ambas as cadeias compreendem um extremo saliente, o comprimento dos extremos salientes pode ser igual ou diferente para cada cadeia. Numa realização particular, o dsRNA do presente invento compreende cadeias de 21 nucleótidos, as quais são emparelhadas e possuem extremos salientes entre cerca de 1 e cerca de 3, particularmente cerca de 2, nucleótidos em ambos os extremos 3' do RNA. De modo a aumentar mais a estabilidade do dsRNA do presente invento, os extremos 3' salientes odem ser estabilizados contra a degradação. Numa realização, o RNA é estabilizado através da inclusão de nucleótidos de purinas, tais como nucleótidos de adenosina ou de guanosina. Como alternativa, a substituição de nucleótidos de pirimidina por análogos modificados, e.g. a substituição de 2 nucleótidos salientes 3' de 2'-desoxi-timidina por uridina é tolerada e não afecta a eficiência de RNAi. A ausência de um hidroxilo 2' aumenta significativamente a resistência a nucleases do extremo saliente em meio de cultura de tecidos.
As moléculas de dsRNA de 21-23 nt do presente invento podem ser obtidas usando uma série de técnicas 23 ΡΕ2361981 conhecidas dos familiarizados com a matéria. Por exemplo, o RNA pode ser sintetizado quimicamente ou produzido por via recombinante usando métodos conhecidos na área. Os dsRNAs de 21-23 nt podem também ser obtidos usando o sistem in vitro de Drosophila aqui descrito. A utilização do sistema in vitro de Drosophila engloba a combinação de dsRNA com um extracto solúvel derivado de embrião de Drosophila, produzindo assim uma combinação. A combinação é mantida em condições nas quais o dsRNA é processado em dsRNA de 21 a 23 nucleótidos. 0 sistema in vitro de Drosophila pode também ser usado para obter dsRNA de 21 a 23 nucleótidos de comprimento que medeia interferência por RNA do mRNA particular de um gene particular (e.g., oncogene, gene virai). Nesta realização, o RNA de cadeia dupla que corresponde a uma sequência do gene é combinado com um extracto solúvel derivado de embrião de Drosophila, produzindo assim uma combinação. A combinação é mantida em condições nas quais o dsRNA de cadeia dupla é processado em dsRNA de 21 a 23 nucleótidos. Como aqui se mostra, o RNA de 21-23 nt medeia RNAi do mRNA a ser degradado. A presente descrição também está relacionada com as moléculas de RNA de 21-23 nt produzidas pelos métodos aqui descritos.
Numa realização do invento, os métodos aqui descritos são usados para identificar ou obter moléculas de RNA de 21-23 nt que são úteis como mediadores da degradação de RNA e, assim, para a inibição de mRNAs, como sejam mRNAs humanos, que codificam produtos associados ou causadores de uma doença ou de uma condição indesejável. Por exemplo, a produção de uma oncoproteína ou de uma proteína virai pode - 24 - ΡΕ2361981 ser inibida em seres humanos, de forma a evitar que a doença ou condição ocorra, limitar o grau em que ocorre ou revertê-la. Se for conhecida a sequência do gene a ser inactivado, podem ser produzidos dsRNAs de 21-23 nt e testados relativamente à sua capacidade para mediar RNAi numa célula, como seja uma célula humana ou de outro primata. As moléculas de dsRNA humanas de 21-23 nt que se demonstrou mediarem RNAi podem ser testadas, caso se pretenda, num modelo animal apropriado para avaliar a sua eficácia in vivo. Cópias adicionais de RNAs de 21-23 nt que se demonstrou mediarem RNAi podem ser produzidas pelos métodos aqui descritos. 0 método de obtenção da sequência de RNA de 21-23 nt que utiliza o sistema in vitro de Drosophila pode ainda compreender o isolamento da sequência de RNA a partir da combinação. As moléculas de dsRNA de 21-23 nt podem ser isoladas usando uma série de técnicas conhecidas dos familiarizados com a matéria. Por exemplo, a electroforese em gel pode ser usada para separar dsRNAs de 21-23 nt da combinação, fatias de gel compreendendo as sequências de RNA removidas e os RNAs eluidos das fatias de gel. Como alternativa, métodos não desnaturantes de cromatografia em coluna, podem ser usados para isolar o RNA produzido. Ainda, cromatografia (e.g., cromatografia de exclusão por tamanho), centrifugação em gradiente de glicerol, purificação por afinidade com anticorpos poder ser usadas para isolar dsRNAs de 21-23 nt. 0 complexo de RNA-proteina isolado a partir do sistema in vitro de Drosophila pode 25 ΡΕ2361981 também ser usado directamente nos métodos aqui descritos (e.g., método de mediação de RNAi para mRNA de um gene). Os extractos solúveis derivados de embrião de Drosophila que medeiam RNAi estão incluídos na descrição. 0 extracto solúvel de Drosophila pode ser obtido por uma variedade de formas. Por exemplo, o extracto solúvel pode ser obtido a partir de embriões de Drosophila na fase de blastoderme sincial como descrito nos Exemplos 1, 2 e 3. Os extractos solúveis podem derivar de outras células em que o RNAi ocorre. Como alternativa, os extractos solúveis podem ser obtidos a partir de uma célula que não possui RNAi. Neste caso, os factores necessários para mediar RNAi podem ser introduzidos em tal célula e o extracto solúvel é então obtido. Os componentes do extracto podem também ser sintetizados quimicamente e/ou combinados usando métodos conhecidos na área.
Qualquer dsRNA pode ser usado nos métodos do presente invento, desde que tenha homologia suficiente com o gene alvo para mediar RNAi. A sequência do dsRNA para usar nos métodos do presente invento não necessita de ser conhecida. Como alternativa, o dsRNA para usar no presente invento pode corresponder a uma sequência conhecida, como a de um gene completo (ou mais) ou porção do mesmo. Não existe limite superior no comprimento do dsRNA que pode ser usado. Por exemplo, o dsRNA pode variar entre cerca de 21 pares de bases (pb) do gene até ao comprimento completo do gene ou mais. Numa realização, o dsRNA usado nos métodos do presente invento tem cerca de 1000 pb de comprimento. Numa outra realização, o dsRNA tem cerca de 500 pb de 26 ΡΕ2361981 comprimento. Ainda numa outra realizaçao, o dsRNA tem cerca de 22 pb de comprimento.
Os dsRNAs de 21-23 nt aqui descritos podem ser usados numa variedade de formas. Por exemplo, as moléculas de dsRNA de 21 a 23 nt podem ser usadas para mediar a interferência por RNA do mRNA de um gene numa célula ou organismo. Numa realização específica, o dsRNA de 21 a 23 nt é introduzido em células humanas ou num ser humano, de forma a mediar interferência por RNA nas células ou em células no indivíduo, de forma a prevenir ou tratar uma doença ou condição indesejável. Neste método, um gene (ou genes) que causam ou contribuem para a doença ou condição indesejável é inactivado sendo o mRNA correspondente (o produto de transcrição do gene alvo) degradado através de RNAi. Nesta realização, um dsRNA de 21 a 23 nuceótidos que tem como alvo o mRNA correspondente (o mRNA do gene alvo) para degradação é introduzido na célula ou organismo. A célula ou organismo é mantido em condições nas quais ocorre a degradação do correspondente mRNA, mediando assim a interferência por RNA do mRNA do gene na célula ou organismo. Numa realização particular, o método de mediação da interferência por RNA de um gene numa célula compreende a combinação de RNA de cadeia dupla, que corresponde a uma sequência do gene, com um extracto solúvel derivado de embrião de Drosophila, produzindo assim uma combinação. A combinação é mantida em condições tais que o RNA de cadeia dupla seja processado em dsRNA de 21 a 23 nucleótidos. 0 RNA de 21 a 23 nt é então isolado e introduzido na célula ou organismo. A célula ou organismo é mantido em condições 27 ΡΕ2361981 tais que ocorra degradação de mRNA do gene, mediando assim interferência por RNA do gene na célula ou organismo. No caso do dsRNA de 21-23 nt ser introduzido numa célula em que RNAi normalmente não ocorre, os factores necessários para mediar RNAi são introduzidos em tal célula ou a expressão dos factores necessários é induzida em tal célula. Como alternativa, dsRNA de 21-23 nt produzido por outros métodos (e.g., síntese química, produção de DNA recombinante) para ter uma composição igual ou suficientemente similar ao dsRNA de 21 a 23 nt para mediar RNAi pode ser usado de forma semelhante para mediar RNAi. Tais dsRNAs de 21 a 23 nt do invento podem ser alterados pela adição, deleção, substituição ou modificação de um ou mais nucleótidos e/ou podem compreender materiais não nucleotídicos. Uma outra realização deste invento é um método ex vivo de tratamento de células de um indivíduo para degradar um ou mais genes que causem ou estejam associados a uma doença ou condição indesejável, como seja leucemia ou SIDA. Nesta realização, as células a serem tratadas são obtidas do indivíduo usando métodos conhecidos (e.g., flebotomia ou colheita de medula) e RNAs de 21-23 nt, que medeiam a degradação de um ou mais mRNAs correspondentes, são introduzidos nas células, as quais são então re-introduzidas no indivíduo. Se necessário, os componentes bioquímicos para RNAi ocorrer podem também ser introduzidos nas células. 0 mRNA de qualquer gene pode ser dirigido para degradação usando os métodos de mediação de interferência de mRNA aqui descritos. Por exemplo, qualquer mRNA celular 28 ΡΕ2361981 ou virai pode ser alvejado e, como resultado, a expressão da proteína codificada (e.g., uma oncoproteína, uma proteína virai), será diminuída. Ainda, o mRNA de qualquer proteína associada ou causadora de uma doença ou condição indesejável pode ser dirigido para degradação usando os métodos aqui descritos. 0 presente invento também está relacionado com um método de avaliação da função de um gene numa célula ou organismo. Numa realização, uma sequência de dsRNA de 21 a 23 nucleótidos que tem como alvo mRNA do gene para degradação é introduzida na célula ou organismo. A célula ou organismo é mantido em condições tais que ocorre degradação de mRNA do gene. 0 fenótipo da célula ou organismo é então observado e comparado com um controlo adequado, proporcionando assim informação acerca da função do gene. Numa outra realização, o RNA de cadeia dupla que corresponde a uma sequência do gene é combinado com um extracto solúvel derivado de Drosophila em condições tais que o RNA de cadeia dupla seja processado para gerar dsRNA de 21 a 23 nucleótidos. 0 RNA de 21 a 23 nucleótidos é isolado e depois introduzido na célula ou organismo. A célula ou organismo é mantido em condições nas quais ocorre degradação do mRNA do gene. 0 fenótipo da célula ou organismo é então observado e comparado com um controlo adequado, identificando assim a função do gene.
Um outro aspecto deste invento é um método de avaliação da capacidade dos dsRNAs de 21-23 nt para mediar RNAi e, em particular, determinação de quais os RNAs de 21- 29 ΡΕ2361981 23 nt medeiam mais eficientemente RNAi. Numa realização do método, dsRNA correspondendo à sequência de um mRNA a ser degradado é combinado com mRNA marcado de forma detectável (e.g., marcado nos extremos, como seja marcado radio-activamente) e com o extracto solúvel deste invento, produzindo assim uma combinação. A combinação é mantida em condições tais que o RNA de cadeia dupla seja processado e o mRNA seja degradado. Os locais da clivagem mais eficiente são mapeados por comparação da migração dos produtos de clivagem do mRNA marcado com a dos marcadores de tamanho conhecido. Os 21 meros que abrangem estes locais são então projectados e testados relativamente à sua eficácia na mediação de RNAi.
Como alternativa, o extracto do presente invento pode ser usado para determinar se existe um segmento particular ou segmentos particulares do mRNA correspondente a um gene que sejam mais eficientemente alvejados por RNAi do que outras regiões e, assim, podem ser locais alvo especialmente úteis. Numa realização, dsRNA correspondente a uma sequência de um gene a ser degradado e mRNA marcado do gene são combinados com um extracto solúvel que medeia RNAi, produzindo assim uma combinação. A combinação resultante é mantida em condições tais que o dsRNA seja degradado e os locais no mRNA que são mais eficazmente clivados sejam identificados, usando métodos conhecidos, como seja comparação com padrões de tamanho conhecido num gel de sequenciação. 30 ΡΕ2361981
PANORAMA GERAL DOS EXEMPLOS A análise bioquímica do RNAi tornou-se possível com o desenvolvimento do lisado de embrião de Drosophila in vitro que reconstitui o silenciamento, dependente de dsRNA, da expressão do gene descrito no Exemplo 1 (Tuschl et al., Genes Dev., 13:3191-7 (1999)). No sistema in vitro, dsRNA, mas não RNA codificador ou asRNA, dirige um mRNA correspondente para degradação, no entanto não afecta a estabilidade de um mRNA controlo não relacionado. Ainda, a pré-incubação do dsRNA no lisado potência a sua actividade de degradação do mRNA alvo, sugerindo que o dsRNA deve ser convertido numa forma activa através da ligação de proteínas no extracto ou através da modificação covalente (Tuschl et al., Genes Dev., 13:3191-7 (1999)). É aqui descrito o desenvolvimento de um sistema acelular a partir de embriões de Drosophila na fase de blastoderme sincicial que recapitula muitas das caracterís-ticas de RNAi. A interferência observada nesta reacção é específica de sequência, é promovida por dsRNA mas não por RNA de cadeia simples, funciona por degradação de mRNA específico, requer um comprimento mínimo de dsRNA e é mais eficiente com dsRNA longo. Ainda, a pré-incubação de dsRNA potência a sua actividade. Estes resultados demonstram que RNAi é mediada por processos específicos de sequência em reacções solúveis.
Como descrito no Exemplo 2, o sistema in vitro 31 ΡΕ2361981 foi usado para analisar os requisitos de RNAi e para determinar o destino do dsRNA e do mRNA. RNAi in vitro requer ATP, mas não requer tradução de mRNA ou reconhecimento da estrutura "cap" 7-metil-guanosina do mRNA alvo. 0 dsRNA, mas não o RNA de cadeia simples, é processado in vitro para dar origem a uma população de espécies de 21-23 nt. A desaminação de adenosinas dentro do dsRNA não parece ser necessária para a formação dos RNAs de 21-23 nt. Como aqui descrito, o mRNA é clivado apenas na região correspondente à sequência do dsRNA e o mRNA é clivado em intervalos de 21-23 nt, indicando fortemente que os fragmentos de 21-23 nt do dsRNA têm como alvo a clivagem do mRNA. Ainda, como descrito nos Exemplos 3 e 4, quando os fragmentos de 21-23 nt são purificados e adicionados novamente ao extracto solúvel, medeiam RNAi. 0 presente invento está ilustrado nos exemplos que se seguem, os quais não se destinam a ser de alguma forma limitantes.
Exemplo 1 Degradação de mRNA alvo por RNA de cadeia dupla in vitro
Materiais e Métodos RNAs 0 mRNA de Rr-Luc consistiu na sequência codificadora da luciferase Rr de 962 nt flanqueada por 25 nt de 32 ΡΕ2361981 sequência não traduzida derivada do poli-adaptador do plasmideo pSP64 e 25 nt da sequência 3' não traduzida consistindo em 19 nucleótidos da sequência do poliadaptador do plasmideo pSP64 seguido de um local Saci de 6 nt. 0 mRNA de Pp-Luc continha a sequência codificadora da luciferase Pp de 1653 nt com um local Kpnl introduzido imediatamente antes do codão de paragem da luciferase Pp. A sequência codificadora de Pp foi flanqueada por sequências 5' não traduzidas consistindo em 21 nt do poli-adaptador do plasmideo pSP64 seguido de 512 nt da região 5' não traduzida (UTR) derivada do mRNA hunchback (corcunda) de Drosophila e as sequências não traduzidas 3' consistindo em 562 nt da UTR 3' de hunchback seguido de um local Saci de 6 nt. As sequências UTR 3' de hunchback usadas continham seis mutações G para U que destroem a função dos Elementos de Resposta Nanos in vivo e in vitro. Ambos os mRNAs repórteres terminavam numa caudam poli(A) de 25 nt codificada no plasmideo transcrito. Para os mRNAs Rr-Luc e Pp-Luc, os transcritos foram gerados por transcrição corrida ("run-off") a partir das matrizes de plasmideo clivadas no local Nsil imediatamente após os 25 nt codificadores da cauda poli(A). Para assegurar que os transcritos terminavam numa cauda poli(A), as matrizes de transcrição clivadas com Nsil foram dotadas de extremos cerses com DNA-polimerase de T4 na presença de dNTPs. Usou-se o kit SP6 mMessage mMachine (Ambion) para a transcrição in vitro. Usando este kit, cerca de 80% dos transcritos resultantes apresentam estrutura "cap" 7-metilguanosina. A marcação com 32P foi conseguida através da inclusão de a-32P -UTP na reacção de transcrição. 33 ΡΕ2361981
Para Pp-Luc, ssRNA, asRNA e dsRNA correspondentes às posições 93 a 597 relativamente ao inicio da tradução deram um dsRNA de 505 pb. Para Rr-Luc, ssRNA, asRNA e dsRNA correspondentes às posições 118 a 618 relativamente ao inicio da tradução deram um dsRNA de 501 pb. O dsRNA competidor nanos de Drosophila correspondeu às posições 122 a 629 relativamente ao inicio da tradução, dando um dsRNA de 508 pb. ssRNA, asRNA e dsRNA (esquematizados na Figura 1) foram transcritos in vitro com a RNA-polimerase de T7 a partir de matrizes geradas por reacção em cadeia da polimerase. Após purificação em gel dos transcritos de RNA-polimerase de T7, a matriz de DNA residual foi removida por tratamento com DNase RQ1 (Promega). O RNA foi então extraído com fenol e clorofórmio, e depois precipitado e dissolvido em água.
Emparelhamento do RNA e electrof orese em gel nativo. ssRNA e asRNA (0,5 μΜ) em Tris-HCl 10 mM (pH 7,5) com NaCl 20 mM foram aquecidos a 95°C durante 1 min, depois arrefecidos e emparelhados à temperatura ambiente durante 12 a 16 horas. Os RNAs foram precipitados e ressuspensos em tampão de lise (abaixo). Para monitorizar o emparelhamento, os RNAs foram sujeitos a electrof orese num gel de 2% de agarose em tampão TBE e corados com brometo de etídio (Sambrook et ai., Molecular Cloning. Cold Springe Harbor Laboratory Press, Plainview, NY. (1989)). ΡΕ2361981 34
Preparação do lisado
Embriões com zero a duas horas de idade de moscas Oregon R foram colhidos em agar de melaço e levedura a 25°C. Os embriões foram descorionados durante 4 a 5 min em 50% (v/v) de lexivia, lavados com água, secos sobre papel de filtro e transferidos para um triturador de tecido Potter-Elvehjem arrefecido (Kontes). Os embriões foram lisados O O rd em um ml de tampão de lise (acetato de potássio 100 mM, HEPES-KOH 3 0 mM, pH 7, 4, acetato de magnésio 2 mM) contendo ditiotreitol (DTT ) 5 mM e 1 mg/ml de Pefabloc SC (Boehringer-Mannheim) por grama de embriões húmidos. O lisado foi centrifugado durante 25 minutos a 14500 xg, a 4°C, e o sobrenadante instantaneamente congelado em aliquotas em azoto liquido e guardado a -80°C.
Condições de reacção A preparação de lisado e as condições de reacção foram derivadas das descritas por Hussain e Leibowitz (Hussain e Leibowitz, Gene 46:13-23 (1986)). As reacções continham GTP 100 μΜ, 50% (v/v) de lisado, mRNAs (10 a 50 pM concentração final) e 10% (v/v) de tampão de lise contendo o ssRNA, asRNA ou dsRNA (concentração final 10 mM) . Cda uma das reacções também continha fosfato de creatina 10 mM, 10 μg/ml de fosfocinas de creatina, GTP 100 μΜ, UTP 100 μΜ, CTP 100 μΜ, ATP 500 μΜ, DTT 5 μΜ, 0,1 U/ml de RNasin (Promega) e 100 μΜ de cada aminoácido. A concentração final de acetato de potássio foi ajustada a 100 mM. Para as 35 ΡΕ2361981 condições padrão, as reacções foram montadas em gelo e depois pré-incubadas a 25°C durante 10 minutos antes da adição de mRNA. Após adição dos mRNAs, a incubação continuou durante mais 60 min. 0 passo de 10 min de pré-incubação foi omitido nas experiências das Figuras 3A-3C e 5A-5C. As reacções foram paradas com quatro volumes de tampão Passive Lysis 1,25X (Promega). A actividade de luciferase Pp e Rr foi detectada num luminómetro Monolight 2010 (Analytical Luminescence Laboratory) usando o sistema Dual-Luciferase Repórter Assay (Promega).
Estabilidade do RNA
As reacções com mRNA marcado radioactivamente com 32P foram paradas pela adição de 40 volumes de tampão PK 2x (Tris-HCl 200 mM, pH 7,5, EDTA 25 mM, NaCl 300 mM, 2% p/v de dodecilsulfato de sódio). Foi adicionada proteinase K (E.M. Merck; dissolvida em água) para uma concentração final de 465 μg/ml. As reacções foram então incubadas durante 15 min a 65°C, extraídas com fenol/clorofór-mio/álcool isoamílico (25:24:1) e precipitadas com igual volume de isopropanol. As reacções foram analisadas por electroforese num gel de formaldeído/agarose (0,8% p/v) (Sambrook et al., Molecular Cloning. Cold Spring Harbor Laboratory Press, Plainview, NY. (1989)). A radioactividade foi detectada através da exposição do gel de agarose [seco sob vácuo numa membrana Nytran Plus (Amersham)] a uma placa de imagem (Fujix) e quantificado usando programas Fujix Bas 2000 e Image Gauge 3.0 (Fujix). 36 ΡΕ2361981
Lisados comerciais
Reacções de lisado de reticulócitos de coelho não tratados (Ambion) e de extracto de gérmen de trigo (Ambion) foram montadas de acordo com as instruções do fabricante. dsRNA foi incubado no lisado a 27°C (gérmen de trigo) ou a 30°C (lisado de reticulócito) durante 10 minutos antes da adição de mRNAs.
Resultados e discussão
Para avaliar se o dsRNA pode especificamente bloquear a expressão de genes in vitro, foram usados mRNAs repórter derivados de dois genes diferentes da luciferase que não estão relacionados, tanto no respeita à sequência como na especificidade ao substrato luciferina: luciferase de Renilla reniformis (amor-perfeito do mar) (Rr-Luc) e luciferase de Photuris pennsylvanica (pirilampo) (Pp-Luc). dsRNA gerado a partir de um gene foi usado para atingir o mRNA de uma das luciferases, enquanto o mRNA da outra luciferase foi um controlo interno cotraduzido na mesma reacção. dsRNAs de aproximadamente 500 pb foram preparados por transcrição dos produtos da reacção em cadeia da polimerase a partir dos genes Rr-Luc e Pp-Luc. Cada dsRNA começou -100 pb a jusante do inicio da tradução (Figura 1). Os RNAs codificadores (ss) e complementares (as) foram transcritos in vitro e emparelhados um com o outro para produzir o dsRNA. Foi realizada electroforese em gel nativo 37 ΡΕ2361981 dos as RN A e ssRNA individuais, de 501 nt para Rr e 505 nt para PP, usados para formar os dsRNAs Rr e Pp. O ssRNA, asRNA e dsRNA foram testados quanto à sua capacidade para bloquear especificamente a expressão do seu mRNA cognato mas não a expressão do mRNA controlo interno não relacionado . O ssRNA, asRNA ou dsRNA foi incubado durante 10 min numa reacção contendo lisado de embriões de Drosophila, depois ambos os mRNAs Pp-Luc e Rr-Luc foram adicionados e a incubação continuou durante mais 60 min. O lisado de embriões de Drosophila traduz eficazmente mRNA transcrito exogenamente nas condições usadas. As quantidades das actividades Pp-Luc e Rr-Luc foram medidas e usadas para calcular as razões Pp-Luc/Rr-Luc (Figura 2A) ou Rr-Luc/Pp-Luc (Figura 2B). Para facilitar a comparação de diferentes experiências, as razões de cada experiência foram normalizadas em relação à razão observada para um controlo em que o tampão foi adicionado à reacção em vez de ssRNA, as RNA ou dsRNA. A Figura 2A mostra que uma concentração de 10 nM de dsRNA de 505 pb, idêntico a uma porção da sequência do gene Pp-Luc, inibiu especificamente a expressão do mRNA Pp-Luc mas não afectou a expressão do controlo interno Rr-Luc. Nem ssRNA nem asRNA afectaram a expressão de Pp-Luc ou do controlo interno Rr-Luc. Assim, a expressão de Pp-Luc foi especificamente inibida pelo seu dsRNA coganto. Ao contrário, uma concentração de dsRNA de 501 pb dirigido contra 38 ΡΕ2361981 o mRNA Re-Luc inibiu especificamente a expressão de Rr-Luc mas não a do controlo interno Pp-Luc (Figura 2B) . Novamente, níveis comparáveis de ssRNA ou de asRNA tiveram pouco ou nenhum efeito na expressão de qualquer um dos mRNAs repórteres. Em média, o dsRNA reduziu a expressão de luciferase específica em 70% nestas experiências, nas quais a actividade de luciferase foi medida após 1 h de incubação. Noutras experiências em que a capacidade de tradução da reacção foi mantida pela adição de lisado fresco e dos componentes da reacção, foi observada uma redução adicional na actividade da luciferase alvo relativamente ao controlo interno. A capacidade de dsRNA, mas não de asRNA, inibir a expressão do gene nestes lisados não é meramente uma consequência da maior estabilidade do dsRNA (semi-vida de cerca de 2 h) relativamente aos RNAs de cadeia simples (semi-vida ~10 min). ssRNA e asRNA transcritos com uma estrutura "cap" 7-metilguanosina eram são estáveis no lisado como o dsRNA sem "cap", mas não inibem a expressão do gene. Pelo contrário, o dsRNA formado a partir do ssRNA e do asRNA bloqueiam especificamente a expressão do mRNA alvo. RNAi eficaz em Drosophila requer a injecção de cerca de 0,2 fmol de dsRNA num embrião na fase de blastoderme sincicial (Kennerdell e Carthew, Cell 95: 1017-1026 (1998); Carthew, wwwl.pitt.edu/~carthew/manual/RNAi_Protocol. html (1999)). Uma vez que o volume médio de um embrião de Drosophila é de ΡΕ2361981 aproximadamente 7,3 nl, isto corresponde a uma concentração intracelular de aproximadamente 25 nM (Mazur et ai., Criobiology 25:543-544 (1988)). A expressão do gene no lisado de Drosophila foi inibida por uma concentração comparável de dsRNA (10 nM), mas baixando a concentração de dsRNA dez vezes baixou a quantidade de interferência especifica. dsRNA dez nanomolar corresponde a um excesso de 200 vezes do dsRNA relativamente ao mRNA alvo adicionado ao lisado. Para testar se este excesso de dsRNA deve reflectir um passo dependente do tempo e/ou concentração em que o dsRNA adicionado foi convertido numa forma activa para interferência especifica de gene, foi avaliado o efeito da pré-incubação do dsRNA na sua capacidade para inibir a expressão do seu mRNA cognato. Devido à capacidade de tradução dos lisados ser, significativamente, reduzida após 30 minutos de incubação a 25°C (observações não publicadas), foi desejável assegurar que todos os factores necessários a RNAi permanecessem activos ao longo do período de pré-incubação. Assim, cada 30 minutos, uma reacção contendo dsRNA e lisado foi misturada com uma reacção fresca contendo lisado não incubado (Figura 3A) . Após seis transferências sucessivas seriadas abrangendo 3 horas de pré-incubação, o dsRNA, agora diluído 64 vezes relativamente à sua concentração original, foi incubado com lisado e 50 pM de mRNA alvo durante 60 min. Finalmente, os níveis de enzima Pp-Luc e Rr-Luc foram medidos. Para comparação, a quantidade de dsRNA adicionada (10 nM) foi diluída 32 vezes em tampão e avaliada a sua capacidade para gerar interferência por RNA específica de gene na ausência de qualquer passo de pré-incubação. 40 ΡΕ2361981 A pré-incubação do dsRNA no lisado potenciou significativamente a sua capacidade para inibir a expressão especifica de um gene. Enquanto o dsRNA diluído 32 vezes não mostrou efeito, o dsRNA pré-incubado foi, dentro do erro experimental, tão forte quanto o dsRNA não diluído, apesar de ter sofrido uma diluição de 60 vezes. A potenciação do dsRNA através de pré-incubação foi observada para dsRNAs tendo como alvo o mRNA de Pp-Luc (Figira 3B) e o mRNA de Rr-Luc (Figura 3C). Tendo em consideração a diluição de 64 vezes, a activação conferida pela pré-incubação permitiu que uma concentração de 156 pM de dsRNA inibisse mRNA alvo 50 pM. Ainda, a diluição do dsRNA "activado" pode ser eficaz mas não foi testada. Observámos que, apesar de ambos os dsRNA testados serem activados pela pré-incubação, cada um deles manteve a sua especificidade para interferir com a expressão apenas do mRNA de que é homólogo. Outros estudos das reacções podem proporcionar uma via de identificação do mecanismo de potenciação do dsRNA.
Uma explicação possível para a observação de que a pré-incubação do dsRNA aumenta a sua capacidade para inibir a expressão do gene nestes lisados é que factores específicos modificam e/ou se associam ao dsRNA. Assim, a adição de quantidades crescentes de dsRNA à reacção deverá titular tais factores e baixar a quantidade de interferência específica de gene causada por um segundo dsRNA de sequência não relacionada. Para o mRNA de Pp-Luc e para o mRNA de Rr-Luc, a adição à reacção de concentrações cres- ΡΕ2361981 centes de dsRNA nanos de Drosophila não relacionado decresceu a quantidade de interferência específica de gene causada pelo dsRNA tendo como alvo o mRNA repórter (Figura 4) . Nenhuma das concentrações testadas de dsRNA nanos afectou os níveis de tradução do mRNA não alvo, demonstrando que o dsRNA nanos titulou especificamente factores envolvidos na interferência específica de gene e não componentes da maquinaria de tradução. Um ou mais factores limitantes foram titulados pela adição de dsRNA aproximadamente 1000 nM, um excesso de 200 vezes relativamente ao dsRNA 5 nM usado para produzir interferência especifica. A interferência in vitro deverá reflectir a inibição específica da tradução do mRNA ou a destruição dirigida do mRNA específico. Para distinguir estas duas possibilidades, os destinos dos mRNAs de Pp-Luc e de Rr-Luc foram examinados directamente usando substratos marcados radioactivamente com 32P. A estabilidade do mRNA de Pp-Luc ou do mRNA de Rr-Luc 10 nM incubado em lisado, com tampão ou com Pp-dsRNA de 505 pb (50 nM) . As amostras foram desproteinizadas e os mRNAs marcados radioactivamente com 32P foram então resolvidos por electroforese em gel desnaturante. Na ausência de dsRNA, ambos os mRNAs de Pp-Luc e de Rr-Luc mostraram-se estáveis nos lisados, com ~75% do mRNA adicionado permanecendo após 3 h de incubação, (cerca de 25% do mRNA adicionado foi rapidamente degradado na reacção e provavelmente representa mRNA sem "cap" gerado pelo processo de transcrição in vitro. Na presença de dsRNA (10 nM, 505 pb) tendo como alvo mRNA de Pp-Luc, menos de 42 ΡΕ2361981 15% do mRNA de Pp-Luc se manteve após 3 h (Figura 5A) . Conforme esperado, o mRNA de Rr-Luc manteve-se estável na presença do dsRNA tendo como alvo mRNA de Pp-Luc. Pelo contrário, dsRNA (10 nM, 502 pb) tendo como alvo o mRNA de Rr-Luc causou a destruição do mRNA de Rr-Luc mas não teve qualquer efeito na estabilidade do mRNA de Pp-Luc (Figura 5B) . Assim, o dsRNA causou especificamente um decaimento acelerado do mRNA de que é homólogo sem efeito na estabilidade do mRNA controlo não relacionado. Este resultado indica que in vivo, pelo menos em Drosophila, o efeito do dsRNA é directamente desestabilizar o mRNA alvo, não alterar a sua localização subcelular, por exemplo, causando a sua retenção especifica no núcleo, resultando em degradação não especifica.
Estes resultados são consistentes com a observação de que RNAi conduz a níveis reduzidos de mRNA citoplas-mático in vivo, conforme medido por hibridação in situ (Montgomery et al., Proc. Natl. Acad. Sei. USA 95:15502-15507 (1998)) e transferências Northern (Ngo et al., Proc. Natl. Acad. Sei. USA 95:14687-14692 (1998)). As análises de transferências Northern em tripanossomas e hidras sugerem que o dsRNA tipicamente cause decréscimo dos níveis de mRNA em menos de 90% (Ngo et al., Proc. Natl. Acad. Sei. USA 95:14687-14692 (1998); Lohman et al., Dev. Biol. 214:211-214 (1999)). Os dados aqui apresentados mostram que os níveis de mRNA in vitro são reduzidos 65 a 85% após três horas de incubação, um efeito comparável com observações in vivo. Eles também concordam que o resultado de RNAi em C. 43 ΡΕ2361981 elegans é pós-transcricional (Montgomery et al., Proc. Natl. Acad. Sei. USA 95:15502-15507 (1998)). A explicação mais simples para os efeitos específicos na síntese proteica é que reflictam a velocidade acelerada do decaimento do RNA. No entanto, os resultados não excluem efeitos independentes mas específicos na tradução, assim como na estabilidade.
In vivo, o RNAi parece requerer um comprimento mínimo de dsRNA (Ngo et al., Proc. Natl. Acad. Sei., USA, 95:14687-14692 (1998)). A capacidade do RNA de cadeia dupla de comprimentos 49 pb, 149 pb, 505 pb e 997 pb (esquematizado na Figura 1) para direccionar a degradação do mRNA de Pp-Luc in vitro foi avaliada. De acordo com as observações in vivo, o dsRNA de 49 pb foi ineficaz in vitro, enquanto o dsRNA de 149 pb estimulou o decaimento do mRNA apenas ligeiramente e ambos os dsRNAs de 505 e de 997 pb causaram degradação robusta do mRNA (Figura 5C) . O dsRNA de 50 pb tendo como alvo outras porções do mRNA causaram degradação detecável do mRNA, ainda que não tão robusta como a observada com o dsRNA de 500 pb. Assim, apesar de alguns dsRNA curtos não mediarem RNAi, outros com aproximadamente o mesmo comprimento, mas diferente composição, serão capazes de o fazer.
Avaliou-se se a interferência específica de gene observada em lisados de Drosophila era uma propriedade geral dos sistemas de tradução acelulares. Os efeitos dos dsRNAs na expressão de mRNA de Pp-Luc e de Rr-Luc foram 44 ΡΕ2361981 avaliados em extractos comerciais de germén de trigo e em lisados de reticulócitos de coelho. Não houve efeito na adição de ssRNA, asRNA ou dsRNA 10 nM na expressão de mRNA repórter nos extractos de gérmen de trigo. Pelo contrário, a adição de dsRNA 10 nM ao lisado de reticulócitos de coelho causou um decréscimo profundo e rápido não especifico na estabilidade do mRNA. Por exemplo, a adição de dsRNA Rr-Luc causou a degradação dos mRNAs de Rr-Luc e de Pp-Luc dentro de 15 min. O mesmo efeito não especifico foi observado quando da adição de dsRNA Pp-Luc. A destruição não especifica de mRNA, induzida pela adição de dsRNA ao lisado de reticulócito de coelho, presumivelmente reflecte a activação previamente observada de RNase L por dsRNA (Clemens e Williams, Cell 13:565-572 (1978); Williams et al., Nucleic Acids Res. 6:1335-1350 (1979); Zhou et al., Cell 72:753-765 (1993); Matthews, "Interactions between Viruses and the Cellular Machinery for Protein Synthesis". In "Translational Control" (eds. J. Hershey, M. Mathews and N. Sonenberg), pp. 505-548. Cold Spring Harbor Laboratory Press, Plainview, NY. (1996)). Foram recentemente descritas linhas celulares de murganho sem vias anti-virais induzidas por dsRNA (Zhou et al., Virology 258:435-440 (1999)) que podem ser úteis na pesquisa de RNAi em mamíferos. Ainda que se saiba da sua existência em algumas linhas celulares de mamífero (Wianny e Zernicka-Goetz Nat. Cell Biol. 2:70-75 (2000)), em muitos tipos de células de mamífero é provavelmente obscurecida pela indução rápida por dsRNA de respostas anti-virais não específicas. 45 ΡΕ2361981 A destruição dirigida por dsRNA de mRNA especifico é caracteristica de RNAi, a qual foi observada in vivo em muitos organismos, incluindo Drosophila. 0 sistema descrito atrás reconstitui numa reacção in vitro muitos aspectos de RNAi. 0 mRNA alvo é especificamente degradado enquanto mRNAs controlo não relacionados, presentes na mesma solução, não são afectados. 0 processo é mais eficiente com dsRNAs superiores a 150 pb de comprimento. A reacção de degradação especifica de dsRNA in vitro é provavelmente geral para muitos, senão todos, os mRNAs, uma vez que foi observada com dois genes não relacionados. O grau de grandeza dos efeitos na estabilidade do mRNA in vitro aqui descrito é comparável aos descritos in vivo (Ngo et ai., Proc. Natl. Acad. Sei., USA, 95:14687-14692 (1998); Lohmann et al., Dev. Biol., 214: 211-214 (199). No entanto, a reacção in vitro requer um excesso de dsRNA relativamente ao mRNA. Pelo contrário, algumas moléculas de dsRNA por célula podem inibir a expressão do gene in vivo (Fire et al., Nature, 391 : 806-811 (1998); Kennerdell e Carthew, Cell, 95:1017-1026 (1998)). A diferença entre a estequiometria do dsRNA e do mRNA alvo, in vivo e in vitro, não deve ser surpreendente por a maioria das reacções in vitro serem menos eficientes do que os seus correspondentes processos in vivo. É interessante que a incubação do dsRNA no lisado potenciou grandemente a sua actividade para RNAi, indicando que é modificado ou se associa a outros factores ou ambos. Talvez um pequeno número de molécuas seja eficaz na inibição do mRNA alvo in 46 ΡΕ2361981 vivo devido ao dsRNA injectado ter sido activado por um processo semelhante ao aqui descrito para RNAi em lisados de Drosophila.
Exemplo 2 RNA de cadeia dupla dirige a clivagem, dependente de ATP, de mRNA em intervalos de 21 a 23 nucleótidos Métodos e Material RNAi in vitro
As reacções de RNAi in vitro e a preparação de lisados foram como descrito no Exemplo 1 (Tuschl et al., Genes Dev., 13:3191-7 (1999)) excepto a reacção conter 0,33 g/ml de cinase de creatina, fosfato de creatina 25 μΜ (Fluka) e ATP 1 mM. Para cada experiência, o fosfato de creatina foi dissolvido de fresco, em água, para 500 mM. GTP foi omitido das reacções, excepto nas Figuras 2 e 3.
Síntese de RNA
Os mRNAs de Pp-Luc e de Rr-Luc e dsRNAs Pp e Rr (incluindo dsRNA 'B' na Figura 6) foram sintetizados por transcrição in vitro como anteriormente descrito (Tuschl et al., Genes Dev., 13:3191-7 (1999)). Para gerar matrizes
para transcrição para dsRNA 'C', a sequência iniciadora do RNA 5' codificador foi gcgtaatacgactcactataGAACAAAGGAAACG-GATGAT (SEQ ID NO: 2) e a sequência iniciadora 3' do RNA ΡΕ2361981 - 47 - codificador foi GAAGAAGT T AT T C T C CAAAA (SEQ ID NO:3); a sequência iniciadora do asRNA 5' foi gcgtaatacgactcac-tataGAAGTTATTCTCCAAAA (SEQ ID NO:4) e a sequência iniciadora 3' do asRNA foi GAACAAAGGAAACGGATGAT (SEQ ID NO:5). Para o dsRNA Ά', a sequência iniciadora do RNA 5' codificador foi gcgtaatacgactcactataGTAGCGCGGTGTATTATACC (SEQ ID NO: 6) e a sequência iniciadora 3' do RNA codificador foi CAACGTCAGGTTTACCA (SEQ ID NO:7); a sequência iniciadora do asRNA 5' foi gcgtaatacgactcactataGTA-CAACGTCAGGTTTACCA (SEQ ID NO:8) e a sequência iniciadora 3' do asRNA foi GTAGCGCGGTGTATTATACC(SEQ ID NO:9) (letras minúsculas, sequência do promotor de T7).
Os mRNAs foram marcados no extremo 5' usando guanilil-transferase (Gibco/BRL), S-adenosil-metionina (Sigma) e a-32P-GTP (3000 Ci/mmol; New England Nuclear) de acordo com as instruções do fabricante. Os RNAs marcados radioactivamente foram purificados por selecção de poli(A) usando o kit Poly(A) Tract III kit (Promega) . Os RNAs não radioactivos com estruturas "cap" 7-metilguanosina e adenosina foram sintetizados em reacções de transcrição in vitro com um excesso de 5 vezes de 7-metil-G(5')ppp(5')G ou A(5')ppp(5')G relativamente a GTP . Os análogos de "cap" foram comprados à New England Biolabs.
Depleção de ATP e inibição da síntese proteica O ATP foi eliminado através de incubação do lisado durante 10 minutos a 25°C com glucose 2 mM e 0,1 48 ΡΕ2361981 U/ml de hexocinase (Sigma). Os inibidores da síntese proteica foram comprados à Sigma e dissolvidos em etanol absoluto como stocks concentrados 250 vezes. As concentrações finais de inibidores na reacção foram: anisomicina, 53 mg/ml; ciclo-heximida, 100 mg/ml; cloranfenicol, 100 mg/ml. A síntese proteica relativa foi determinada medindo a actividade da proteína luciferase Rr produzida por tradução do mRNA de Rr-Luc na reacção de RNAi após 1 hora, como descrito anteriormente (Tuschl et al., Genes Dev., 13:3191-7 (1999) ) .
Análise do processamento de dsRNA
Internamente, dsRNAs marcados com a-32P-ATP (Pp-Luc de 505 pb ou Rr-Luc de 501 pb) ou RNA complementar de Rr-luc com "cap" 7-metilguanosina (501 nt) foram incubados numa concentração final de 5 nM, na presença ou ausência de mRNAs não marcados, em lisado de Drosophila durante 2 horas em condições padrão. As reacções foram paradas pela adição de tampão proteinase K 2x e desproteinizadas como descrito anteriormente (Tuschl et al., Genes Dev., 13:3191-3197 (1999)). Os produtos foram analisados por electroforese em géis de sequenciação de 15% ou 18% de poliacrilamida. Os padrões de comprimento foram gerados por digestão completa da RNase de TI do RNA codificador e do asRNA de Rr-luc de 501 nt marcado com a-32P-ATP.
Para a análise da clivagem de mRNA, o mRNA marcado radioactivamente com 32P em 5' (descrito atrás) foi ΡΕ2361981 incubado com dsRNA como descrito anteriormente (Tuschl et ai., Genes Dev., 13:3191-3197 (1999)) e analisado por electroforese em géis de sequenciação de 5% (Figura 5B) e 6% (Figura 6C) de poliacrilamida. Os padrões de comprimento incluíram padrões de tamanhos de RNA comerciais (FMC Bioproducts) marcados radioactivamente com guanilil- transferase como descrito atrás e hidrólise parcial com bases e escadas geradas com RNase Tl a partir de mRNA marcado radioactivamente em 5'.
Ensaio de desaminação dsRNAs marcados internamente com a-32P-ATP (5 nM) foram incubados em lisado de Drosophila durante 2 horas em condições convencionais. Após desproteinização, as amostras foram corridas em géis de sequenciação de 12% para separar dsRNAs de tamanho completo dos produtos de 21-23 nt. Os RNAs foram eluídos das fatias de gel em NaCl 0,3M durante a noite, precipitados com etanol, colhidos por centrifugação e redissolvidos em 20 μΐ de água. O RNA foi hidrolizado em fosfatos 5' de nucleósidos com a nuclease PI (10 μΐ de reacção contendo 8 μΐ de RNA em água, KOAc 30 mM, pH 5,3, ZnS04 10 mM, 10 μρ ou 3 unidades da nuclease Pl, 3 horas, 50°C). As amostras (1 ml) foram co-separadas conjuntamente com 5'-mononucleótidos não radioactivos [0,05 unidades DO (A260) de pA, pC, pG, pl e pU] em placas de HPTLC de celulose (EM Merck) e resolvidos na primeira dimensão em ácido isobutírico/25% de amónia/água (66/1/33, v/v/v) e na segunda dimensão em fosfato de sódio 0,1M, pH 6,8/sulfato 50 ΡΕ2361981 de amónio/l-propanol (100/60/2, v/p/v; Silberklang et al., 1979). A migração dos padrões internos não radioactivos foi determinada por exposição a UV.
Resultados e discussão
RNAi requer ATP
Como descrito no Exemplo 1, os lisados de embriões de Drosophila reconstituem fielmente RNAi (Tuschl et al., Genes Dev., 13:3191-7 (1999)). Anteriormente, o silenciamento de genes mediado por ds-RNA foi monitorizado através da medição da síntese da proteína luciferase a partir do mRNA alvo. Assim, estas reacções de RNAi continham um sistema de regeneração de ATP, necessários para a tradução eficiente do mRNA. Para testar se o ATP foi, de facto, necessário para RNAi, os lisados foram depletados de ATP através do tratamento com hexocinase e glucose, o qual converte ATP em ADP e RNAi foi monitorizada directamente, seguindo o destino do mRNA da luciferase de Renilla reniformis (Rr-luc) marcado radioactivamente com 32P (Figura 6). O tratamento com hexocinase e glucose reduziu o nível de ATP endógeno no lisado de 250 μΜ para 10 μΜ. A regeneração do ATP requereu fosfato de creatina e cinase de creatina exógenos, os quais actuam para
transferir um fosfato de elevada energia derivado do fosfato de creatina em ADP. Quando os extractos sem ATP foram suplementados com fosfato de creatina ou cinase de creatina, não foi observada RNAi. Assim, a RNAi requer ATP 51 ΡΕ2361981 in vitro. Quando ATP, fosfato de creatina e cinase de creatina foram todos adicionados às reacções contendo o lisado sem ATP, foi restaurada a degradação por dsRNA do mRNA de Rr-luc (Figura 6). A adição de ATP exógeno não foi necessária para eficiente RNAi no lisado sem ATP, desde que estivessem presentes fosfato de creatina e cinase de creatina, demonstrando que a concentração endógena (250 mM) do nucleósido de adenosina é suficiente para suportar RNAi. RNAi com um mRNA da luciferase de Photinus pyralis (Pp-luc) foi também dependente de ATP. A estabilidade do mRNA de Rr-luc na ausência de Rr-dsRNA foi reduzida nos lisados sem ATP, relativamente ao observado quando o sistema de regeneração de energia foi incluído, mas o decaimento do mRNA nestas condições não apresenta a cinética de decaimento rápida característica do RNAi in vitro, nem gera os produtos de clivagem de mRNA estáveis característicos de RNAi dirigida por dsRNA. Estas experiências não estabelecem se a necessidade de ATP para RNAi é directa, implicando ATP num ou mais passos no mecanismo de RNAi, ou indirecta, reflectindo um papel para o ATP na manutenção de concentrações elevadas de um outro trifosfato de nucleósido no lisado. A tradução não é necessária para RNAi in vitro A necessidade de ATP sugeriu que RNAi possa estar acoplada à tradução de mRNA, um processo altamente dependente de energia. Para testar esta possibilidade, vários ΡΕ2361981 inibidores da síntese proteica foram adicionados à reacçao e preparando uma análise em gel de agarose desnaturante de o o mRNA de Pp-luc marcado radioactivamente com P em 5', apos incubação durante os tempos indicados numa reacção de RNAi padrão, com e sem inibidores da síntese proteica. Foram testados os inibidores da tradução eucariótica anisomicina, um inibidor da formação da ligação peptídica inicial, ciclo-heximida, um inibidor da elongação da cadeia peptídica, e puromicina, um simulador de tRNA que causa a terminação prematura da tradução (Cundliffe, "Antibiotic Inhibitors of Ribosome Function". In "The Molecular Basis of Antibiotic Action", E. Gale, E. Cundliffe, P. Reynolds, M. Richmond e M. Warning, eds. (New York: Wiley) , pp. 402-547. (1981)). Cada um destes inibidores reduziu a síntese proteica no lisado de Drosophila em mais de 1900 vezes (Figura 7A) . Pelo contrário, cloranfenicol, um inibidor da síntese proteica mitocondrial de Drosophila (Page e Orr-Weaver, Dev. Biol., 183:195-207 (1997)), não teve efeito na tradução nos lisados (Figura 7A) . Apesar da presença de anisomicina, ciclo-heximida ou cloranfenicol, RNAi decorreu com eficiência normal. A puromicina também não perturbou a eficiência de RNAi. Assim, a síntese proteica não é necessária para RNAi in vitro. A iniciação da tradução é um processo dependente de ATP que envolve o reconhecimento de "cap" 7-metil-guanosina do mRNA (Kozak, Gene, 234:187-208 (1999); Merrick and Hershey, "The Pathway and Mechanism of Eukaryotic Protein Synthesis". In "Translational Control", J. Hershey, 53 ΡΕ2361981 M. Mathews e N. Sonenberg, eds. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press), pp. 31-69 (1996)). 0 lisado de Drosophila usado para suportar RNAi in vitro reconstitui a tradução dependente de "cap"; mRNA de Pp-luc com um "cap" 7-metilguanosina foi traduzido mais de dez vezes mais eficientemente do gue o mesmo mRNA com um "cap" A(5')ppp(5')G (Figura 7B) . Ambos os RNAs foram igualmente estáveis no lisado de Drosophila, mostrando que esta diferença na eficiência não pode ser meramente explicada pelo deacaimento mais rápido do mRNA com um "cap" de adenosina (ver também Gebauer et al., EBO J., 18:6146-54 (1999)). Se bem que a maquinaria de tradução possa descriminar entre mRNAs de Pp-Luc com "caps" de 7-metilguanosina e de adenosina, os dois mRNAs foram igualmente susceptíveis a RNAi na presença de Pp-dsRNA (Figura 7C) . Estes resultados sugerem que os passos no reconhecimento de "cap" não estão envolvidos em RNAi. dsRNA é processado em espécies de 21-23 nt
RNAs de 25 nt de comprimento foram gerados a partir das cadeias codificadora e complementar dos genes que sofrem silenciamento de genes pós-transcrição em plantas (Hamilton e Baulcombe, Science, 286:950-2 (1999)). Foi efectuada a análise em gel de acrilamida desnaturante dos produtos formados numa incubação de duas horas de dsRNAs marcados radioactivamente com 32P e asRNA com "cap" em lisado usando condições de RNAi convencionais, na presença ou ausência de mRNAs alvo. Encontrou-se que dsRNA 54 ΡΕ2361981 é também processado em pequenos fragmentos de RNA. Quando incubado em lisado, aproximadamente 15% da radioactividade adicionada de Rr-dsRNA de 501 pb e Pp-dsRNA de 505 pb surgiu em fragmentos de RNA de 21-23 nt. Devido aos dsRNAs terem mais de 500 pb de comprimento, o rendimento de 15% dos fragmentos implica que múltiplos RNAs de 21-23 nt são produzidos a partir de cada molécula de dsRNA de tamanho completo. Não foram detectados outros produtos estáveis. As espécies de pequenos RNAs foram produzidas a partir de dsRNAs em que ambas as cadeias foram uniformemente marcadas radioactivamente com 32P. A formação dos RNAs de 21-23 nt a partir do dsRNA não requereu a presença do correspondente mRNA, demonstrando que as espécies de pequenos RNAs são geradas por processamento do dsRNA, em vez de ser um produto da degradação de mRNA dirigido por dsRNA. Foi observado que os 22 nucleótidos correspondem a duas voltas de uma hélice de RNA-RNA, forma A.
Quando os dsRNAs marcados radioactivamente, na cadeia codificadora ou na complementar, foram incubados com lisado numa reacção de RNAi padrão, foram produzidos RNAs de 21-23 nt com eficiência comparável. Estes dados suportam a ideia de que os RNAs de 21-23 nt são gerados por processamento simétrico do dsRNA. Uma variedade de dados suportam a ideia de que o RNA de 21-23 nt é eficientemente gerado apenas a partir de dsRNA e não é a consequência de uma interacção entre RNA de cadeia simples e dsRNA. Primeiro, um RNA codificador ou asRNA de Pp-luc de 505 nt marcado radioactivamente com 32P não foi eficientemente 55 ΡΕ2361981 convertido no produto de 21-23 nt quando foi incubado com Pp-dsRNA de 505 pb não radioactivo 5 nM. Em segundo lugar, na ausência de mRNA, um Rr-asRNA com "cap" de 7-metil-guanosina de 501 nt produziu apenas uma quantidade dificilmente detectável de RNA de 21-23 nt (RNAs de cadeia simples com "cap" são tão estáveis no lisado como dsRNA, Tuschl et ai.. Genes Dev., 13:3191-7 (1999)), provavelmente devido a uma pequena quantidade de dsRNA contaminante da preparação de RNA complementar. No entanto, quando mRNA de Rr-luc foi incluído na reacção com o Rr-asRNA com "cap" e marcado radioactivamente com 32P, foi gerada uma pequena quantidade de produto de 21-23 nt, correspondendo a 4% da quantidade de RNA de 21-23 nt produzido a partir de uma quantidade equimolar de rR-dsRNA. É pouco provável que este resultado seja reflexo da presença de dsRNA contaminante na preparação de Rr-asRNA, uma vez que significativamente mais produto foi gerado a partir do asRNA na presença do mRNA Rr-luc do que na sua ausência. Pelo contrário, os dados sugerem que asRNA possa interagir com as sequências de mRNA complementares para formar dsRNA na reacção e que o dsRNA resultante seja subsequentemente processado em espécies de pequenos RNAs. Rr-asRNA pode suportar um nível baixo de RNAi bona fide in vitro (ver abaixo), consistente com esta explicação.
Foi em seguido questionado se a produção dos RNAs de 21-23 nt derivados de dsRNA necessitou de ATP. Quando o Pp-dsRNA de 505 pb foi incubado num lisado sem ATP por tratamento com hexocinase e glucose, foi produzido RNA de 56 ΡΕ2361981 21-23 nt, ainda que 6 vezes menos que quando o ATP foi regenerado no lisado sem ATP através da inclusão da cinase de creatina e fosfato de creatina. Assim, o ATP pode ser necessário para a produção de espécies de RNA de 21-23 nt, mas pode simplesmente aumentar a sua formação. Como alternativa, ATP pode ser necessário para o processamento do dsRNA, mas numa concentração inferior à que fica após o tratamento com hexocinase. A base molecular para a mobilidade mais lenta dos fragmentos de pequenos RNAs gerados no lisado sem ATP não está compreendida.
Wagner e Sun (Wagner e Sun, Nature, 391:744-745 (1998)) e Sharp (Sharp, Genes Dev., 13:139-41 (1999)) especularam que a necessidade de dsRNA no silenciamento de genes por RNAi reflecte o envolvimento de uma desaminase de adenosina especifica de dsRNA no processo. As desaminases de adenosina do dsRNA desenrolam dsRNA ao converter adenosina em inosina, a qual não emparelha com uracilo. Desaminases de adenosina de dsRNA funcionam na edição pós-tradução de mRNA (para revisão ver Bass, Trends Biochem. Sei., 22:157-62 (1997)). Para testar o envolvimento da desaminase de adenosina de dsRNA em RNAi, foi avaliado o grau de conversão de adenosina em inosina nos dsRNAs Rr-luc de 501 pb e Pp-luc de 505 pb após incubação com lisado de embrião de Drosophila numa reacção in vitro padrão de RNAi. A desaminação de adenosina em dsRNA de tamanho completo e as espécies de RNA de 21-23 nt foram avaliadas por cromatografia bidimensional em camada fina. O fosfato inorgânico (Pi) foi produzido pela degradação de mononu- 57 ΡΕ2361981 cleótidos por fosfatases que contaminam a nuclease PI comercial (Auxilien et al., J. Mol. Biol., 262:437-458 (1996)). 0 grau de desaminação da adenosina nas espécies de 21-23 nt foi também determinado. 0 dsRNA de tamanho completo marcado radioactivamente com [32P]-adenosina foi incubado no lisado e tanto o dsRNA de tamanho completo como os produtos de RNA de 21-23 nt foram purificados a partir de um gel de acrilamida desnaturante, clivado por mononu-cleótidos com nuclease PI e analisado por cromatografia em camada fina bidimensional.
Uma fracção significativa das adenosinas no dsRNA de tamanho completo foi convertida em inosina após 2 horas (3,1% e 5,6% de conversão para dsRNAs de Pp-luc e Rr-luc, respectivamente). Pelo contrário, apenas 0,4% (Pp-dsRN) ou 0,7% (Rr-dsRNA) das adenosinas nas espécies de 21-23 nt foram desaminadas. Estes dados implicam que menos de 1 em 27 moléculas das espécies de RNA de 21-23 nt possuem uma inosina. Assim, é improvável que a desaminação de adenosina dependente de dsRNA dentro das espécies de 21-23 nt seja necessária para a sua produção. asRNA origina uma pequena quantidade de RNAi in vitro
Quando o mRNA foi marcado radioactivamente com 32P dentro da estrutura "cap" 5'-7-metilguanosina, acumularam-se produtos estáveis de decaimento 5' durante a reacção de RNAi. Tais produtos estáveis do decaimento 5' foram 58 ΡΕ2361981 observados para mRNAs Pp-luc e Rr-luc quando foram incubados com os seus dsRNAs cognatos. Anteriormente, foi descrito que RNAi eficiente não ocorre quando asRNA foi usado em vez de dsRNA (Tuscl et ai., Genes Dev., 13:3191-7 (1999)). No entanto, o mRNA foi mensuravelmente menos estável quando incubado com asRNA do que quando incubado com tampão (Figuras 8A e 8B) . Isto foi particularmente evidente para o mRNA de Rr-luc: aproximadamente 90% do RNA permaneceu intacto após uma incubação de 3 horas em lisado, mas penas 50% quando asRNA foi adicionado. Menos de 5% permaneceu quando foi adicionado dsRNA. É interessante que o decréscimo da estabilidade do mRNA causado por asRNA foi acompanhado da formação de uma pequena quantidade de produtos de decaimento 5' estáveis, caracteristicos da reacção de RNAi com dsRNA. Este resultado é paralelo à observação de que uma pequena quantidade do produto de 21-23 nt formou-se a partir de asRNA quando foi incubado com o mRNA (ver atrás) e deu força à ideia de que o asRNA pode entrar na via de RNAi, ainda que de forma ineficaz.
Os locais de clivagem do mRNA são determinados pela sequência do dsRNA
Os locais de clivagem do mRNA foram examinados usando três dsRNAs diferentes, Ά', 'B' e 'C', distanciados ao longo da sequência Rr-luc de aproximadamente 100 nts. Foi feita a análise em gel desnaturante de acrilamida dos produtos de clivagem 5' estáveis produzidos, após incubação do mRBNA Rr-luc nos tempos indicados, para cada um dos três dsRNAs, Ά', 'B' e 'C' ou com tampão (φ) . As posições 59 ΡΕ2361981 destes relativamente à sequência de mRNA Rr-luc estão apresentadas na Figura 9. Cada um destes três dsRNAs foi incubado numa reacção de RNAi padrão com mRNA de Rr-luc marcado radioactivamente com 32P dentro da estrutura "cap" 5'. Na ausência de dsRNA, não foram detectados produtos de clivagem 5' para o mRNA, mesmo após 3 horas de incubação no lisado. Pelo contrário, após uma incubação de 20 minutos, cada um dos três dsRNAs produziu uma escada de bandas correspondendo a uma série de produtos de clivagem de mRNA, característicos daquele dsRNA particular. Para cada dsRNA, os produtos de clivagem 5' do mRNA foram restringidos à região do mRNA de Rr-luc que correspondeu ao dsRNA (Figuras 9 e 10) . Para dsRNA ' A', os comprimentos dos produtos de clivagem 5' variaram entre 236 e até menos de ~750 nt; dsRNA Ά' abrange os nucleótidos 233 a 729 do mRNA de Rr-luc. A incubação do mRNA com dsRNA 'B' produziu produtos de clivagem 5' do mRNA variando em comprimento de 150 a ~600 nt; dsRNA 'B' abrange os nucleótidos 143 a 644 do mRNA. Finalmente, dsRNA 'C' produziu produtos de clivagem de mRNA entre 66 e ~500 nt de comprimento. Este dsRNA abrange os nucleótidos 50 a 569 do mRNA de Rr-luc. Assim, o dsRNA não só proporciona especificidade para a reacção de RNAi, seleccionando qual o mRNA de entre o conjunto de mRNA celular total será degradado, mas também determina a posição precisa de clivagem ao longo da sequência de mRNA. O mRNA é clivado em intervalos de 21-23 nucleótidos 60 ΡΕ2361981
Para compreender melhor o mecanismo de RNAi, as posições de vários locais de clivagem do mRNA para cada um dos três dsRNAs foram mapeadas (Figura 10). Procedeu-se à análise de elevada resolução em gel de acrilamida desnaturante de uma subsérie de produtos de clivagem 5' atrás descritos. É de salientar que a maioria das clivagens ocorre em intervalos de 21-23 nt (Figura 10). Este espaçamento é especialmente importante face à nossa observação de que o dsRNA é processado em espécies de RNA de 21-23 nt e ao resultado de Hamilton e Baulcombe que um RNA de 25 nt está associado ao silenciamento pós-transcrição de um gene em plantas (Hamilton e Baulcombe, Science, 286:950-2 (1999)). Dos 16 locais de clivagem mapeados (2 para dsRNA Ά', 5 para dsRNA 'B' e 9 para dsRNA 'C')f todos excepto dois reflectem o intervalo de 21-23 nt. Um dos dois locais de clivagem que são excepção era um local de clivagem fraco produzido por dsRNA ' C' (indicado por um circulo azul vazio na Figura 10). Esta clivagem ocorreu 32 nt 5' relativamente ao local de clivagem seguinte. A outra excepção é particularmente intrigante. Após quatro clivagens espaçadas 21-23 nt, dsRNA ' C' causou clivagem do mRNA nove nt imediatamente 3' relativamente ao local de clivagem anterior (seta a vermelho na Figura 10). Esta clivagem ocorreu num segmento de sete resíduos uracilo e parece "reprogramar" o medidor da clivagem; o local de clivagem seguinte foi 21-23 nt 3' relativamente ao local excepcional. Os três locais de clivagem subsequentes que mapeámos estavam também espaçados 21-23 nt. Curiosamente, dos dezasseis locais de clivagem causados pelos três dsRNAs 61 ΡΕ2361981 diferentes, quatorze ocorrem em resíduos de uracilo. 0 significado deste resultado não está compreendido, mas sugere que a clivagem do mRNA é determinada por um processo que mede intervalos de 21-23 nt e que possui uma preferência de sequência para clivagem em uracilo. Os resultados mostram que as espécies de RNA de 21-23 nt, produzidas por incubação de dsRNA de ~500 pb no lisado causou interferência específica de sequência in vitro, quando isoladas do gel de acrilamida e adicionadas a uma nova reacção de RNAi em vez do dsRNA de tamanho completo.
Um modelo para a clivagem de mRNA dirigida por
dsRNA
Sem pretender estar amarrado a uma teoria, os dados bioquímicos aqui descritos, juntamente com experiências genéticas recentes em C. elegans e Neurospora (Cogoni e macino, Nature, 399 : 166-9 (1999); Grishok et al., Science, 287:2494-7 (2000); Ketting et al., Cell, 99:133-41 (1999); Tabara et al., Cell, 99:123-32 (1999)), sugerem um modelo para como dsRNA marca o mRNA para destruição (Figura 11). Neste modelo, o dsRNA é primeiro cortado em fragmentos de 21-23 nt de comprimento num processo que, provavelmente, envolve genes tais como o loci rde-1 e rde-4 de C. elegans. Os fragmentos resultantes, provavelmente tão curtos quanto os asRNAs ligados por proteínas específicas de RNAi, emparelharão então com o mRNA e recrutam uma nuclease que cliva o mRNA. Como alternativa, a troca de cadeia poderá ocorrer num complexo de proteína-RNA que transitoriamente 62 ΡΕ2361981 mantém um dsRNA de 21-23 nt perto do mRNA. A separação das duas cadeias do dsRNA após fragmentação deverá ser auxiliada por uma helicase de RNA dependente de ATP, explicando o aumento da produção de RNA de 21-23 nt observado com ATP. É provável que cada fragmento de pequeno RNA produza uma, ou no máximo duas, clivagens no mRNA, talvez nos extremos 5' ou 3' do fragmento de 21-23 nt. Os pequenos RNAs podems ser amplificados por uma RNA-polimerase dirigida por RNA, como seja a codificada pelo gene ego-1 em C. elegans (Smardon et al., Current Biology, 10:169-178 (2000)) ou o gene qde-1 em Neurospora (Cogoni e Macino, Nature, 399:166-9 (1999)), produzindo silenciamento de genes, duradouro e pós-transcrição, na ausência do dsRNA que iniciou o efeito RNAi. RNAi hereditário em C. elegans requer os genes rde-1 e rde-4 para iniciar, mas não para persistir nas gerações subsequentes. Os genes rde-2, rde-3 e mut-7 em C. elegans são necessários no tecido em que ocorre RNAi, mas não são necessários para iniciação de RNAi hereditário (Grishok et al., Science, no prelo 2000). Estes genes "efectores" (Grishok et al., Science no prelo 2000) provavelmente codificam proteínas que funcionam na selecção de mRNAs alvo e na sua clivagem subsequente. O ATP pode ser necessário em qualquer um de uma série de passos durante RNAi, incluindo a formação de complexos no dsRNA, dissociação de cadeias durante ou após clivagem do dsRNA, emparelhamento dos RNAs de 21-23 nt com o mRNA alvo, clivagem de mRNA e reciclagem do complexo alvo. Testar 63 ΡΕ2361981 estas ideias com o sistema de RNAi in vitro será um desafio importante para o futuro. Alguns genes envolvidos em RNAi são também importantes para o silenciamento e co-supressão de transposões. A co-supressão é um fenómeno biológico lato que abrange plantas, insectos e talvez os seres humanos. 0 mecanismo mais provável em Drosophila melanogaster é o silenciamento da transcrição (Pal-Bhanra et al., Cell 99:35-36). Assim, os fragmentos de 21-23 nt provavelmente estarão envolvidos no controlo da transcrição, assim como no controlo pós-transcrição.
Exemplo 3 21-23 meros isolados causaram interferência especifica de sequência quando adicionados a uma nova reacção de RNAi.
Isolamento de fragmentos de 21-23 nt a partir da reacção de incubação do dsRNA de 500 pb no lisado. RNA de cadeia dupla (500 pb) foi incubado numa concentração de 10 nM em lisado de embriões de Drosophila, durante 3 h, a 25°C em condições convencionais como aqui descrito. Após desproteinização da amostra, os produtos de reacção de 21-23 nt foram separados do dsRNA não processado por electroforese em gel de poliacrilamida (15%) desnatu-rante. Para a detecção dos fragmentos de 21-23 nt não marcados radioactivamente, uma reacção de incubação com dsRNA marcado radioactivamente foi aplicada numa pista separada do mesmo gel. Fatias de gel contendo os fragmentos 64 ΡΕ2361981 de 21-23 nt não radioactivos foram cortadas e os fragmentos de 21-23 nt foram eluídos das fatias de gel a 4°C, durante a noite, em 0,4 ml de NaCl 0,3 M. O RNA foi recuperado do sobrenadante por precipitação com etanol e centrifugação. O sedimento de RNA foi dissolvido em 10 μΐ de tampão de lise. Como controlo, as fatias de gel ligeiramente acima e abaixo da banda de 21-23 nt foram também cortadas e sujeitas aos mesmos procedimentos de eluição e precipitação. Igualmente, um dsRNA não incubado foi aplicado no gel de 15% e uma fatia de gel, correspondendo a fragmentos de 21-23 nt, foi cortada e eluida. Todos os sedimentos das experiências controlo foram dissolvidos em tampão de lise. As perdas de RNA durante a recuperação das fatias de gel por eluição foram de aproximadamente 50%.
Incubação de fragmentos de 21-23 nt num ensaio de RNAi baseado em tradução 1 μΐ de 21-23 mero eluído ou solução de RNA controlo foi usado numa incubação de RNAi de 10 μΐ padrão (ver atrás). Os 21-23 meros foram pré-incubados na mistura de reacção contendo lisado durante 10 ou 30 minutos antes da adição do mRNA alvo e controlo. Durante a pré-incubação, as proteínas envolvidas no interferência por RNA podem reassociar-se com os 21-23 meros devido a um sinal específico presente nestes RNAs. A incubação continuou durante mais uma hora para permitir a tradução dos mmRNAs alvo e controlo. A reacção foi parada pela adição de tampão 65 ΡΕ2361981 de lise passiva (Promega) e medida a actividade de luciferase. A interferência por RNA é expressa como a razão entre a actividade de luciferase alvo e controlo normalizada por controlo tampão sem RNA. A supressão especifica do gene alvo foi observada com 10 ou 30 minutos de pré-incubação. A supressão foi reprodutível e reduziu a quantidade de alvo relativamente ao controlo em 2-3 vezes. Nenhum dos fragmentos de RNA isolados como controlos apresentaram interferência específica. Para comparação, a incubação de dsRNA de 500 pb 5 nM (10 min de pré-incubação) afecta a quantidade relativa do gene controlo relativamente ao alvo aproximadamente 30 vezes.
Estabilidade dos fragmentos de 21-3 nt numa nova reacção de incubação de lisado.
Consistente com a observação de RNAi ser mediada por fragmentos de RNA de 21-23 nt, encontrou-se que 35% do RNA de 21-23 nt adicionado persiste durante mais de 3 h em tal reacção de incubação. Isto sugere que factores celulares associam-se com os fragmentos de 21-23 nt desproteinizados e reconstituem uma partícula funcional de degradação de mRNA. Sinais associados a estes fragmentos de 21-23 nt ou a sua possível natureza de cadeia dupla ou comprimentos específicos são, provavelmente, responsáveis por esta observação. Os fragmentos de 21-23 nt possuem um grupo hidroxilo 3' terminal, conforme evidenciado pela mobilidade alterada num gel de sequenciação após tratamento 66 ΡΕ2361981 com periodato e beta-eliminação. Os 21-23 meros do exemplo 4 purificados por métodos não desnaturantes causaram interferência especifica de sequência quando adicionados a uma nova reacção de RNAi. RN A de cadeia dupla cinquenta nanomolar (dsRNA Rr-luc de 501 pb, como descrito no exemplo 1) foi incubado numa reacção de 1 ml in vitro com lisado a 25°C (ver exemplo 1). A reacção foi então parada pela adição de igual volume de tampão PK 2x (ver exemplo 1) e proteinase K foi adicionada para uma concentração final de 1,8 μq/μl. A reacção foi incubada durante mais lha 25°C, extraída com fenol e depois os RNAs foram precipitados com 3 volumes de etanol. O precipitado de etanol foi colido por centrifugação e o sedimento foi ressuspenso em 100 μΐ de tampão de lise e aplicado numa coluna de filtração em gel Superdex HR 200 10/30 (Pharmacia) corrida em tampão de lise a 0,75 ml/min. Fracções de 200 μΐ foram colhidas da coluna. Vinte μΐ de acetato de sódio 3M e 20 μρ de glicogénio foram adicionados a cada uma das fracções e o RNA foi recuperado por precipitação com 3 volumes de etanol. O precipitado foi ressuspenso em 30 μΐ de tampão de lise. Os perfis de coluna após o f raccionamento do RNA marcado com 32P adicionado estão apresentados na Figura 13A.
Um microlitro de cada fracção ressuspensa foi testado numa reacção de RNAi in vitro padrão de 10 μΐ, que é aproximadamente igual à concentração daquela espécie de RNA na reacção original antes da aplicação na coluna. As ΡΕ2361981 fracções foram pré-incubadas no lisado contendo a mistura de reacção durante 30 min, antes da adição de mRNA alvo Rr-luc 10 nM e mRNA controlo Pp-luc 10 nM. Durante a pré-incubação, as proteínas envolvidas na interferência por RNA podem reassociar-se com os 21-23 meros devido a um sinal específico presente nestes RNAs. A incubação foi continuada durante mais três horas para permitir a tradução dos mRNAs alvo e controlo. A reacção foi parada pela adição de tampão de lise passiva (Promega) e medida a actividade de luciferase. A supressão da expressão de mRNA alvo Rr-luc pelos fragmentos de 21-23 nt purificados foi reprodutível e reduziu a taxa relativa de alvo em função do controlo em >30 vezes, uma quantidade comparável a um dsRNA controlo de 500 pb. A supressão da expressão de mRNA alvo foi especifica: pouco ou nenhum efeito na expressão do controlo do mRNA Pp-luc foi observado.
Os dados mostram que ambas as fracções contendo dsRNA não clivado (fracções 3-5) ou dsRNA longo parcialmente eivado (fracções 7-13) e as fracções contendo siRNAs de 21-23 nt totalmente processadas (fracções 41-50) medeiam interferência por RNA eficaz in vitro (Figura 13B) . A supressão da expressão do mRNA alvo foi especifica: pouco ou nenhum efeito na expressão de mRNA controlo Pp-luc foi observado (Figura 13C) . Estes dados, juntamente com os de exemplos anteriores, demonstram que os siRNAs de 21-23 nt são (1) verdadeiros intermediários na via de RNAi e (2) mediadores eficazes da interferência por RNA in vitro. ΡΕ2361981
Exemplo 5 Duplas cadeias de siRNA de 21 nucleóti-dos medeiam a interferência por RNA em culturas de tecido humano Métodos
Preparação de RNA RNAs de 21 nt foram obtidos por síntese química usando fosforamidetos de RNA Expedite e fosforamideto de timidina (Proligo, Alemanha). Oligonucleótidos sintéticos foram desprotegidos e purificados em gel (Elbashir, S.M., Lendeckel, W. & Tuschl, T., Genes & Dev. 15, 188-200 (2001)), seguido de purificação em cassetes Sep-Pak C18 (Waters, Milford, MA, USA) (Tuschl, T., et al.,
Biochemistry, 32:11658-11668 (1993)). As sequências de siRNA tendo como alvo a luciferase GL2 (Acc. X65324) e GL3 (Acc. U47296) corresponderam às regiões codificadoras de 153-173 relativamente ao primeiro nucleótido do codão de iniciação, siRNAs tendo como alvo RL (Acc. AF025846) corresponderam à região 119-129 após o primeiro codão de iniciação. RNAs mais longos foram transcritos com a RNA-polimerase de T7 a partir dos produtos de PCR, seguido de purificação em gel e Sep-Pak. Os dsRNAs de GL2 e GL3 corresponderam à posição 113-161 e 113-596, respectiva-mente, relativamente ao início da tradução; os dsRNAs RL de 10 e 501 pb corresponderam às posições 118-167 e 118-618, respectivamente. As matrizes de PCR para a síntese de dsRNA tendo como alvo GFP humanizado (hG) foram amplificadas a 69 ΡΕ2361981 partir de pAD3 (Kehlenbach, R.H., et ai., J. Cell Biol., 141:863-874 (1988)), pelo que dsRNA hG de 50 e 501 pb corresponderam às posições 118-167 e 118-618, respectiva-mente, relativamente ao codão de iniciação.
Para o emparelhamento de siRNAs, cadeias simples 20 μΜ foram incubadas em tampão de emparelhamento (acetato de potássio 100 mM, HEPES-KOH 30 mM a pH 7,4, acetato de magnésio 2 mM) durante 1 min a 90°C, seguido de 1 h a 37°C. O passo de incubação a 37°C foi prolongado durante a noite para os dsRNAs de 50 e 500 pb e estas reacções de emparelhamento foram realizadas em concentrações de cadeia de 8,4 μΜ e 0,84 μΜ, respectivamente.
Cultura de células
As células S2 foram propagadas em meio de Schneider para Drosophila (Life Technologies) suplementado com 10% FBS, 100 unidades/ml de penicilina e 100 μρ/ιηΐ de estreptomicina a 25°C. As células 293, NIH/3T3, HeLa S3, COS-7 foram crescidas a 37°C em meio de Eagle modificação de Dulbecco suplementado com 10% FBS, 100 unidades/ml de penicilina e 100 μρ/ιηΐ de estreptomicina. As células foram regularmente passadas para manter o crescimento exponencial. 24 h antes da transfecção, a aproximadamente 80% de confluência, as células de mamífero foram tripsinizadas e diluídas a 1:5 com meio fresco sem antibióticos (1-3 x 105 células/ml) e transferidas para placas de 24 alvéolos (500 μΐ/alvéolo) . As células S2 não foram tripsinizadas 70 ΡΕ2361981 antes da subcultura. A transfecção foi realizada com reagente Lipofectamine 2000 (Lige Technologies) como descrito pelo fabricante para as linhas de células aderentes. Por alvéolo, foram aplicados 1,0 μρ de pGL2-Control (Promega) ou pGL3-Control (Promega), 0,1 μρ de pRL-TK (Promega) e 0,28 μρ de siRNA de cadeia dupla ou dsRNA, formulado em lipossomas; o volume final foi de 600 μΐ por alvéolo. As células foram incubadas 20 h após transfecção e pareceram saudáveis a partir dai. A expressão de luciferase foi subsequentemente monitorizada com o ensaio Dual Luciferase (Promega). As eficiências de transfecção foram determinadas por microscopia de fluorescência para as linhas celulares de mamífero após cotransfecção de 1,1 μρ de pAD332 codificador de hGFP e 0,28 μg de siRNA invGL2 e foram de 70-90%. Os plasmídeos repórteres foram amplificados em XL-Blue 1 (Stratagene) e purificados usando o kit Qiagen EndoFree Maxi Plamisd.
Resultados A interferência por RNA (RNAi) é o processo de silenciamento de genes pós-transcrição, específico de sequência, em animais e plantas, iniciado por RNA de cadeia dupla (dsRNA) homólogo da sequência do gene silenciado (Fire, A., Trends Genet., 15:358-363 (1999); Sharp, P.A. & Zamore, P.D., Science, 287:2431-2433 (2000); Sijen, T. & Kooter, J.M., Bioessays, 22:520-531 (2000); Bass B.L., Cell, 101:235-238 (2000); Hammond, S.M., et al., Nat. Ver. Genet., 2:110-119 (2001)). Os mediadores da degradação de 71 ΡΕ2361981 mRNA específico de sequência são pequenos RNAs interferentes (siRNAs) de 21 e 22 nt, gerados por clivagem com RNase III a partir de dsRNAs mais longos6-10 (Hamilton, A.J. & Baulcombe, D.C., Science, 286:950-952 (1999); Hammond, S.M., et ai., Nature, 404:293-296 (2000); Zamore, P.D., et al., Cell, 101.25-33 (2000); Bernstein, E., et al., Nature, 409:363-366 (2001); Elbashir, S.M., et al., Genes & Dev., 15:188-200 (2001)). Como se mostra aqui, cadeias duplas de siRNA de 21 nt são capazes de especifiamente suprimir a expressão de genes repórteres em múltiplas culturas de células de mamífero, incluindo células de rim embrionário humano (293) e HeLa. Ao contrário dos dsRNAs de 50 ou 500 pb, os siRNAs não activam a resposta ao interferão. Estes resultados indicam que as cadeias duplas de siRNA são uma ferramenta geral para a inactivação específica de sequência da função de um gene em células de mamífero. siRNAs emparelhados de 21 e 22 nt com extremos salientes 3' medeiam eficazmente a degradação de mRNA especifica de sequência em lisados preparados a partir de embriões de D. melanogaster (Elbashir, S.M., et ai., Genes & Dev., 15:188-200 (2001)). Para testar se os siRNAs são também capazes de mediar RNAi em culturas de tecidos, foram construídas cadeias duplas de siRNA de 21 nt com extremos salientes 3' simétricos de 2 nt dirigidos contra genes repórteres codificadores da luciferase do amor-perfeito do mar (Renilla reni forrais) e duas sequências variantes de luciferase do pirilampo (Photinus pyralis, GL2 e GL3) (Figuras 14A, 14B). As cadeias duplas de siRNA foram cotrans- 72 ΡΕ2361981 fectadas com combiações de plasmídeo repórter pGL2/pRL ou pGL3/pRL, em células Schneider S2 de D. melanogaster ou células de mamífero usando lipossomas catiónicos. As actividades de luciferase foram determinadas 20 h após transfecção. Em todas as linhas celulares testadas, foi observada redução específica da expressão de genes repórteres na presença das cadeias duplas de siRNA cognato (Figuras 15A-15J). É de salientar que os níveis de expressão absolutos de luciferase não foram afectados pelos siRNAs não cognatos, indicando a ausência de efeitos adversos devidos às cadeias duplas de RN A de 21 nt (e.g. Foguras 16A-16D, para células HeLa) . Em células S2 de D. melanogaster (Figuras 15A, 15B), a inibição específica de luciferases foi completa e semelhantes aos resultados anteriormente obtidos com dsRNAs mais longos (Hammond, S.M., et al., Nature, 404: 293-296 (2000); Caplen, N.J., et ai.. Gene, 256:95-105 (2000); Clemens, M & Williams, B., Cell, 13:565-572 (1978); Ui-Tei, K., et al., FEBS Letters, 479:79-82 (2000)). Em células de mamífero, em que os genes repórteres eram expressos com 50 a 100 vezes mais força, a supressão específica foi menos completa (Figuras 15C-15J). A expressão de GL2 foi reduzida 3 a 12 vezes, a expressão de GL3 9-25 vezes e a expressão de RL 1 a 3 vezes, como resposta aos siRNAs cognatos. Para as células 293, tentar atingir a luciferase RL com siRNAs RL foi ineficaz, se bem que os alvos GL2 e GL3 tenham respondido especificamente (Figuras 151, 15J). É provável que a não redução da expressão de RL em células 293 seja devido à expressão 5 a 20 vezes superior comparativamente com qualquer outra linha 73 ΡΕ2361981 de células de mamífero testada e/ou devido a acessibilidade limitada da sequência alvo, devido à estrutura secundária do RNA ou a proteínas associadas. No entanto, o facto de a luciferase GL2 e GL3 ser atingida especificamente pelas cadeias duplas de siRNA cognatas indicou que RNAi também funciona em células 293. 0 extremo saliente 3' de 2 nt em todas as cadeias duplas de siRNA, excepto para uGL2, é composto por (2'-desoxi)timidina. A substituição de timidina por uridina no extremo saliente 3' foi bem tolerada no sistem in vitro de D. melanogaster, e a sequência do extremo saliente não foi critica para o reconhecimento do alvo (Elbashir, S.M., et al.r Genes & Dev., 15:188-200 (2001)). O extremo saliente de timidina foi escolhido devido a ser suposto aumentar a resistência a nucleases de siRNAs em meio de cultura de tecidos e dentro das células transfectadas. De facto, o siRNA GL2 modificado com timidina foi ligeiramente mais potente do que siRNA uGL2 não modificado em todas as linhas celulares testadas (Figuras 15A, 15C, 15E, 15G, 151). É concebível que outras modificações dos nucleótidos 3' salientes proporcionem benefícios adicionais à entrega e estabilidade das cadeias duplas de siRNA.
Nas experiências de cotransfecção, foram usadas duplas cadeias de siRNA 25 nM relativamente ao volume final do meio de cultura de tecidos (Figuras 15A-15J, 16A-16F). O aumento da concentração de siRNA para 100 nM não aumentou os efeitos de silenciamento específico, mas começou a 74 ΡΕ2361981 afectar as eficiências de transfecção devido à competição para encapsulação em lipossomas entre o DNA de plasmideo e siRNA. 0 decréscimo da concentração de siRNA para 1,5 nM não reduziu o efeito de silenciamento especifico, mesmo apesar dos siRNAs estarem agora apenas 1 a 20 vezes mais concentrados do que os plasmídeos de DNA. Isto indica que os siRNAs são reagentes extraordinariamente potentes para mediar o silenciamento de genes e que os siRNAs são eficazes em concentrações que estão várias ordens de grandeza abaixo das concentrações aplicadas nas experiências convencionais que pretendem atingir genes e que utilizam ácidos nucleicos complementares ou ribozimas.
De forma a monitorizar o efeito de dsRNAs mais longos nas células de mamífero, foram preparados dsRNAs de 50 e 500 pb cognatos para os genes repórteres. Como controlo não específico, foram usados dsRNAs derivados de GFP humanizada (hG) (Kehlenbach, R.H., et al., J. Cell Biol., 141:863-874 (1998)). Quando os dsRNAs foram cotrans-fectados, em quantidades idênticas (não concentrações) às das cadeias duplas de siRNA, a expressão do gene repórter foi fortemente e inespecificamente reduzida. Este efeito está ilustrado para as células HeLa como exemplo representativo (Figuras 16A-16D). As actividades absolutas de luciferase foram diminuídas inespecificamente 10 a 20 vezes por cotransf ecção de dsRNA de 50 pb e 20-200 vezes por cotransfecção de dsRNA de 500 pb, respectivamente. Efeitos inespecificos semelhantes foram observados para células COS-7 e células NIH/3T3. Para as células 293, uma redução 75 ΡΕ2361981 não específica de 10 a 20 vezes foi observada apenas para dsRNAs de 500 pb. A redução não específica da expressão do gene repórter por dsRNA >30 pb era esperada como parte da resposta ao interferão (Matthews, M., "Interactions between viruses and the cellular machinery for proteins synthesis" in "Translational Control" (eds., Hershey, J., Matthews, M. & Sonenberg, N.) 505-548 (Cold S+ring Harbor Laboratory Press, Plainview, NY; 1996); Kumar M. & Carmichael, G.G., Microbiol. Mol. Biol. Ver., 62:1415-1434 (1998); Stark, G.R., et al. , Annu. Ver. Biochem. 67:227-264 (1998)). Surpreendentemente, apesar do forte decréscimo inespecífico na expressão do gene repórter, foi reprodutivelmente detectado silenciamento específico adicional mediado por dsRNA específico de sequência. No entanto, os efeitos de silenciamento específico foram apenas aparentes quando as actividades dos genes repórteres foram normalizadas relativamente aos controlos de dsRNA hG (Figuras 16E, 16F). Foi observada uma redução específica de 2 a 10 vezes na resposta a dsRNA cognato também nas três outras linhas celulares de mamífero testadas. Os efeitos de silenciamento específico com dsRNAs (356-1662 pb) foram anteriormente descritos em células CHO-K1, mas as quantidades de dsRNA necessárias para detectar uma redução específica de 2 a 4 vezes foram cerca de 20 vezes mais elevadas do que nas nossas experiências (Ui-Tei, K., et al., FEBS Letters, 479:79-82 (2000)). Igualmente, as células CHO-KI parecem ser eficientes na resposta ao interferão. Numa outra descrição, células 293, NIH/3T3 e BHK-21 foram testadas relativamente a RNAi usando combinações dos repórteres 76 ΡΕ2361981 luciferase/lacZ e dsRNA de 829 pb específico para lacZ ou de 717 pb não específico de GFP (Caplean, N.J., et al., Gene, 252:95-105 (2000)). A incapacidade para detectar RNAi neste caso foi, provavelmente, devido ao ensaio repórter luciferase/lacZ ser menos sensível e às diferenças de comprimento do dsRNA alvo e controlo. No seu conjunto, os resultados aqui descritos indicam que RNAi é activa em células de mamífero, mas que o efeito de silenciamento é difícil de detectar se o sistema de interferão for activado por dsRNA >30 pb. O mecanismo do processo de interferência mediado por siRNA de 21 nt em células de mamífero mantém-se por descobrir e o silenciamento pode ocorrer após transcrição e/ou durante a transcrição. No lisado de D. melanogaster, as cadeias duplas de siRNA medeiam o silenciamento de genes pós-tradução através da reconstituição de complexos de siRNA-proteína (siRNPs), que guiam o reconhecimento do mRNA e a clivagem do alvo (Hammond, S.M., et al., Nature, 404:293-296 (2000); Zamore, P.D., et al., Cell, 101:25-33 (2000) ; Elbashir, S.M., et al., Genes & Dev., 15:188-200 (2001) ). Em plantas, o silenciamento pós-transcrição mediado por dsRNA também está associado a metilação de DNA dirigida por RNA, a qual pode também ser dirigida por siRNAs de 21 nt (Wassenegger, M., Plant Mol. Biol., 43:203-220 (2000); Finnegan, E.J., et al., Curr. Biol., 11:R99-R102 (2000)). A metilação das regiões do promotor podem conduzir ao silenciamento da transcrição (Metter, M.F., et al., EMBO J., 19:5194-5201 (2000)), mas a metilação nas 77 ΡΕ2361981 sequências codifiadoras não o deve fazer (Wang, M.-B., RNA, 7: 16-28 (2001)). A metilação do DNA e o silenciamento da transcrição em mamíferos são processos bem documentados (Kass, S.U., et al., Trends Genet., 13:444-449 (1997); Razin, A., EMBO J., 17:4905-4908 (1998)), ainda que não tenham sido ligados a silenciamento pós-transcrição. A metilação em mamíferos é predominantemente dirigida contra resíduos CpG. Devido a não existir CpG no siRNA de RL, mas siRNA de RL mediar o silenciamento específico na cultura de tecidos de mamífero, é improvável que a metilação de DNA seja crítica para o nosso processo de silenciamento observado. Resumidamente, é aqui descrito o silenciamento de genes mediado por siRNA em células de mamífero. A utilização de siRNAs de 21 nt é bastante promissora para a inactivação da função de genes em cultura de tecidos humanos e no desenvolvimento de terapias específicas de genes.
Ainda que este invento tenha sido particularmente demonstrado e descrito com referência às suas realizações preferidas, será entendido pelos familiarizados com a área, que podem ser feitas várias modificações na forma e detalhes sem afastamento do âmbito do invento definido pelas reivindicações apensas.
Lisboa, 4 de junho de 2013

Claims (4)

  1. ΡΕ2361981 1 REIVINDICAÇÕES 1. RNA de cadeia dupla isolado, de 21 a 23 nucleótidos, que medeia a interferência por RNA de um mRNA correspondente, desde que o mRNA de cadeia dupla não seja ucg age ugg acg gcg acg uaa, ligado quimicamente no extremo 3' ao extremo 5' do RNA complementar através de um grupo de ligação C18. 2. dsRNA isolado da reivindicação 1 que compreende um grupo hidroxilo 3' terminal. 3. dsRNA isolado da reivindicação 1 que é RNA sintético ou compreende nucleótidos não naturais. 4. dsRNA isolado, de 21 a 23 nucleótidos, que dirige o corte de mRNA específico ao qual corresponde a sua sequência, desde que o RNA de cadeia dupla não seja ucg age ugg acg gcg acg uaa, ligado quimicamente no extremo 3' ao extremo 5' do RNA complementar através de um grupo de ligação C18.
  2. 5. RNA de cadeia dupla de 21 a 23 nucleótidos para usar num método de tratamento de uma doença ou condição associada à presença de uma proteína num indivíduo compreendendo a administração ao indivíduo de dsRNA de 21 a 23 nucleótidos que dirige o mRNA da proteína para degração. 2 ΡΕ2361981 6. 0 dsRNA para usar no método da reivindicação 5 em que o dsRNA de 21 a 23 nucleótidos é RNA sintético ou compreende nucleótidos não naturais.
  3. 7. Uma composição farmacêutica compreendendo dsRNA de 21 a 23 nucleótidos que medeia a interferência por RNA e um veiculo adequado, desde que o RNA de cadeia dupla não seja ucg age ugg acg gcg acg uaa, ligado quimicamente no extremo 3' ao extremo 5' do RNA complementar através de um grupo de ligação C18. 8. 0 uso de dsRNA da reivindicação 1 a 5 para especificamente inactivar a função do gene in vitro desde que o RNA de cadeia dupla não seja ucg age ugg acg gcg acg uaa, ligado quimicamente no extremo 3' ao extremo 5' do RNA complementar através de um grupo de ligação C18.
  4. 9. Um método ex vivo de tratamento de células de um indivíduo para degradar um gene que cause ou esteja associado a uma doença ou condição indesejável, o método compreendendo a obtenção das células do indivíduo e introdução nas células de RNAs de cadeia dupla de 21-23 nt que medeiam a degradação do correspondente mRNA. Lisboa, 4 de junho de 2013
PT101846608T 2000-03-30 2001-03-30 Mediadores de interferência por rna específicos de sequência de rna PT2361981E (pt)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US19359400P 2000-03-30 2000-03-30
EP00126325 2000-12-01
US26523201P 2001-01-31 2001-01-31

Publications (1)

Publication Number Publication Date
PT2361981E true PT2361981E (pt) 2013-06-12

Family

ID=41655850

Family Applications (8)

Application Number Title Priority Date Filing Date
PT101846608T PT2361981E (pt) 2000-03-30 2001-03-30 Mediadores de interferência por rna específicos de sequência de rna
PT101847119T PT2345742E (pt) 2000-03-30 2001-03-30 Mediadores de interferência por rna específicos de sequência de rna
PT101845204T PT2360253E (pt) 2000-03-30 2001-03-30 Métodos de produção de células ou organismos knockdown através de interferência por rna com mediadores de rna específicos de sequência e usos dos mesmos
PT81681520T PT2028278E (pt) 2000-03-30 2001-03-30 Mediadores de interferência por rna específicos de sequência de rna
PT141766055T PT2813582T (pt) 2000-12-01 2001-11-29 Moléculas curtas de arn que medeiam a interferência de arn
PT101799476T PT2351852E (pt) 2000-12-01 2001-11-29 Moléculas curtas de arn que medeiam a interferência de arn
PT101800258T PT2348134E (pt) 2000-12-01 2001-11-29 Moléculas curtas de arn que medeiam a interferência de arn
PT101799526T PT2348133E (pt) 2000-12-01 2001-11-29 Moléculas curtas de arn que medeiam a interferência de arn

Family Applications After (7)

Application Number Title Priority Date Filing Date
PT101847119T PT2345742E (pt) 2000-03-30 2001-03-30 Mediadores de interferência por rna específicos de sequência de rna
PT101845204T PT2360253E (pt) 2000-03-30 2001-03-30 Métodos de produção de células ou organismos knockdown através de interferência por rna com mediadores de rna específicos de sequência e usos dos mesmos
PT81681520T PT2028278E (pt) 2000-03-30 2001-03-30 Mediadores de interferência por rna específicos de sequência de rna
PT141766055T PT2813582T (pt) 2000-12-01 2001-11-29 Moléculas curtas de arn que medeiam a interferência de arn
PT101799476T PT2351852E (pt) 2000-12-01 2001-11-29 Moléculas curtas de arn que medeiam a interferência de arn
PT101800258T PT2348134E (pt) 2000-12-01 2001-11-29 Moléculas curtas de arn que medeiam a interferência de arn
PT101799526T PT2348133E (pt) 2000-12-01 2001-11-29 Moléculas curtas de arn que medeiam a interferência de arn

Country Status (11)

Country Link
EP (7) EP2796553B1 (pt)
CN (2) CN101643789B (pt)
AT (1) ATE542899T1 (pt)
BR (4) BRPI0117341B1 (pt)
CA (1) CA2791831C (pt)
DK (7) DK2345742T3 (pt)
ES (9) ES2461765T3 (pt)
LT (1) LT2813582T (pt)
PL (1) PL218881B1 (pt)
PT (8) PT2361981E (pt)
SI (4) SI2348134T1 (pt)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001249622B2 (en) 2000-03-30 2007-06-07 Massachusetts Institute Of Technology RNA sequence-specific mediators of RNA interference
WO2002044321A2 (en) 2000-12-01 2002-06-06 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Rna interference mediating small rna molecules
US20060009409A1 (en) 2002-02-01 2006-01-12 Woolf Tod M Double-stranded oligonucleotides
US20040014956A1 (en) 2002-02-01 2004-01-22 Sequitur, Inc. Double-stranded oligonucleotides
MA45470A (fr) 2016-04-01 2019-02-06 Avidity Biosciences Llc Acides nucléiques kras et leurs utilisations
MA45469A (fr) 2016-04-01 2019-02-06 Avidity Biosciences Llc Acides nucléiques de bêta-caténine et leurs utilisations
MA45349A (fr) 2016-04-01 2019-02-06 Avidity Biosciences Llc Acides nucléiques egfr et leurs utilisations
MA45328A (fr) 2016-04-01 2019-02-06 Avidity Biosciences Llc Compositions acide nucléique-polypeptide et utilisations de celles-ci
DE102018001134A1 (de) * 2017-06-26 2018-12-27 Martin-Luther-Universität Halle-Wittenberg Methode zur gezielten Identifizierung hocheffizienter "small interfering RNAs" ("eRNAs") zur Anwendung in Pflanzen und anderen Zielorganismen
MX2020005860A (es) 2017-12-06 2020-09-09 Avidity Biosciences Inc Composiciones y metodos de tratamiento de atrofia muscular y distrofia miotonica.
CA3172111A1 (en) 2020-03-19 2021-09-23 Barbora MALECOVA Compositions and methods of treating facioscapulohumeral muscular dystrophy

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59198885A (ja) 1983-04-25 1984-11-10 Nec Corp 圧電アクチェータ励振回路
US5652355A (en) 1992-07-23 1997-07-29 Worcester Foundation For Experimental Biology Hybrid oligonucleotide phosphorothioates
EP0743859A4 (en) 1993-11-16 1998-10-21 Genta Inc CHEMICAL OLIGONUCLEOSIDE COMPOUNDS
US6506559B1 (en) 1997-12-23 2003-01-14 Carnegie Institute Of Washington Genetic inhibition by double-stranded RNA
EP1071753A2 (en) 1998-04-20 2001-01-31 Ribozyme Pharmaceuticals, Inc. Nucleic acid molecules with novel chemical compositions capable of modulating gene expression
DE19956568A1 (de) * 1999-01-30 2000-08-17 Roland Kreutzer Verfahren und Medikament zur Hemmung der Expression eines vorgegebenen Gens
JP2003526367A (ja) * 2000-03-16 2003-09-09 ジェネティカ インコーポレイテッド Rna干渉の方法とrna干渉組成物
AU2001249622B2 (en) * 2000-03-30 2007-06-07 Massachusetts Institute Of Technology RNA sequence-specific mediators of RNA interference
WO2002044321A2 (en) * 2000-12-01 2002-06-06 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Rna interference mediating small rna molecules

Also Published As

Publication number Publication date
BRPI0117340B1 (pt) 2016-10-18
ES2410907T3 (es) 2013-07-03
EP2360253A1 (en) 2011-08-24
CA2791831C (en) 2015-06-23
CN101654672B (zh) 2013-06-05
BRPI0117338A2 (pt) 2011-08-02
CN101643789A (zh) 2010-02-10
SI2351852T2 (sl) 2020-10-30
SI2351852T1 (sl) 2013-12-31
ATE542899T1 (de) 2012-02-15
EP3199631A1 (en) 2017-08-02
DK2360253T3 (da) 2014-06-16
ES2462716T3 (es) 2014-05-26
EP2351852B1 (en) 2013-10-02
DK2348133T3 (da) 2014-10-13
ES2437390T5 (es) 2021-02-05
EP2361981B1 (en) 2013-03-06
SI2348134T1 (sl) 2014-08-29
ES2498747T3 (es) 2014-09-25
ES2461715T3 (es) 2014-05-21
DK2361981T4 (da) 2019-05-13
SI2813582T1 (sl) 2017-08-31
PT2348133E (pt) 2014-10-14
EP2348134A1 (en) 2011-07-27
PL218881B1 (pl) 2015-02-27
PT2351852E (pt) 2014-01-03
DK2345742T3 (da) 2014-09-15
EP2813582A1 (en) 2014-12-17
DK2028278T3 (da) 2014-06-23
ES2410907T5 (es) 2019-08-20
DK2351852T4 (da) 2020-08-24
EP2796553A1 (en) 2014-10-29
PT2028278E (pt) 2014-05-28
CA2791831A1 (en) 2002-06-06
EP3199631B1 (en) 2019-01-30
BRPI0117341B1 (pt) 2016-06-21
PT2345742E (pt) 2014-09-03
EP2351852A1 (en) 2011-08-03
ES2380171T3 (es) 2012-05-09
EP2813582B1 (en) 2017-04-12
ES2437390T3 (es) 2014-01-10
EP2351852B2 (en) 2020-07-01
ES2461765T3 (es) 2014-05-21
ES2632957T3 (es) 2017-09-18
PT2348134E (pt) 2014-07-16
DK2348134T3 (da) 2014-07-14
CN101654672A (zh) 2010-02-24
DK2361981T3 (da) 2013-06-24
PT2813582T (pt) 2017-07-17
PT2360253E (pt) 2014-05-29
EP2361981B2 (en) 2019-01-23
EP2360253B1 (en) 2014-03-19
DK2351852T3 (da) 2014-01-06
EP2361981A1 (en) 2011-08-31
BRPI0117338B1 (pt) 2016-06-21
EP2348134B1 (en) 2014-04-16
SI2348133T1 (sl) 2014-11-28
BRPI0117341A2 (pt) 2011-08-02
BRPI0117339B1 (pt) 2016-03-15
CN101643789B (zh) 2013-04-24
EP2796553B1 (en) 2019-06-19
ES2500923T3 (es) 2014-10-01
LT2813582T (lt) 2017-07-25
CN101654673A (zh) 2010-02-24

Similar Documents

Publication Publication Date Title
PT1309726E (pt) Mediadores de interferência por rna específicos de sequência de rna
AU2001249622A1 (en) RNA sequence-specific mediators of RNA interference
PT2361981E (pt) Mediadores de interferência por rna específicos de sequência de rna
AU2007214287B2 (en) RNA sequence-specific mediators of RNA interference