PT1670498E - Adn que codifica p185neu e utilizações terapêuticas do mesmo - Google Patents

Adn que codifica p185neu e utilizações terapêuticas do mesmo Download PDF

Info

Publication number
PT1670498E
PT1670498E PT47658539T PT04765853T PT1670498E PT 1670498 E PT1670498 E PT 1670498E PT 47658539 T PT47658539 T PT 47658539T PT 04765853 T PT04765853 T PT 04765853T PT 1670498 E PT1670498 E PT 1670498E
Authority
PT
Portugal
Prior art keywords
plasmid
human
dna
mouse
8cpg
Prior art date
Application number
PT47658539T
Other languages
English (en)
Inventor
Augusto Amici
Federica Cavallo
Guido Forni
Cristina Marchini
Original Assignee
Indena Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Indena Spa filed Critical Indena Spa
Publication of PT1670498E publication Critical patent/PT1670498E/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/71Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/82Translation products from oncogenes

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

1
DESCRIÇÃO
"ADN QUE CODIFICA pl85neu E UTILIZAÇÕES TERAPÊUTICAS DO MESMO" A presente invenção refere-se a vetores plasmídeo que contêm sequências codificadoras de pl85neu e a utilização dos mesmos na vacinação por ADN contra tumores. Os plasmideos, de acordo com a invenção, contêm sequências que codificam diferentes fragmentos da oncoproteina pl85neu humana ou de ratinho e são capazes de induzir uma resposta imune, humoral ou mediada pela célula, contra tumores que expressam oncogenes da familia ErbB. A invenção também se refere a composições farmacêuticas que contêm os ditos plasmideos e a sua utilização para a prevenção ou terapêutica de tumores que expressam a pl85neu.
Antecedentes da invenção A proteina pl85neu, um dos antigenos tumorais mais estudados, suscitou grande interesse como alvo para a terapêutica imune contra o cancro, devido à sua presença na membrana celular de alguns dos carcinomas humanos mais comuns. A pl85neu é um recetor de membrana codificado em rato pelo proto-oncogene Her-2/neu e pertencendo à familia dos Recetores da Tirosina Quinase Classe I (RTKs), que também compreende o Recetor do Fator de Crescimento Epidérmico EGF-R (ErbB-1) e outros recetores relacionados com o mesmo (ErbB-3, ErbB-4). Estes p-recetores estão envolvidos na proliferação e diferenciação celular (Hynes e Stem, 1994 BBA 1198:165) e, por isso, atraem um grande interesse 2 biológico e clinico. 0 recetor consiste em três dominios bem distintos: um domínio extracelular, transmembranar e intracitoplasmático. A pl85neu está envolvida na complexa rede de mecanismos de transdução de sinal intracelular e comunicação intracelular que regulam os processos de proliferação e diferenciação (Boyle 1992 Curr. Op. Oncol. 4:156) . 0 oncogene neu é nomeado a partir do neuroglioblastoma de rato quimicamente induzido do qual foi isolado pela primeira vez. Esta forma neu ativada tem um único ponto de mutação que resulta na substituição de "A" por "T" e na consequente substituição do resíduo de Valina na posição 664 de pl85neu por um resíduo de ácido glutâmico (Val664Glu) (Bargmann et al. 1986, Cell 45:649).
Também o homólogo humano de neu, ErbB-2, foi isolado e caracterizado, e foi demonstrado que tanto o recetor HER2/neu de rato como o ErbB2 humano têm uma homologia significativa com EGFR (Coussens et al. 1985, Science 230:1132; Yamamoto et al. 1986, Nature 319:230). Enquanto uma mutação genética na sequência de rato é a causa da ativação do recetor constitutivo através de dimerização, em tumores humanos positivos ErbB-2, é observada uma expressão aberrante do oncogene (Di Marco et al. 1990, Mol. Cell. Biol. 10: 3247; Klapper et al., 2000, Adv Câncer Res, 77:25), apesar de, em casos raros, terem sido observados mutações pontuais ativadoras e mecanismos de splicing anómalos (Kwong et al., 1998, Mol Carcinog, 23:62; Xie et al., 2000, J Natl Câncer Inst, 92:412). O efeito global é semelhante: a amplificação do gene e o aumento no nível de transcrição determinam um excesso de recetor membranar pl85neu, com consequente aumento de dímeros ativos que transduzem intracelularmente sinais de crescimento de uma 3 forma independente do ligando. A estrutura cristal da região extracelular da pl85neu humana e de rato recentemente reportada mostra que esta proteína é caracterizada por uma conformação rígida que permite interagir com outros recetores ErbB, sem se ligar diretamente quaisquer ligandos, e despoleta a transdução do sinal de proliferação (Cho HS et al. 2003, Nature 421:756).
Em circunstâncias normais, a pl85neu humana está envolvida na organogénese e crescimento epitelial; é expressa em níveis elevados durante a formação da placenta e desenvolvimento fetal, ao passo que está presente em níveis muito baixos nos tecidos adultos (Press et al. 1990, Oncogene 5:953). Vários estudos demonstraram que a sobre-expressão da pl85neu humana está associada ao processo neoplásico e com o nível de agressão do tumor. A sobre-expressão de pl85neu tem sido descrita no pulmão (Kern et al. 1986, Câncer Res. 50:5184), cólon (Cohen et al. 1989, Oncogene 4:81), ovário (Slamon et al. 1989, Science 244:707) adenocarcinomas e num número elevado de carcinomas mamários humanos (Slamon et al. 1989, Science 244:707; Jardines et al. 1993, Pathobiology 61:268).
As propriedades fundamentais que tornam a pl85neu num alvo ótimo para a vacinação por plasmídeo são: a) o seu envolvimento direto no crescimento celular e carcinogénese, logo, variantes de clone que, devido à instabilidade genética do tumor, perdem a expressão deste antígeno também perdem a sua tumorigenicidade; b) a sua expressão na membrana plasmática, que o torna reconhecível por anticorpos mesmo em células tumorais que perdem a expressão do sistema maior de histocompatibilidade (Lollini P. e 4
Forni G. 2003, Trends Immunol. 24: 62).
Estudos realizados em ratinhos transgénicos para o oncogene de rato ativado Her-2/neu (que espontaneamente desenvolvem tumores mamários positivos a pl85neu) e em modelos murinos que utilizam linhas de tumores transplantáveis positivos a pl85neu, demonstraram a possibilidade de prevenir e curar lesões pré-neoplásicas. No que se refere, em particular, à prevenção de tumores mamários em ratinhos transgénicos para Her-2/neu ativada de rato, demonstrámos que o plasmídeo que codifica os domínios extracelular e transmembranar da pl85neu de rato é capaz de induzir uma proteção in vivo mais eficaz do que o plasmídeo que codifica a pl85neu de comprimento inteiro de rato ou o domínio extracelular apenas (antígeno segregado) (Amici A. et al. 2000, Gene Ther., 7: 703; Rovero S. et al. 2000, J. of Immunol., 165: 5133). Foram reportados resultados semelhantes por Chen et al. (1998, Câncer Res 58:1965).
Outros autores demonstraram que os plasmídeos que codificam a pl85neu - seja não variada ou mutada de modo a eliminar a sua atividade tirosina-quinase - são eficazes na prevenção do aparecimento de tumores após a inoculação de células positivas a pl85neu (Wei WZ et al. 1999, Int. J. Câncer 81: 748). Além disso, os plasmídeos desprovidos do sinal responsável pelo processamento através do retículo endoplasmático (líder), que determina a localização citoplasmática do antígeno pl85neu, provaram ser igualmente eficazes. A proteção induzida por diferentes plasmídeos foi mediada principalmente por uma resposta imune humoral, no caso da expressão membranar de pl85neu, e por uma resposta imune mediada pelos linfócitos T, no caso da localização citoplasmática (Pilon SA et al. 2001, J. of Immunol. 167: 5 3201) . Contudo, a vacinação combinada por plasmideos que induzem a sobre-expressão de pl85neu, tanto no citoplasma como na membrana, foi mais eficaz na proteção contra o crescimento tumoral (Piechocki MP et al. 2001, J. Immunol. 167: 3367).
Assim, o equilíbrio entre diferentes mecanismos de resposta imune pode ser particularmente importante (Reilly et al., 2001, Câncer Res. 61: 880). Além disso, foi observado que a vacinação por plasmideos que codificam os domínios extracelular e transmembranar da pl85neu de rato é capaz de erradicar massas tumorais com 2 mm de diâmetro, no momento da inoculação de células que sobre-expressam a pl85neu, através de um número de mecanismos efetores diferentes do sistema imune (células auxiliares T e células T exterminadoras, anticorpos, macrófagos, neutrófilos, células exterminadoras naturais, recetores Fc, interferão gama e perforinas) , que colaboram na rejeição do tumor (Curcio C. et al. 2003, J. Clin. Invest. 111: 1161). Descrição da invenção Várias construções que codificam a proteína pl85 quimérica humana ou humana/rato foram inseridas em vetores de plasmideos e utilizadas em experiências de imunização com o objetivo de prevenir a progressão do tumor. Para a construção de plasmídeo, foram preparados fragmentos da proteína pl85neu humana que contêm o domínio transmembranar e porções do domínio extracelular de comprimento decrescente a partir da sequência do oncogene ErbB2, ou porções da mesma, foram substituídas com sequências homólogas a partir do ADNc de Her-2/neu de rato de modo a criar plasmideos quiméricos.
Os plasmideos assim obtidos foram avaliados em 6 experiências de vacinação em ratinhos inoculados com células tumorais que sobre-expressam a pl85neu humana. Plasmideos que contêm formas truncadas da pl85neu induziram uma reatividade antitumoral mediada por linfócitos T exterminadores e auxiliares, enquanto os plasmideos quiméricos induziram uma resposta de anticorpo contra ambas pl85neu humana e de rato.
Com base nos resultados de experiências in vivo foram selecionados os plasmideos que contêm sequências de pl85neu capazes de induzir uma forte resposta imune de ambos tipos, celular e humoral. Estes plasmideos, objeto da presente invenção, contêm uma sequência que codifica um fragmento de pl85neu selecionado a partir do grupo que consiste na SEQ. ID N.° 2, 10-14 (as sequências de referência da pl85neu humana e de rato estão disponíveis com os números de acessão do Gene Bank M11730 e X03362, respetivamente).
De acordo com a invenção, as sequências que codificam a pl85neu podem ser inseridas em quaisquer vetores de plasmídeo adequados para administração humana. Além das sequências codificadoras, os plasmideos podem conter elementos funcionais para controlo da transcrição, em particular um promotor colocado a montante da sequência codificadora, preferencialmente o promotor CMV, elementos de transcrição de iniciação e terminação, marcadores de seleção, tais como genes de resistência à ampicilina ou canamicina, motivos CpG, um local de poliadenilação ou ativadores da transcrição. Os elementos de controlo da transcrição deveriam ser compatíveis com a utilização do vetor em humanos. Numa modalidade preferida, os plasmideos da invenção contêm, pelo menos, 4 motivos CpG, preferencialmente, pelo menos 8, até um máximo de 80. Os 7 motivos CpG (ATAATCGACGTTCAA) de origem bacteriana induzem os macrófagos a segregarem IL-12, que, por sua vez, induzem a segregação de IFN gama por células exterminadoras naturais, ativando, assim, a resposta mediada pelo linfócito T auxiliar (Chu R.S. et al. 1997, J. Exp. Med., 186: 1623). Assim, a inserção dos motivos CpG em sequências de plasmideo potência a resposta imune.
Numa modalidade adicional, a invenção providencia uma composição farmacêutica que contém um ou mais plasmídeos diferentes, conforme definido anteriormente, em associação com veículos e excipientes farmaceuticamente aceitáveis. As composições farmacêuticas, numa forma adequada para administração parentérica, preferencialmente na forma de uma solução injetável, são convenientemente utilizadas para vacinação por ADN. Princípios e métodos para vacinação por ADN são conhecidos dos habilitados na arte e são revelados, por exemplo, em Liu MA 2003; J Int Med 253: 402.
Noutra modalidade, a invenção providencia uma preparação combinada contendo, pelo menos, dois, preferencialmente, pelo menos, quatro, mais preferencialmente, pelo menos, oito plasmídeos diferentes para administração simultânea, sequencial ou separada a um indivíduo ou paciente.
Plasmídeos, composições e preparações, de acordo com a invenção, são utilizados no tratamento preventivo ou terapêutico de indivíduos em risco de desenvolver tumores positivos a pl85neu, ou pacientes com tumores primários, metástases ou reincidências de tumores positivos a pl85neu. A prevenção pode ser primária, quando o tumor não é manifesto, secundária, quando o tumor está nas suas fases iniciais como uma lesão pré-neoplástica, ou terciária, no caso de reincidência de tumores ou processo metastático. Os tumores que podem beneficiar do tratamento com os plasmideos da invenção são aqueles de origem epitelial, em particular adenocarcinomas pulmonares, ováricos e mamários e, mais geralmente, tumores que expressam a proteína pl85neu.
Descrição detalhada da invenção
Construção da espinha dorsal do plasmideo de pCMV3.1
Para construir plasmideos que codificam fragmentos da pl85 neu humana e plasmideos quiméricos, foi utilizada a espinha dorsal plasmídica pCMV3.1. Os fragmentos que derivam do ADNc de proto-oncogene ErbB-2 humano e do ADNc de proto-oncogene Her-2/neu de rato foram inseridos em pCMV3.1 (Invitrogen, Milão, Itália) removendo com as enzimas de restrição DralII (ntl531) e Bsml (nt3189) um fragmento de 1658 bp contendo a origem de replicação fl, a origem de replicação e o promotor SV40 inicial, o gene que codifica a resistência à neomicina e o sinal de poliadenilação SV40. 0 plasmideo modificado resultante (pCMV3.1) apresenta algumas vantagens comparado com o pcDNA3.1 nativo. De facto, a redução de tamanho para 3900 pb e a remoção de sequências irrelevantes contribuem para aumentar a eficácia de transfeção in vivo.
Construção do plasmideo pCMV3.1erbB2
ADNc ErbB2 humano, obtido a partir do plasmideo pSVerbB2, foi inserido no local de clonagem múltiplo de pCMV3.1 nos locais de restrição HindIII e Xbal. Este plasmideo é utilizado para a construção de plasmideos que expressam pl85neu truncado e plasmideos quiméricos. Construção de plasmideos contendo a sequência 4XCpG: pCMY3 . lhECD-TM-4CpG e pCMV3.1 hECD-TM 4noCpG 9
Após remoção da sequência codificadora do domínio intracitoplasmático a partir do plasmídeo pCMV3.l-erbB2, foram preparados dois plasmídeos que codificam as regiões extracelular e transmembranar do proto-oncogene ErbB2. 0 procedimento compreendeu primeiro a análise de restrição para identificar os locais únicos presentes na sequência nucleotídica de ADNc de ErbB2. Foi identificado um local único reconhecido pela enzima AccIII (nt 2195) cerca de 20 pb a jusante da extremidade do domínio transmembranar. O domínio citoplasmático foi removido utilizando a enzima AccIII presente local de restrição único e enzima Xbal. Para re-inserir na extremidade 3' do ADN de ErbB2 ECD-TM o tripleto nucleotídeo TAA, reconhecido como sinal de terminação da tradução, utilizámos duas sequências sintéticas consistindo em dois oligonucleotídeos senso (oligonucleotídeo #1, #3) e antissenso (oligonucleotídeo #2, #4) com os locais de restrição AccIII e Xbal nas suas extremidades. Nestas sequências sintéticas também existem quatro sequências repetidas CpG e noCpG. Esta última é utilizada como controlo negativo. Estes dois novos plasmídeos foram designados pCMV3.lhECD-TM-4CpG e pCMV3.lhECD-TM-4noCpG.
Construção dos plasmídeos que contêm a sequência 8XCpG: pCMV3.lH/NhECD-TM-8CpG e pCMY3.ΙΗ/NhECD- TM-8noCpG
Para adicionar mais estímulos imunes não específicos construímos uma nova espinha dorsal de plasmídeo que contém 4 sequências CpC imuno-estimulantes, designadas pCMV3.1 H/N-4CpG. Para este fim, modificámos pCMV3.1 de modo a remover um dos dois locais de restrição para a enzima Pmel e inverter os locais de restrição para HindIII e Nnel presentes no local de clonagem múltiplo através de uma 10 sequência sintética que consiste em dois oligonucleotideos senso (oligonucleotideo #5) e antissenso (oligonucleotideo #6). Neste novo plasmídeo, designado pCMV3.1 H/N, foram inseridas duas sequências sintéticas, consistindo em dois nucleotideos senso (oligonucleotideo #7, #9) e antissenso (oligonucleotideo #8, #10), contendo quatro repetições para as sequências CpG e noCpG nos locais de restrição únicos Xbal e Pmel, obtendo assim pCMV3.1 H/N-4CpG e 4noCpG. Dai em diante, os fragmentos de ADN de hECD-TM-4CpG e hECD-TM-4noCpG foram inseridos em pCMV3.1 H/N- 4CpG e em pCMV3.1 H/N-4noCpG respetivamente, obtendo assim dois novos plasmideos designados pCMV3.lH/N-hECD-TM-8CpG e pCMV3. lH/N-hECD-TM-8noCpG.
Construção do plasmídeo contendo a sequência do segundo domínio de cisteína e domínio transmembranar da pl85neu: pCMY3.1H/Nh2°cysECD-TM~8CpG humana O dominio extracelular da pl85neu humana é caracterizado por duas regiões ricas em cisteinas, conhecidas como Io e 2o sub-dominio de cisteina (Io cys e 2° cys) . Ao contrário da sequência de ADNc de rato que contém apenas um local BstEII (ntl250) no dominio extracelular, localizado na região nucleotidica que separa a Ia cys da 2a cys, a sequência de ADNc do dominio extracelular de ErbB2 tem dois locais de restrição para BstEII: além do local na mesma posição do de rato (ntl372), um local BstEII adicional (nt963) está presente na porção que codifica a Ia cys do dominio extracelular. Digerindo o plasmídeo pCMV3.lH/NhECD-TM-8CpG com HindIII e BstEII, foi obtido um fragmento de ADN que consiste na 2 a cys do domínio extracelular, o domínio transmembranar, a sequência 8CpG e o plasmídeo pCMV3.1H/N. Depois foi inserido o sinal 11
para a secreção de pl85neu de rato através do retículo endoplasmático por amplificação enzimática de ADN (reação de PCR) utilizando um oligonucleotídeo senso que consiste num iniciador T7 (oligonucleotídeo #11) que reconhece a T7 ARN polimerase, presente no início do local de clonagem múltiplo pCMV3.1H/N, e um oligonucleotídeo antissenso (oligonucleotídeo #12) com o local BstEII na sua extremidade. Após purificação, digestão enzimática do fragmento amplificado com as enzimas de restrição HindIII e BstEII e clonagem subsequente, foi obtido (Figura 1) pCMV3.1H/Nh2°cys-TM-8CpG (Figura 1). Este plasmídeo foi utilizado em experiências de vacinação, para o comparar com pCMV3.1 H/NhECD-TM-8CpG. Daí em diante, foi preparado um ADNc quimérico que codifica a proteína de fusão entre a 2a cys e domínio transmembranar (ntl372-nt 2204) da sequência humana e a Ia cys (nt 1-nt 1250) da sequência de rato. A reconstituição da sequência de proteína completa pela fusão de porções que derivam de ADNc de rato e humano, respetivamente, permite aumentar a resposta imune. Construção do plasmídeo quimérico que contém a sequência do primeiro domínio de cisteína da pl85neu de rato e do segundo domínio de cisteína e domínio transmembranar da (nt 1-nt 1250) humana: pCMY3.IH/N-rl°cys-h2°cysTM-8CpG
Ao contrário da sequência de ADNc de rato que contém apenas um local BstEII (ntl250) no domínio extracelular localizado na região nucleotídica que separa a primeira e a segunda região rica em cisteínas, a sequência de ADNc do domínio extracelular de Erb2 tem dois locais de restrição para BstEII: um na posição 1372 (nt), como na sequência de rato, e o outro na posição 963 (nt) , isto é, na porção da sequência que codifica a Ia cys do domínio extracelular. A 12 presença do local BstEII na mesma posição tanto no domínio do ADNc de rato (1250nt) e no ADNc humano (1372nt) permitiu a construção de um plasmídeo capaz de codificar um produto de fusão entre a Ia cys de rato e a 2a cys humana. De facto, digerir o pCMV3.lH/N-h2°cysTM-8CpG com as enzimas de restrição HindIII e BstEII permitiu substituir o fragmento de ADN que codifica o sinal de segregação da pl85neu de rato com a sequência nucleotídica que codifica a Ia cys de rato obtida através da digestão de pCMV3.lrECD-TM-4CpG com as mesmas enzimas. 0 produto do plasmídeo pCMV3.ΙΗ/Ν-rl°cys-h2°cysTM-8CpG (Figura 2) consiste numa porção de 412 aa da pl85neu de rato e uma porção de 274 aa da pl85neu humana. Este novo plasmídeo, pCMV3.ÍH/Nrl°cys-h2°cysTM-8CpG foi utilizado em experiências de vacinação utilizando pCMV3.ΙΗ/Ν-hECD-TM-8CpG como termo comparativo. Surpreendentemente, o plasmídeo que codifica a proteína quimérica induz em ratinhos uma proteção completa contra tumores que expressam a pl85neu humana (Quadro) . Esta proteção é semelhante à induzida por pCMV3.lH/N-hECD-TM-8CpG. Além disso, a análise dos soros de ratinho vacinados com ambos plasmídeos tem evidenciado um título de anticorpo semelhante à pl85neu humana.
Plasmídeos capazes de codificar fragmentos decrescentes do domínio extracelular e trasmembranar da p!85neu humana A construção de sete plasmídeos que codificam fragmentos decrescentes do domínio extracelular e transmembranar da pl85neu humana, nomeadamente: pCMV3.lH/NhECDl-TM-8CpG (-70 aa) , pCMV3.1 H/NhECD2-TM-8CpG (-150 aa) , pCMV3.lH/NhECD3-TM-8CpG (-230 aa) , pCMV3.1 H/NhECD4-TM-8CpG (-310 aa) , pCMV3.lH/NhECD5-TM-8CpG (390 aa), pCMV3.1H/NhECD6-TM-8CpG (-470 aa) e pCMV3.!H/NhECD7- 13 TM-8CpG (-550 aa). O fragmento codificado pelo primeiro destes fragmentos é 70 aa (deleção de 360 pb) mais curto. Todos os outros são gradualmente 80 aa mais curtos (deleções de 240 pb).
Estes fragmentos foram obtidos por amplificação enzimática de ADN, utilizando sete oligonucleotideos senso diferentes com local de restrição Nhel (oligonucleotideos #13-#19) na sua extremidade e um oligonucleotideo antissenso (oligonucleotideo #20) capaz de reconhecer o local designado "local primário reverso pcDNA3.1BGH " (830-850 nt) presente na extremidade 3' do poliligante de pCMV3.1. Além da digestão enzimática com as enzimas de restrição Nhel e Pmel, os produtos de amplificação foram clonados no lider pCMV3.ΙΗ/Ν-neu, previamente obtido inserindo o sinal de secreção no reticulo endoplasmático da pl85neu de rato em locais de restrição. O fragmento de ADN do sinal de secreção da pl85neu de rato foi obtido por amplificação enzimática de ADN utilizando o iniciador T7 (oligonucleotideo #11) como nucleotideo senso e um nucleotideo antissenso (oligonucleotideo #21) com o local Nhel na sua extremidade. O fragmento amplificado após purificação e digestões de restrição com HindIII e Nhel foi clonado no plasmideo pCMV3.1H/N, digerido com as mesmas enzimas, obtendo assim o lider pCMV3.ΙΗ/Ν-neu. É esperada a expressão membranar das diferentes formas truncadas da pl85neu humana dada a presença do sinal de secreção para o reticulo endoplasmático da pl85neu de rato. Os plasmideos que codificam as formas truncadas de pCMV3.lH/NhECDl-TM-8CpG (Figura 3), pCMV3.lH/NhECD2-TM-8CpG (Figura 4), pCMV3.lH/NhECD3-TM-8CpG (Figura 5), pCMV3.lH/NhECD4-TM-8CpG (Figura 6) bem como o plasmideo controlo pCMV3.lH/NhECD-TM- 14 8CpG, protegem 100% dos ratinhos vacinados contra uma inoculação letal de células tumorais que expressam a pl85neu humana (Quadro). O plasmideo pCMV3.lH/NhECD5-TM-8CpG (Figura 7) protege 60% dos animais (Quadro), enquanto os plasmideos pCMV3.lH/NhECD6-TM- 8CpG e pCMV3.lH/NhECD7-TM-8CpG (Figuras 8 e 9) , não têm efeito protetor contra uma inoculação letal de células tumorais que expressam a pl 185neu humana (Quadro) . Os produtos da proteína expressos pelos diferentes plasmideos não são segregados através do retículo endoplasmático. A ausência de sequências de consenso necessárias para a glicosilação e para 0 seu processamento através do retículo endoplasmático, ou alterações conformacionais devido à deleção de aminoácidos no terminal -NH2, poderiam explicar a ausência dos produtos da proteína na membrana. Logo, para verificar ainda se as várias formas truncadas do domínio extracelular e transmembranar da pl85neu humana foram expressos corretamente, foram gerados novos plasmideos que codificam proteínas de fusão caracterizadas pelo epítopo myc no terminal -NH2. Estas proteínas recombinantes são reconhecidas por um anticorpo monoclonal anti-myc, portanto é possível analisar a sua expressão e localização por microscopia confocal.
Primeiro foi criado um novo plasmideo que codifica o sinal de secreção para o retículo endoplasmático de rato (líder neu) e para o epítopo myc. A clonagem foi realizada utilizando uma sequência sintética que consiste num senso (oligonucleotídeo #22) e antissenso (oligonucleotídeo #23) tendo em ambas as extremidades o local Nhel. O local Nhel na posição 5' foi mutado de modo a, uma vez ligado corretamente, não ser reconhecido pela enzima. Obtivémos, 15 assim, o pCMV3.1H/ líder Nneu- epítopo myc. Com este plasmídeo, as sequências que codificam as formas truncadas da pl85neu humana foram clonadas nos locais de restrição Nhel e Pmel. Depois, os fibroblastos 3T3 NIH foram transfetados in vitro com plasmídeos utilizando lipofectamina 2000 (Invitroqen, Milão, Itália). Após 48 horas, as células transfetadas foram analisadas com microscopia confocal, utilizando um anticorpo monoclonal anti-myc conjuqado com FITC (Siqma-Aldrich Srl, Milão, Itália). Foi, assim, demonstrado que todas as formas truncadas codificadas pelos plasmídeos estão localizadas no citoplasma. Os fibroblastos 3T3 NIH foram transfetados em paralelo com o plasmídeo pCMV3.lH/NhECD-TM-8CpG e analisados com microscopia confocal utilizando o anticorpo monoclonal c-erbB2/c-neu Ab-3 (Oncoqene, Boston, MA) como anticorpo primário e um anticorpo secundário anti-ratinho conjugado com FITC (PharMigen, San Diego, CA) . Foi, assim, observado que o ECD-TM humano é expresso na membrana. Os resultados obtidos utilizando os primeiros quatro plasmídeos descritos previamente (pCMV3. .lH/NhECDl-TM- 8CpG, pCMV3. lH/NhECD2-TM-8CpG, pCMV3.lH/NhECD3-TM-8CpG, pCMV3.lHNhECD4-TM-8CpG) , demonstram que uma resposta celular é suficiente para a prevenção anti-tumor. Contudo, é sabido que a ativação contemporânea da resposta celular e humoral é necessária para uma terapêutica mais eficaz (Rielly et al., 2001, Câncer Res 61:880). Conforme já descrito no parágrafo anterior, a proteína quimérica codificada pelo plasmídeo pCMV3 .ΙΗ/Ν-rl°cys-h2°cysTM-8CpG é capaz de proteger 100% dos animais vacinados e é capaz de induzir uma forte resposta humoral nos ratinhos.
Plasmídeos quiméricos capazes de codificar cinco pl85neu 16 quiméricas homem-rato diferentes
Para a construção de plasmideos que codificam proteinas quiméricas, selecionámos pCMV3.lH/NhECDl-TM-8CpG, pCMV3.lH/NhECD2-TM-8CpG, pCMV3.lH/NhECD3-TM-8CpG e pCMV3.lH/NhECD4-TM-8CpG. Estes quatro plasmideos proteqem 100% dos ratinhos vacinados contra uma inoculação letal de células tumorais que expressam a p 185neu humana. Além disso, o plasmideo pCMV3.lH/NhECD5-TM-8CpG foi selecionado, mesmo se protege apenas 60% dos ratinhos vacinados, porque a proteína codificada difere apenas em 17 aa daquela que é codificada pelo pCMV3.1H/Nh2°cysECD-TM-8CpG (275 aa) , que protege 20% dos ratinhos vacinados. Podemos colocar a hipótese de que a sequência peptídica de 17 aa corresponde a um epítopo importante para a indução de uma resposta imune eficaz.
Os fragmentos de ADN que codificam porções da pl85neu de rato foram obtidos por amplificação enzimática de ADN. Para amplificar estes fragmentos de ADNc, foram utilizados seis oligonucleotídeos todos com a mesma orientação, nomeadamente aqueles do iniciador T7 (oligonucleotídeo #11), enquantos os cinco antissenso foram desenhados para reconhecer ADNc de rato nas posições corretas e ter o local de restrição para Nhel nas suas extremidades (oligonucleotídeos #24-#28). Após purificação e digestão com as enzimas de restrição HindIII e Nhel, os fragmentos amplificados foram inseridos nos plasmideos correspondentes (pCMV3.ΙΗ/NhECD l-TM-8CpG, pCMV3.1 H/NhECD2-TM-8CpG, pCMV3.1H/NhECD3-TM-8CpG, pCMV3.1H/ NhECD4-TM-8CpG pCMV3.lH/NhECD5-TM-8CpG) e digeridos com as mesmas enzimas de restrição. Desta forma, obtivémos cinco novos plasmideos capazes de codificar proteínas quiméricas de 689 aa, das 17 quais 2 (Val-Ser) pertencem ao local de restrição Nhel utilizado para a conjugação entre o ADN de rato e humano. A presença destes dois aa proporciona ambas porções humana e de rato heterocliticas.
As proteínas quiméricas diferem para as porções decrescentes da p 185neu humana e para as porções crescentes de pl85neu de rato. 0 plasmídeo pCMV3.lH/Nr73-hECDl-TM-8CpG (Figura 10) codifica 73 aa do domínio extracelular da pl85neu de rato e 614 aa da pl85neu humana. O plasmídeo pCMV3.lH/Nrl53-hECD2-TM-8CpG (Figura 11) codifica 153 aa do domínio extracelular da pl85neu de rato e 534 aa da pl85neu humana. O plasmídeo pCMV3.lH/Nr233-hECD3-TM-8CpG (Figura 12) codifica 233 aa do domínio extracelular da pl85neu de rato e 454 aa da pl85neu humana. O plasmídeo pCMV3.1H/Nr313-hECD4-TM-8CpG (Figura 13) codifica 313 aa do domínio extracelular da pl85neu de rato e 374 aa da pl85neu humana. O plasmídeo pCMV3.1H/Nr393-hECD5-TM- 8CpG (Figura 14) codifica 393 aa do domínio extracelular pl 185neu de rato e 294 aa da pl85neu humana. Evidência indireta da expressão da membrana da pl85neu quimérica humana/rato codificada por estes plasmídeos foi obtida imunizando ratinhos com os cinco novos plasmídeos e com pCMV3.ΙΗ/Ν-rl°cys-h2°cysTM-8CpG como controlo positivo. Os soros de todos os ratinhos vacinados contêm anticorpos específicos contra a pl85neu humana. Além disso, os animais vacinados com plasmídeos que codificam as cinco proteínas quiméricas diferentes também são protegidos com uma inoculação letal de células tumorais que expressam a pl85neu humana.
EXEMPLOS
Exemplo 1 - Construção do plasmídeo pCMV3.ΙΗ/Ν-rl°cys-
h2°cysTM-8CpG 18
Para construir o plasmídeo quimérico pCMV3.1H/N-rl°cys-h2°cysTM-8CpG começámos a partir do plasmideo pCMV-ECD-TM, que expressa o domínio extracelular e transmembranar da pl85neu de rato (Amici et al 2000, Gene Ther., 7: 703). O pCMV-ECD-TM foi digerido com as enzimas de restrição HindIII e Xbal (BioLabs, Beverly, MA) para separar a forma inserida a partir da espinha dorsal do plasmídeo.
Digestão de restrição com a enzima Hindlll. ADN de plasmídeo (1 pg/μΐ) 10 μΐ
Tampão de restrição 10X (NEB2)10 μΐ HindIII (1OU/μΙ) 5 μΐ Água 75 μΐ volume final 100 μΐ A mistura foi incubada a 37°C durante 4 horas e o produto da digestão controlado por eletroforese em 1% gel de agarose utilizando um marcador do peso molecular e o plasmídeo não digerido como controlo.
Assim que a linearização do plasmídeo foi confirmada, o ADN foi precipitado adicionando 1/10 volume de 3 M de acetato de sódio a pH 5,2 e 2 volumes de etanol absoluto frio. A amostra foi mantida em gelo durante 20 min., depois centrifugada com uma minicentrífuga a 14.000 rpm durante 12 min. A pelete foi lavada três vezes com 1 ml de etanol frio a 70%, seco em vácuo durante 5 min, depois ressuspensa em 84 μΐ de água e digerida enzimaticamente com a enzima de restrição Xbal.
Digestão de restrição com a enzima Xbal: ADN ressuspenso em água (10 pg) 84 μΐ 19
Tampão de restrição 10X (NEB2) 10 μΐ 1 μΐ 5 μΐ BSA 100X (lOOmg/ml) Xbal (lOU/ml) 100 μΐ A mistura foi incubada a 37°C durante 4 horas e o produto da digestão foi precipitado e seco conforme descrito anteriormente. O ADN foi ressuspenso em 30 μΐ de H20.
Os dois fragmentos de ADN correspondentes à espinha dorsal do plasmideo (pCMV de 4400 pb) e à inserção (ECD-TM de 2100 pb) foram separados por eletroforese num gel de agarose 1%. A banda correspondente à inserção foi removida e o ADN eluido a partir do gel utilizando um kit de extração do gel Qiaquick (Qiagen, Itália).
Paralelamente, a nova espinha dorsal do plasmideo (pCMV3.lH/N-4CpG) em que o fragmento de ADN correspondente à pl85 ECD-TM de rato, foi digerida com as mesmas enzimas de restrição e eluida em gel de agarose.
Os fragmentos de ADN correspondentes a ECD-TM de rato e o plasmideo linearizado pCMV3.lH/N-4CpG foram utilizados para obter pCMV3.lH/N-rECD-TM-4CpG por reação de ligação. Reação de ligação
Inserção de ADN (rECD-TM) (50 ng/μΐ) 2 μΐ ADN do plasmideo linearizado (pCMV3.1 H/N4CpG) 1 μΐ (50 ng/μΐ)
Tampão de reação 10X for T4 ADN ligase 1 μΐ T4 ADN ligase (2υ/μ1) 1 μΐ Água 5 μΐ 10 μΐ 20 A reação de ligação foi incubada a 16°C durante 4 horas. 0 produto da ligação foi depois utilizado para transformar a estirpe bacteriana DH5a da E. coli. As células bacterianas foram tornadas competentes com a técnica CaCl2.
Transformação da estirpe bacteriana DH5a: Células bacterianas competentes 100 μΐ Produto da ligação 5 μΐ
Para fazer o ADN do plasmídeo penetrar nas células competentes, estas foram mantidas em gelo durante 40 min. e submetidas a choque térmico (1,5 min. a 42 °C e depois 2 min. em gelo).
Após adicionar 1 ml de meio de crescimento LB, as
células bacterianas transformadas foram incubadas a 37°C durante 1 hora para restaurar as suas condições fisiológicas. A suspensão de células foi depois centrifugada a 6000 rpm durante 1 min. e a pelete foi ressuspensa em 100 μΐ de LB.
As células foram semeadas em placas de Petri contendo meio sólido seletivo (LB com agar + ampicilina 100 pg/ml) e crescidas a 37°C durante 1 noite. A ampicilina permite o crescimento das células contendo o plasmídeo pCMV3.1H/N-rECD-TM-4CpG que confere resistência à ampicilina.
Os clones resultantes foram analisados por lise alcalina para selecionar aqueles que contêm o plasmídeo recombinante pCMV3.lH/N-rECD-TM-4CpG.
Para obter o plasmídeo quimérico pCMV3.ΙΗ/Ν-rl°cys- 21 h2°cysTM-8CpG, o plasmideo pCMV3.lH/N-rECD-TM-4CpG foi digerido com as enzimas de restrição BstEII e Xbal para remover o segundo dominio de cisterna junto com o dominio transmembranar da pl85neu de rato. Ao mesmo tempo, o plasmideo pCMV3.lhECD-TM-4CpG foi digerido com as mesmas enzimas para isolar o fragmento de ADN correspondente ao segundo sub-domínio de cisteina e dominio transmembranar do gene humano.
Digestão com BstEII: ADN de plasmideo (1 yg/yl) 10 μΐ
Tampão de restrição 10X (NEB3) 10 μΐ
BstEII (1OU/μΙ) 5 μΐ H20 75 μΐ volume final 100 μΐ A mistura foi incubada a 60°C durante 4 horas. A digestão de restrição com Xbal, recuperação dos fragmentos a serem utilizados para clonagem, reação de ligação e transformação das células competentes foi descrita anteriormente. O plasmideo quimérico resultante pCMV3.lH/N-rl0cys-h2°cysTM-8CpG foi sequenciado utilizando o Analisador Genético automático ABI PRISM 310 (Applied Biosystem), para verificar a inserção correta do fragmento que corresponde ao 2° subdomínio de cisteina e ao dominio transmembranar do gene humano.
Exemplo 2 - teste in vivo Animais
Foram utilizados ratinhos Balb/cAnCr (H-2d) fêmea com cerca de sete semanas de vida em todas as experiências.
Os animais, fornecidos pelos Laboratórios Charles 22
River (Calco, MI, Itália), são crescidos em condições asséticas e de acordo com as diretivas da Comunidade Europeia.
Administração intramuscular seguida de eletroporação in vivo
Para evitar contrações indesejadas do músculo tibial cada ratinho foi anestesiado por inoculação i.p. de 300 μΐ de avertina, feita de 0,58 g tribromoetanol (Sigma-Aldrich) e 310 μΐ de álccol Tert-Amil (Aldrich) dissolvido em 39,5 ml de água desionizada. Todos os ratinhos foram rapados em correspondência com o músculo tibial para a inoculação.
Os animais foram vacinados em correspondência com ambos músculos antero-tibiais, com 40 μΐ de solução contendo 50 pg de ADN. A mistura contendo ADN foi preparada brevemente antes da utilização, em conformidade com as indicações do Dr. F. Pericle (Valentis, Inc., The Woodlands, Texas, USA). Esta solução contém 1,25 mg/ml de ADN do plasmideo, 6 mg/ml de sal de poli-L-glutamato de sódio (Sigma-Aldrich, S.r.I., Milão, Itália), 150 mM de cloreto de sódio (Fluka, BioChemika, Buchs, Suiça) e água destilada livre de endotoxinas (Nucleare Free Water, Promega Corporation) para um volume final de 1 ml.
Após cerca de 5 min da inoculação, a área tratada foi submetida a eletroporação, por aplicação de dois impulsos elétricos com uma intensidade de 375 V/cm2, cada um durando 25 ms, utilizando o eletroporador Electro Square Porator (T820, BTX, San Diego, CA, USA). Os impulsos elétricos transcutâneos foram aplicados através da utilização de dois elétrodos de aço quadrados colocados a 3 mm um do outro, ao lado de cada pata. A imunização génica por eletroporação 23 foi realizada duas vezes para cada animal 21 e 7 dias antes da inoculação das células tumorais.
Inoculação de células tumorais
Os ratinhos foram inoculados com uma suspensão contendo 2 x 105 D2F2/E2 células. Estas células derivam de um tumor mamário gerado espontaneamente num nódulo alveolar hiperplásico de um ratinho BALB/c e expressam níveis elevados da pl85 humana.
Avaliação in vivo do crescimento tumoral 0 crescimento tumoral foi avaliado semanalmente por palpação e as dimensões dos tumores foram medidas ao longo de dois diâmetros perpendiculares com um calibre. As massas neoplásicas que mediam mais de 3 mm são consideradas como tumores. 0 crescimento tumoral foi seguido por 100 dias desde a inoculação do tumor ou até o tumor ter crescido até um diâmetro superior a 10 mm, depois os animais foram sacrificados.
Quadro
Ratinhos: BALB/c fêmea Tumor: pl85neu humana que expressa D2F2-E2 Plasmideos Número de ratinhos proteção anticorpos pCMV3.lH/N-8CpG 5 0% pCMV3.lH/N-hECD-TM-8CpG 5 100% + + + pCMV3.lH/N-hECDl-TM- 8CpG 5 100% pCMV3.1H/N- hECD2-TM-8CpG 5 100% 24 pCMV3.1H/N- hECD3-TM-8CpG 5 100% + pCMV3.1H/N- hECD4-TM-8CpG 5 100% ++ pCMV3.1H/N- hECD5-TM-8CpG 5 60% pCMV3.1H/N- hECD6-TM-8CpG 5 0% pCMV3.1H/N- hECD7-TM-8CpG 5 0% pCMV3.ΙΗ/Ν-rl °cys-h2 ° cys.-TM-8CpG 5 100% +++
Lista dos oligonucleotideos sintetizados e utilizados para construção do plasmídeo #1. AccIII-TAA-4CpG-erbB2 senso 71 nt 5 ’ CCGGAAGTAAATAATCGACGTTCAAATAATCGACGTTCAAAT AATCGACGTTCAAATAATCGACGTTCAAT 3’ #2. XbaI-TAA-4CpG-erbB2 antissenso 71 nt 5 ’ CTAG ATTGAACGTCGATTATTTGAACGTCGATTATTTGAACG TCGATTATTTGAACGTCGATTATTTACTT 3’ #3. AccIII-TAA-4noCpG-erbB2 senso 71 nt 5 ’ CCGGAAGTAAATAATAGAGCTTCAAATAATAGAGCTTC AAA TAATAGAGCTTCAAATAATAGAGCTTCAAT 3’ #4. XbaI-TAA-4noCpG-erbB2 antissenso 71 nt 5 ’ CTAGATTG AAGCTCTATT ATTTG AAGCTCTATTATTTGAA.GCT CTATTATTTGAAGCTCTATTATTTACTT 3’ #5. HindIII-Nhel senso 27nt 5' CTAGGAAGCTTGTTTAACTTGCTAGCT 3' 25 #6. HindIII-Nhel antissenso 27 nt 5'AGCTAGCTAGCAAGTTAAACAAGCTTC 3' #7. XbaI-4CpG-neu senso 68 nt 5 ’ CTAGATAATCGACGTTCAAATAATCGACGTTCAAATA ATCGA CGTTCAAATAATCGACGTTCAAGTTT 3’ #8. Pmel-CpG-neu antissenso 64 nt
5 ’ AAACTTGAACGTCG ATTATTTG AACGTCGATTATTTGAAC GT CGATTATTTGAACGTCGATTAT 3’ #9. XbaI-4noCpG-neu senso 68 nt 5' CTAGATAATAGAGCTTC AAATAATAGAGCTTC AAATAATAG AGCTTCAAATAATAGAGCTTCAAGTTT 35 #10. PmeI-4noCpG-neu antissenso 64 nt 5’AAACTTGAAGCTCTATTATTTGAAGCTCTATTATTTGAAGCT CTATTATTTGAAGCTCTATTAT 3’ #11. Iniciador T7 5'TAATACGACTCACTATAGGG 3' #12. Lider BstEII-neu antissenso 32 nt 5'GGCCGGTTACCCGCGATTCCGGGGGGCAGGAG 3' #13. hECDl-TM-senso-Nhel 3 5 nt 5'CCGGCTAGCTAGCCTGTCCTTCCTGCAGGATATCC 3' #14. hECD2-TM-senso-NheI 35 nt 5'CCGGCTAGCTAGCGGAGGGGTCTTGATCCAGCGGA 3' #15. hECD3-TM-senso-NheI 35 nt 5'CCGGCTAGCTAGCCTGCCCACTGACTGCTGCCATG 3' #16. hECD4-TM-senso-NheI 35 nt 5'CCGGCTAGCTAGCTGCACCCTCGTCTGCCCCCTGC 3' #17. hECD5-TM-senso-NheI 35 nt 5'CCGGCTAGCTAGCCCGCTCCAGCCAGAGCAGCTCC 3' #18. hECD6-TM-senso-NheI 35 nt 5'CCGGCTAGCTAGCAACACCCACCTCTGCTTCGTGC 3' 26 #19. hECD7-TM-senso-NheI 35 nt CCGGCTAGCTAGCCCCAGGGAGTATGTGAATGCCA3' #20. pcDNA3.1/BGH iniciador reverso 20 nt 5'TAGAAGGCACAGTCGAGGCT 3' #21. lider Nhel-neu-antissenso 43 nt
5 ’ CCGGCTAGCTAGCC GC G ATTCC GGGGGGC AGG AGGGCGAGG AG 3’ #22. His-myc-senso-noNhel 69 nt 5’CTAGGCATCATCATCATCATCATAATGGTCATACCGGTGAAC AAAAACTCATCTCAGAAGAGGATCTGG 3’ #23. His-myc-antissenso-Nhel 69 nt SOTAGCCAGATCCTCTTCTGAGATGAGTTTTTGTTCACCGGTAT GACCATTATGATGATGATGATGATGC 3’ #24. Nhel-73neu antissenso 35 nt 5'CCGGCTAGCTAGCGCTGGCATTGGCAGGCACGTAG3' #25. Nhel-153neu antissenso 35 nt 5'CCGGCTAGCTAGCCAGGATCTCTGTGAGACTTCGA 3' #26. Nhel-233neu antissenso35 nt 5'CCGGCTAGCTAGCGCCCTTGCACCGGGCACAACCA3' #27. Nhel-313neu antissenso35 nt 5'CCGGCTAGCTAGCTCCCACTTCCGTAGACAGGTAG 3' #28. Nhel-393neu antissenso 35 nt 5'CCGGCTAGCTAGCAATGCCGGAGGAGGGGTCCCCA3' 27
LISTAGEM DAS SEQUÊNCIAS <110> INDENA S.p.A.
<120> ADN QUE CODIFICA pl85neu E UTILIZAÇÕES TERAPÊUTICAS DO MESMO <130> 7118M <160> 42 <170> Patentln versão 3.1 <210> 1 <211> 922 <212> ADN <213> humana/rato <4 0 0> 1 ccgggccgga gccgcaatga tcatcatgga gctggcggcc tggtgccgct gggggttcct 60 cctcgccctc ctgccccccg gaatcgcggg ttacctatac atctcagcat ggccggacag 120 cctgcctgac ctcagcgtct tccagaacct gcaagtaatc cggggacgaa ttctgcacaa 180 tggcgcctac tcgctgaccc tgcaagggct gggcatcagc tggctggggc tgcgctcact 240 gagggaactg ggcagtggac tggccctcat ccaccataac acccacctct gcttcgtgca 300 cacggtgccc tgggaccagc tctttcggaa cccgcaccaa gctctgctcc acactgccaa 360 ccggccagag gacgagtgtg tgggcgaggg cctggcctgc caccagctgt gcgcccgagg 420 gcactgctgg ggtccagggc ccacccagtg tgtcaactgc agccagttcc ttcggggcca 480 ggagtgcgtg gaggaatgcc gagtactgca ggggctcccc agggagtatg tgaatgccag 540 gcactgtttg ccgtgccacc ctgagtgtca gccccagaat ggctcagtga cctgttttgg 600 accggaggct gaceagtgtg tggcctgtgc ccactataag gaccctccct tctgcgtggc 660 ccgctgcccc agcggtgtga aacctgacct ctcctacatg cccatctgga agtttccaga 720 tgaggagggc gcatgccagc cttgccccat caactgcacc cactcctgtg tggacctgga 780 840 28 840 28 900 922 tgacaagggc tgccccgccg agcagagagc cagccctctg acgtccatcg tctctgcggt ggttggcatt ctgctggtcg tggtcttggg ggtggtcttt gggatcctca tcaagcgacg gcagcagaag atccggaagt aa <210>2 <211> 2083 <212> ADN <213> humana/rato <400> 2 29 ccgggccgga cctcgccctc gttgcggctc otgtcaggta attcctgcag gcgcgtccca tgccctggct cagaacccca aggagttttg cgtcttccgc ctgtccacct ctgtcagatc gcccactgac ctgcctggcc cgtcacctac tggtgccagc cactctggtg tgagaaatgc aggggcgagg tgggagcctg gctgaggcct catctcagca gccgcaatga ctgccccccg cctgccagtc gtgcagggca gacatccagg ctgcaaaggc gtgctagaca gaggggctgc atccgtggga aagaataacc tgtgcccccg ttgactggca tgctgccatg tgcctceact aacacagaca tgcgtgacca tgtcccccga agcaagccct gccatcacca gcatttttgc gagcagctcc tggccggaca tcatcatgga gaatcgcggg ctgagaccca acttggagct aagttcaggg tgcgcatcgt accgagatcc gggagctgca accctcagct aactggctcc cctgcaaaga ccatctgtac agcagtgtgc tcaatcatag cetttgagte cctgcoccta ataaccaaga gtgctcgagt gtgacaatgt cggagagctt aagtgttcga gcctgcctga gctggcggcc cacccaagtg cctggacatg tacctacgtg ttacatgctc gagaggçacc tcaggacaat gcttcgaagt ctgctaccag tgtcgatata caatcactgt cagtggttgt cgcaggctgc tggtatctgt catgcacaac caactacctg ggtcacagct gtgctatggt ccaggagttt tgatggggac aacectggag cctcagcgtc tggtgccgct tgtaccggca ctccgccacc cctgccaatg atcgctcaca cagctctttg gtcgccgcct ctcacagaga gacatggttt gacaccaatc tggggtgaga gcccggtgca acgggcccca gagctgcact cctçagggtc tctacggaag gaggacggaa ctgggcatgg gatggctgca ccctcctccg gagatcacag ttccagaacc gggggttcct cagacatgaa tgtaccaggg ccagcctctc accaggtgaa aggacaagta ccaccccagg tcctgaaggg tgtggaagga gttcccgggc gtccggaaga agggccggct agcattctga gcccagccct gctacacctt tgggatcctg cacagegttg agcaccttcg agaagatctt gcattgctcc gttacetata tgcaagtaat 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 30 ccggggacga attctgcaca atggcgccta ctcgctgacc ctgcaagggc tgggcatcag 1380 ctggctgggg ctgcgctcac tgagggaact gggcagtgga ctggccctca tccaccataa 1440 cacccacctc tgcttcgtgc acacggtgcc ctgggaccag ctctttcgga acccgcacca 1500 agctctgctc cacaatgcca accggccaga ggacgagtgt gtgggcgagg gcctggcctg 1560 ccaccagctg tgcgcccgag ggcactgctg gggtccaggg cccacccagt gtgtcaactg 1620 cagccagttc cttcggggcc aggagtgcgt ggaggaatgc cgagtactgc a999gctccc 1680 cagggagtat gtgaatgcca ggcaotgttt gccgtgccac cctgagtgtc agccccagaa 1740 tggctcagtg acctgttttg gaccggaggc tgaccagtgt gtggcctgtg cccactataa 1800 ggaccctccc ttctgcgtgg cccgctgccc cagcggtgtg aaacctgacc tctcctacat 1860 gcccatctgg aagtttccag atgaggaggg cgcatgccag ccttgcccca tcaactgcac 1920 ccactcctgt gtggacctgg atgacaaggg ctgccccgcc gagcagagag ccagccctct 1980 gacgtccatc gtctctgcgg tggttggcat tctgctggtc gtggtcttgg gggtggtctt 2040 tgggatcctc atcaagcgac ggcagcagaa gatecggaag taa 2083 <210>3 <211> 1939 <212> ADN <213> humana/rato <400> 3 31 ccgggccgga gccgcaatga tcatcatgga gctggcggcc tggtgccgct gggggttcct 60 cctcgccctc ctgccccccg gaatcgcggc tagcctgtcc ttcctgcagg atatccagga 120 ggtgcagggc tacgtgctca tcgctcacaa ccaagtgagg caggtcccac tgcagaggct 180 gcggattgtg cgaggcaccc agctctttga ggacaactat gccctggccg tgctagacaa 240 tggagacccg ctgaacaata ccacccctgt cacaggggcc tccceaggag gcctgcggga 300 gctgcagctt cgaagcctca cagagatctt gaaaggaggg gtcttgatcc agcggaaccc 360 ccagctctgc taccaggaca cgattttgtg gaaggacatc ttccacaaga acaaccagct 420 ggctctcaca ctgatagaca ccaaccgctc tcgggcctgc cacccctgtt ctccgatgtg 480 taagggctcc cgctgctggg gagagagttc tgaggattgt cagagcctga cgcgcactgt 540 ctgtgccggt ggctgtgccc gctgcaaggg gccactgccc actgactgct gccatgagca 600 gtgtgctgcc ggctgcacgg gccccaagca ctctgactgc ctggcctgcc tccacttcaa 660 ccacagtggc atctgtgagc tgcactgccc agccctggtc acctacaaca cagacacgtt 720 tgagtccatg cccaatcccg agggccggta tacattcggc gccagctgtg tgactgcctg 780 32 tccctacaac tacctttcta cggacgtggg atcctgcacc ctcgtctgcc ccctgcacaa 840 ccaagaggtg acagcagagg atggaacaca gcggtgtgag aagtgcagca agccctgtgc 900 ccgagtgtgc tatggtctgg gcatggagca cttgcgagag gtgagggcag ttaccagtgc 960 caatatccag gagtttgctg gctgcaagaa gatctttggg agcctggcat ttctgccgga 020 gagctttgat ggggacccag cctccaacac tgccccgctc cagccagagc agctccaagt 080 gtttgagact ctggaagaga tcacaggtta cctatacatc tcagcatggc cggacagcct 140 gcctgacctc agcgtcttcc agaacctgca agtaatccgg ggacgaattc tgcacaatgg 1200 cgcctactcg ctgaccctgc aagggctggg catcagctgg ctggggctgc gctcactgag 1260 ggaactgggc agtggactgg ccctcatcca ccataacacc cacctctgct tcgtgcacac 1320 ggtgccctgg gaccagctct ttcggaaccc gcaccaagct ctgctccaca ctgccaaccg 1380 gccagaggac gagtgtgtgg gcgagggcct ggcctgccac cagctgtgcg cccgagggca 1440 ctgctggggt ccagggccca cccagtgtgt caactgcagc cagttccttc ggggccagga 1500 gtgcgtggag gaatgccgag tactgcaggg gctccccagg gagtatgtga atgccaggca 1560 ctgtttgccg tgccaccctg agtgtcagcc ccagaatggc tcagtgacct gttttggacc 1620 ggaggctgac cagtgtgtgg cctgtgccca ctataaggac cctcccttct gcgtggcccg 1680 ctgccccagc ggtgtgaaac ctgacctctc ctacatgccc atctggaagt ttccagatga 1740 ggagggcgca tgccagcctt gccccatcaa ctgcacccac tcctgtgtgg acctggatga 1800 caagggctgc cccgccgagc agagagccag ccctctgacg tccatcgtct ctgcggtggt 1860 tggcattctg ctggtcgtgg tcttgggggt ggtctttggg atcctcatca agcgacggca 1920 gcagaagatc cggaagtaa 1939 < 210 > 4 <211> 1699 <212> ADN <213> humana/rato <400> 4 33 ccgggccgga gccgcaatga tcatcatgga gctggcggcc tggtgccgct gggggttcct 60 cctcgccotc ctgccccccg gaatcgcggc tagcggaggg gtcttgatcc agcggaaccc 120 ccagctctgc taccaggaca cgattttgtg gaaggacatc ttccacaaga acaaccagct 180 ggctctcaca ctgatagaca ccaaccgctc tcgggcctgc cacccctgtt ctccgatgtg 240 taagggctcc cgctgctggg gagagagttc tgaggattgt cagagcotga cgcgcactgt 300 ctgtgccggt ggctgtgccc gctgcaaggg gccactgccc actgaotgct gccatgagca 360 gtgtgctgcc ggctgcacgg gccccaagca ctctgactgc ctggcctgcc tccacttcaa 420 ccacagtggc atctgtgagc tgcactgccc agccctggtc acctacaaca cagacacgtt 480 tgagtccatg cccaatcccg agggccggta tacattcggc gccagctgtg tgactgcctg 540 tccctacaac tacctttcta cggacgtggg atcctgcacc ctcgtctgcc ccctgcacaa 600 ccaagaggtg acagcagagg atggaacaca gcggtgtgag aagtgcagca agccctgtgc 660 ccgagtgtgc tatggtctgg gcatggagca cttgcgagag gtgagggcag ttaceagtgc 720 caatatccag gagtttgctg gctgcaagaa gatctttggg agcctggcat ttctgccgga 780 gagctttgat ggggacccag cctccaacac tgccccgctc cagccagagc agctccaagt 840 gtttgagact ctggaagaga tcacaggtta cctatacatc tcagcatggc cggacagcct 900 gcctgacctc agcgtcttcc agaacctgca agtaatccgg ggacgaattc tgcacaatgg 960 cgcctactcg ctgaccctgc aagggctggg catcagctgg ctggggctgc gctcactgag 1020 ggaactgggc agtggactgg ccctcateca ccataacacc cacctctgct tcgtgcacac 1080 ggtgccctgg gaccagctct ttcggaaccc gcaccaagct ctgctccaca ctgccaaceg 1140 gccagaggac gagtgtgtgg gcgagggcct ggcotgccac cagctgtgcg cccgagggca 1200 ctgctggggt ccagggccca cccagtgtgt caactgcagc cagttccttc ggggccagga 1260 gtgcgtggag gaatgccgag tactgcaggg gctccccagg gagtatgtga atgccaggca 1320 ctgtttgccg tgccaccctg agtgtcagcc ccagaatggc tcagtgacct gttttggacc 1380 ggaggctgac cagtgtgtgg cctgtgccca ctataaggac cctcccttct gcgtggcccg 1440 ctgecccagc ggtgtgaaac ctgacctctc ctacatgccc atctggaagt ttccagatga 1500 ggagggcgca tgccagcctt gccccatcaa ctgcacccac tcctgtgtgg acctggatga 1560 caagggctgc cccgccgagc agagagccag ccctctgacg tccatcgtct ctgcggtggt 1620 tggcattctg ctggtcgtgg tcttgggggt ggtctttggg atcctcatca agcgacggca 1680 gcagaagatc cggaagtaa 1699 <210>5 34 <211> 1459 <212> ADN <213> humana/rato <400> 5 60 120 ccgggccgga gccgcaatga tcatcatgga gctggcggcc tggtgccgct gggggttcct cctcgccctc ctgccccccg gaatcgcggc tagcctgccc actgactgct gccatgagca gtgtgctgcc ggctgcacgg gccccaagca ctctgactgc ctggcctgcc tccacttcaa 180 35 ccacagtggc atctgtgagc tgcactgccc agccctggtc acctacaaca cagacacgtt 240 tgagtccatg cccaatcccg agggccggta tacattcggc gccagctgtg tgactgcctg 300 tccctacaac tacctttcta oggacgtggg atcctgcacc ctcgtctgcc ccctgcacaa 360 ccaagaggtg acagcagagg atggaacaca gcggtgtgag aagtgcagca agccctgtgc 420 ccgagtgtgc tatggtctgg gcatggagca cttgcgagag gtgagggcag ttaccagtgc 480 caatatccag gagtttgctg gctgcaagaa gatctttggg agcctggcat ttctgccgga 540 gagctttgat ggggacccag cctccaacac tgccccgctc cagccagagc agctccaagt 600 gtttgagact ctggaagaga tcacaggtta cctatacatc tcagcatggc cggacagcct 660 gcctgacctc agcgtcttcc agaacctgca agtaatccgg ggacgaattc tgcacaatgg 720 cgcctaotcg ctgaccctgc aagggctggg catcagctgg ctggggctgc gctcactgag 780 ggaactgggc agtggactgg ccctcatcca ccataacacc cacctctgct tcgtgcacac 840 ggtgccctgg gaccagctct ttcggaaccc gcaccaagct ctgctccaca ctgccaaccg 900 gccagaggac gagtgtgtgg gcgagggcct ggcctgccac cagctgtgcg cccgagggca 960 ctgctggggt ccagggccca cccagtgtgt caactgcagc cagttccttc ggggccagga 1020 gtgcgtggag gaatgccgag tactgcaggg gctccccagg gagtatgtga atgccaggca 1080 ctgtttgccg tgccaccctg agtgtcagcc ccagaatggc tcagtgacct gttttggacc 1140 ggaggctgac cagtgtgtgg cctgtgccca ctataaggac cctcccttct gcgtggcccg 1200 ctgccccagc ggtgtgaaac ctgacctctc ctacatgccc atctggaagt ttccagatga 1260 ggagggcgca tgccagcctt gccccatcaa ctgcacccac tcctgtgtgg acctggatga 1320 caagggctgc eccgccgagc agagagccag ccctctgacg tccatcgtct ctgcggtggt 1380 tggcattctg ctggtcgtgg tcttgggggt ggtctttggg atcctcatca agcgacggca 1440 gcagaagatc cggaagtaa 1459 <210>6 <211> 1219 <212> ADN <213> humana/rato <400> 6 36 ccgggccgga gccgcaatga tcatcatgga gctggcggcc tggtgccgct gggggttcct 60 cetcgccctc ctgccccccg gaatcgcggc tagctgcacc ctcgtctgcc ccctgcacaa 120 ccaagaggtg acagcagagg atggaacaca gcggtgtgag aagtgcagca agccctgtgc 180 ccgagtgtgc tatggtctgg gcatggagca cttgcgagag gtgagggcag ttaccagtgc 240 caatatccag gagtttgctg gctgcaagaa gatctttggg agcctggcat ttctgccgga 300 gagctttgat ggggacccag cctccaacac tgccccgctc cagccagagc agctccaagt 360 gtttgagact ctggaagaga tcacaggtta cctatacatc tcagcatggc cggacagcct 420 gcctgacctc agcgtcttcc agaacctgca agtaatccgg ggacgaattc tgcacaatgg 480 cgcctactcg ctgaccctgc aagggctggg catcagctgg ctggggctgc gctcactgag 540 ggaactgggc agtggactgg ccctcatcca ccataacacc cacctctgct tcgtgcacac 600 ggtgccctgg gaccagctct ttcggaaccc gcaccaagcfc ctgctccaca ctgccaaccg 660 gccagaggac gagtgtgtgg gcgagggcct ggcctgccac cagctgtgcg cccgagggca 720 ctgctggggt ccagggccca cccagtgtgt caactgcagc cagttccttc ggggccagga 780 gtgcgtggag gaatgccgag tactgcaggg gctccccagg gagtatgtga atgccaggca 840 ctgtttgccg tgccaccctg agtgtcagcc ccagaatggc tcagtgacct gttttggacc 900 ggaggctgac cagtgtgtgg cctgtgccca ctataaggac cctcccttct gcgtggcccg 960 ctgccccagc ggtgtgaaac ctgacctctc ctacatgccc atctggaagt ttccagatga 1020 ggagggcgca tgccagcctt gccccatcaa ctgcacccac tcctgtgtgg acctggatga 1080 caagggctgc cccgccgagc agagagccag ccctctgacg tccatcgtct ctgcggtggt 1140 tggcattctg ctggtcgtgg tcttgggggt ggtctttggg atcctcatca agcgacggca 1200 gcagaagatc cggaagtaa 1219 <210>7 <211> 979 <212> ADN <213> humana/rato <400>7 37 ccggçccgga gccgcaatga tcatcatgga gctggcggcc tggtgccgct gggggttcct 60 cctcgccctc ctgccccccg gaatcgcggc tagcccgctc cagccagagc agctccaagt 120 gtttgagact ctggaagaga tcacaggtta cctatacatc tcagcatggc cggacaçcct 180 gcctgacctc agcgtcttcc agaacctgca agtaatccgg ggacgaattc tgcacaatgg 240 cgcctactcg ctgaccctgc aagggctggg catcagctgg ctggggctgc gctcactgag 300 gçaactgggc agtggactgg ccctcatcca ccataacacc cacctctgct tcgtgcacac 360 ggtgccctgg gaccagctct ttcggaaccc gcaccaagct ctgctccaca ctgccaaccg 420 gccagaggac gagtgtgtgg gcgagggcct ggcctgccac cagctgtgcg cccgagggca 480 ctgctggggt ccagggccca cccagtgtgt caactgcagc cagttccttc ggggccagga 540 gtgcgtggag gaatgccgag tactgcaggg gctccccagg gagtatgtga atgccaggca 600 ctgtttgccg tgccaccctg agtgtcagcc ccagaatggc tcagtgacct gttttggacc 660 ggaggctgac cagtgtgtgg cctgtgccca ctataaggac cctcccttct gcgtggcccg 720 ctgccccagc ggtgtgaaac ctgacctctc ctacatgccc atctggaagt ttccagatga 780 ggagggcgca tgccagcctt gccccatcaa ctgcacccac tcctgtgtgg acctggatga 840 caagggctgc cccgccgagc agagagccag ccctctgacg tccatcgtct ctgcggtggt 900 tggcattctg ctggtcgtgg tcttgggggt ggtctttggg atcctçatca agcgacggca 960 gcagaagatc cggaagtaa 979 <210>8 <211> 739 <212> ADN <213> humana/rato < 4 0 0 > 8 38 ccgggccgga gccgcaatga tcatcatgga gctggcggcc tggtgccgct gggggttcct 60 cctcgccctc ctgccccccg gaatcgcggc tagcaacacc cacctctgct tcgtgcacac 120 ggtgccctgg gaccagctct ttcggaaccc gcaccaagct ctgctccaca ctgccaaccg 180 gccagaggac gagtgtgtgg gcgagggcct ggcctgccac cagctgtgcg cccgagggca 240 ctgctggggt ccagggccca cccagtgtgt caactgcagc cagttccttc ggggccagga 300 gtgcgtggag gaatgccgag tactgcaggg gctccccagg gagtatgtga atgccaggca 360 ctgtttgccg tgccaccctg agtgtcagcc ccagaatggc tcagtgacct gttttggacc 420 ggaggctgac cagtgtgtgg cctgtgccca ctataaggac cctcccttct gcgtggcceg 480 ctgccccagc ggtgtgaaac ctgacctctc ctacatgccc atctggaagt ttccagatga 540 ggagggcgca tgccagcctt gccccatcaa ctgcacccac tcctgtgtgg acctggatga 600 caagggetgc cccgccgagc agagagccag ccctctgacg tccatcgtct ctgcggtggt 660 tggcattctg ctggtcgtgg tcttgggggt ggtctttggg atcctcatca agcgacggca 720 gcagaagatc cggaagtaa 739 <210>9 <211> 499 <212> ADN <213> humana/rato <400>9 60 120 180 240 300 360 420 480 ccgggccgga gccgcaatga cctcgccctc ctgccccccg ctgtttgccg tgccaccctg ggaggctgac cagtgtgtgg ctgccccagc ggtgtgaaac ggagggcgca tgccagcctt caagggetgc cccgccgagc tggcattctg ctggtcgtgg tcatcatgga gctggcggcc gaatcgcggc tagccccagg agtgtcagcc ccagaatggc cctgtgccca ctataaggac ctgacctctc ctacatgccc gccccatcaa ctgcacccac agagagccag ccctctgacg tcttgggggt ggtctttggg tggtgccgct gggggttcct gagtatgtga atgccaggca tcagtgacct gttttggacc cctcccttct gcgtggcceg atctggaagt ttccagatga tcctgtgtgg acctggatga tccatcgtct ctgcggtggt atcctcatca agcgacggca 499 gcagaagatc cggaagtaa <210> 10 39 <211> 2086 <212> ADN <213> humana/rato <400> 10 ccgggccgga cctcgcectc gttgcggctc ctgtcaggta cctgtccttc agtgaggcag caactatgcc aggggcctcc aggaggggtc ggacatcttc ggcctgccac ggattgtcag actgcccact gccgcaatga ctgccccccg cctgccagtc gtgcagggca ctgcaggata gtcccactgc ctggccgtgc ccaggaggcc ttgatccagc cacaagaaca ccctgttctc agcctgacgc gactgctgcc tcatcatgga gaatcgcggg ctgagaccca acttggagct tccaggaggt agaggctgcg tagacaatgg tgcgggagct ggaaccccca accagctggc cgatgtgtaa gcactgtctg atgagcagtg gctggcggcc cacccaagtg cctggacatg tacctacgtg gcagggctac gattgtgcga agacccgctg gcagcttcga gctctgctac tctcacactg gçgctcccgc tgccggtggc tgctgccggc tggtgccgct tgtaccggca ctccgccacc cctgccaatg gtgctcatcg ggcacccagc aacaatacca agcctcacag caggacacga atagacacca tgctggggag tgtgcccgct tgcacgggcc gggggttcct cagacatgaa tgtaccaggg ccagcgctag ctcacaacca tctttgagga cccctgtcac agatcttgaa ttttgtggaa accgctctcg agagttctga gcaaggggcc ccaagcactc 60 120 180 240 300 360 420 480 540 600 660 720 780 40 tgactgcctg gcctgcctcc acttcaacca cagtggcatc tgtgagctgc actgcccagc 840 cctggtcacc tacaacacag acacgtttga gtccatgccc aatcccgagg gccggtatac 900 attcggcgcc agctgtgtga ctgcctgtcc ctacaactac ctttctacgg acgtgggatc 960 ctgcaccctc gtctgccccc tgcacaacca agaggtgaca gcagaggatg gaacacagcg 1020 gtgtgagaag tgcagcaagc cctgtgcccg agtgtgctat ggtctgggca tggagcactt 1080 gcgagaggtg agggcagtta ccagtgccaa tatccaggag tttgctggct gcaagaagat 1140 ctttgggagc ctggcatttc tgccggagag ctttgatggg gacccagcct ccaacactgc 1200 cccgctccag ccagagcagc tccaagtgtt tgagactctg gaagagatca caggttacct 1260 atacatctca gcatggccgg acagcctgcc tgacctcagc gtcttccaga acctgcaagt 1320 aatccgggga cgaattctgc acaatggcgc ctactcgctg accctgcaag ggctgggcat 1380 cagctggctg gggctgcgct cactgaggga actgggcagt ggactggccc tcatccacca 1440 taacacccac ctctgcttcg tgcacacggt gccctgggac cagctctttc ggaacccgca 1500 ccaagctctg ctccacactg ccaaccggcc agaggacgag tgtgtgggcg agggcctggc 1560 ctgccaccag ctgtgcgccc gagggcactg ctggggtcca gggcccaccc agtgtgtcaa 1620 ctgcagccag ttccttcggg gccaggagtg cgtggaggaa tgecgagtac tgcaggggct 1680 ccccagggag tatgtgaatg ccaggcactg tttgccgtge caccctgagt gtcagcccca 1740 gaatggctca gtgacctgtt ttggaccgga ggctgaccag tgtgtggcet gtgcccacta 1800 taaggaccct cccttctgcg tggcccgctg ccccagcggt gtgaaacctg acctctccta 1860 catgcccatc tggaagtttc cagatgagga gggcgcatgc cagccttgcc ccatcaactg 1920 cacccactcc tgtgtggacc tggatgacaa gggctgcccc gccgagcaga gagccagccc 1980 tctgacgtcc atcgtctctg cggtggttgg cattctgctg gtcgtggtct tgggggtggt 2040 ctttgggatc ctcatcaagc gacggcagca gaagatccgg aagtaa 2086 <210> 11 <211> 2086 <212> ADN <213> humana/rato <400> 11 ccgggccgga gccgcaatga tcatcatgga gctggcggcc tggtgccgct gggggttcct 60 cctcgccctc ctgccccccg gaatcgeggg cacccaagtg tgtaccggca cagacatgaa 120 41 gttgcggctc ctgtcaggta attcctgcag gcgcgtocca tgccctggct cagaacccca cggaggggtc ggacatcttc ggcctgccac ggattgtcag actgcccact tgactgcctg cctggtcacc attcggcgcc ctgcaccctc gtgtgagaag gcgagaggtg ctttgggagc cccgctcoag atacatctca aatccgggga cagctggctg taacacccac ccaagctctg ctgccaccag ctgcagccag ccccagggag gaatggctca taaggaccct catgcccatc cacccactcc cctgccagtc gtgcagggca gacatccagg ctgcaaaggc gtgctagaca gaggggctgc ttgatccagc cacaagaaca ccctgttctc agcctgacgc gactgctgcc gcctgcctcc tacaacacag agctgtgtga gtctgccccc tgcagcaagc agggcagtta ctggcatttc ccagagcagc gcatggccgg cgaattctgc gggctgcgct ctctgcttcg ctccacactg ctgtgcgccc ttccttcggg tatgtgaatg gtgacctgtt cccttctgcg tggaagtttc tgtgtggacc ctgagaccca acttggaçct aagttcaggg tgcgcatcgt accgagatcc gggagctgca ggaaccccca accagctggc cgatgtgtaa gcactgtctg atgagcagtg acttcaacca acacgtttga ctgcctgtcc tgcacaacca cctgtgcccg ccagtgccaa tgccggagag tccaagtgtt acagcctgcc acaatggcgc cactgaggga tgcacacggt ccaaccggcc gagggcactg gccaggagtg ccaggcactg ttggaccgga tggcccgctg cagatgagga tggatgacaa cctggacatg tacctacgtg ttacatgctc gagagggacc tcaggacaat gcttcgaagt gctctgctac tctcacactg gggctcccgc tgccggtggc tgctgccggc cagtggcatc gtccatgccc ctacaactac agaggtgaca agtgtgctat tatccaggag ctttgatggg tgagactctg tgacctcagc ctactcgctg actgggcagt gccctgggac agaggacgag ctggggtcca cgtggaggaa tttgccgtgc ggctgaccag ccccagcggt gggcgcatgc gggctgcccc ctccgccacc cctgccaatg atcgctcaca cagctctttg gtcgccgcct ctcacagaga caggacacga atagacacca tgctggggag tgtgcccgct tgcacgggcc tgtgagctgc aatcccgagg ctttctacgg gcagaggatg ggtctgggca tttgctggct gacccagcct gaagagatca gtcttccaga accctgcaag ggactggccc cagctctttc tgtgtgggcg gggcccaccc tgccgagtac caccctgagt tgtgtggcct gtgaaacctg cagccttgcc gccgagcaga tgtaccaggg ccagcctctc accaggtgaa aggacaagta ccaccccagg tcctggctag ttttgtggaa accgctctcg agagttctga gcaaggggcc ccaagcactc actgcccagc gccggtatac acgtgggatc gaacacagcg tggagcactt gcaagaagat ccaacactgc caggttacct acctgcaagt ggctgggcat tcatccacca ggaacccgca agggcctggc agtgtgtcaa tgcaggggct gtcagcccca gtgcccacta acctctccta ccatcaactg gagccagccc 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 12 60 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980 42 42 2040 2086 tctgacgtcc atcgtctctg cggtggttgg cattctgctg gtcgtggtct tgggggtggt ctttgggatc ctcatcaagc gacggcagca gaagatccgg aagtaa <210> 12 <211> 2086
<212> ADN <213> humana/rato <4 0 0> 12 43 ccgggccgga gccgcaatga tcatcatgga gctggcggcc tggtgccgct gggggttcct 60 cctcgccctc ctgccccccg gaatcgcggg cacccaagtg tgtaccggca cagacatgaa 120 gttgcggctc cctgccagtc ctgagaccca cctggacatg ctccgccacc tgtaccaggg 180 ctgtcaggta gtgcagggca acttggagct tacctacgtg cctgccaatg ccagcctctc 240 attcctgcag gacatccagg aagttcaggg ttacatgctc atcgotcaca accaggtgaa 300 gcgcgtccca ctgcaaaggc tgcgcatcgt gagagggacc cagctctttg aggacaagta 360 tgccctggct gtgctagaca accgagatcc tcaggacaat gtcgccgcct ccaccccagg 420 cagaacccca gaggggctgc gggagctgca gcttcgaagt ctcacagaga tcctgaaggg 480 aggagttttg atccgtggga accctcagct ctgctaccag gacatggttt tgtggaagga 540 cgtcttccgc aagaataacc aactggctcc tgtcgatata gacaccaatc gttcccgggc 600 ctgtccacct tgtgcccccg cctgcaaaga caatcactgt tsgggtgaga gtccggaaga 660 ctgtcagatc ttgactggca ccatctgtac cagtggttgt gcccggtgca agggcgctag 720 cctgcccact gactçctgcc atgagcagtg tgctgccggc tgcacgggcc ccaagcactc 780 tgactgcctg gcctgcctcc acttcaacca cagtggcatc tgtgagctgc actgcccagc 840 cctggtcacc tacaacacag acacgtttga gtccatgccc aatcccgagg gccggtatac 900 attcggcgcc agctgtgtga ctgcctgtcc ctacaactac ctttctacgg acgtgggatc 960 ctgcaccctc gtctgccccc tgcacaacca agaggtgaca gcagaggatg gaacacagcg 1020 gtgtgagaag tgcagcaagc cctgtgcccg agtgtgctat ggtctgggca tggagcactt 1080 gcgagaggtg agggcagtta ccagtgccaa tatccaggag tttgctggct gcaagaagat 1140 ctttgggagc ctggcatttc tgccggagag ctttgatggg gacccagcct ccaacactgc 1200 cccgctccag ccagagcagc tccaagtgtt tgagactctg gaagagatca caggttacct 1260 atacatctca gcatggccgg acagcctgcc tgacctcagc gtcttccaga acctgcaagt 1320 aatccgggga cgaattctgc acaatggcgc ctactcgctg accctgcaag ggctgggcat 1380 cagctggctg gggctgcgot cactgaggga actgggcagt ggactggccc tcatccacca 1440 44 taacacccac ctctgcttcg tgcacacggt gccctgggac cagctctttc ggaacccgca 1500 ccaagctctg ctccacactg ccaaccggcc agaggacgag tgtgtgggcg agggcctggc 1560 ctgccaccag ctgtgcgccc gagggcactg ctggggtcca gggcccaccc agtgtgtcaa 1620 ctgcagccag ttccttcggg gccaggagtg cgtggaggaa tgccgagtac tgcaggggct 1680 ccccagggag tatgtgaatg ccaggcactg tttgccgtgc caccctgagt gtcagcccca 1740 gaatggctca gtgacctgtt ttggaccgga ggctgaccag tgtgtggcct gtgcccacta 1800 fcaaggaccct cccttctgcg tggcccgctg ccccagcggt gtgaaacctg acctctccta 1860 catgcccatc tggaagtttc cagatgagga gggcgcatgc cagccttgcc ccateaactg 1920 cacccactcc tgtgtggacc tggatgacaa gggctgcccc gccgagcaga gagccagccc 1980 tctgacgtcc atcgtctctg cggtggttgg aattctgctg gtcgtggtct tgggggtggt 2040 ctttgggatc ctcatcaagc gacggcagca gaagatccgg aagtaa 2086 <210> 13 <211> 2086 <212> ADN <213> humana/rato <4 0 0> 13 45 ccgggccgga gccgcaatga tcatcatgga gctggcggcc tggtgccgct gggggttcct 60 cctcgccctc ctgccccccg gaatcgcggg cacccaagtg tgtaccggca cagacatgaa 120 gttgcggctc cctçccagtc ctgagacoca cctggacatg ctccgccacc tgtaccaggg 180 ctgtcaggta gtgcagggca acttggagct tacctacgtg cctgccaatg ccagcctctc 240 attcctgcag gacatccagg aagttcaggg ttacatgctc atcgctcaca accâggtgaa 300 gcgcgtccca ctgcaaaggc tgcgcatcgt gagagggacc cagctctttg aggacaagta 360 tgccctggct gtgctagaca accgagatcc tcaggacaat gtcgocgcct ccaccccagg 420 cagaacccca gaggggctgc gggagctgca gcttcgaagt ctcacagaga tcctgaaggg 480 aggagttttg atccgtggga accctcagct ctgctaccag gacatggttt tgtggaagga 540 cgtcttccgc aagaataacc aactggctcc tgtcgatata gacaccaatc gttcccgggc 600 ctgtccacct tgtgcccccg cctgcaaaga caatcactgt tggggtgaga gtccggaaga 660 ctgtcagatc ttgactggca ccatctgtac cagtggttgt gcccggtgca agggccggct 720 gcccactgac tgctgccatg agcagtgtgc cgcaggctgc acgggcccca agcattctga 780 ctgcctggcc tgcctccact tcaatcatag tggtatctgt gagctgcact gcccagccct 840 46 46 cgtcacctac aacacagaca cctttgagtc catgcacaac cctgagggtc gctacacctt 900 tggtgccagc tgcgtgacca cctgccccta caactacctg tctacggaag tgggagctag 960 ctgcaccctc gtctgccccc tgcacaacca agaggtgaca gcagaggatg gaacacagcg 1020 gtgtgagaag tgcagcaagc cctgtgcccg agtgtgctat ggtctgggca tggagcactt 1080 gcgagaggtg agggcagtta ccagtgccaa tatccaggag tttgctggct gcaagaagat 1140 ctttgggagc ctggcatttc tgccggagag ctttgatggg gacccagcct ccaacactgc 1200 cccgctccag ccagagcagc tccaagtgtt tgagactctg gaagagatca caggttacct 1260 atacatctca gcatggccgg acagcctgcc tgacctcagc gtcttccaga acctgcaagt 1320 aatccgggga cgaattctgc acaatggcgc ctactcgctg accctgcaag ggctgggcat 1380 cagctggctg gggctgcgct cactgaggga actgggcagt ggactggccc tcatccacca 1440 taacacccac ctctgcttcg tgcacacggt gccctgggac cagctctttc ggaacccgca 1500 coaagctctg ctccacactg ccaaccggcc agaggacgag tgtgtgggcg agggcctggc 1560 ctgccaccag ctgtgcgccc gagggcactg ctggggtcca gggcccaccc agtgtgtcaa 1620 ctgcagccag ttccttcggg gccaggagtg cgtggaggaa tgccgagtac tgcaggggct 1680 ccccagggag tatgtgaatg ccaggcactg tttgccgtgc caccctgagt gtcagcccca 1740 gaatggctca gtgacctgtt ttggaccgga ggctgaccag tgtgtggcct gtgcccacta 1800 taaggaccct cccttctgcg tggcccgctg ccccagcggt gtgaaacctg acctctccta 1860 catgcccatc tggaagtttc cagatgagga gggcgcatgç cagccttgcc ccatcaactg 1920 cacccactcc tgtgtggacc tggatgacaa gggctgcccc gccgagcaga gagccagccc 1980 tctgacgtcc atcgtctctg cggtggttgg cattctgctg gtcgtggtct tgggggtggt 2040 ctttgggatc ctcatcaagc gacggcagca gaagatccgg aagtaa 2086 <210> 14 <211> 2086 <212> ADN <213> humana/rato <4 0 0> 14 47 ccgggccgga gccgcaatga tcatcatgga gctggcggcc tggtgccgct gggggttcct 60 cctcgccctc ctgccccccg gaatcgcggg cacccaagtg tgtaccggca cagacatgaa 120 gttgcggcte cctgccagtc ctgagaccca cctggacatg ctccgccacc tgtaccaggg 130 ctgtcaggta gtgcagggca acttggagct tacctacgtg cctgccaatg ccagcctctç 240 48 attcctgcag gacatccagg aagttcaggg ttacatgctc atcgctcaca accaggtgaa 300 gcgcgtccca ctgcaaaggc tgcgcatcgt gagagggacc cagctctttg aggacaagta 360 tgccctggct gtgctagaca accgagatcc tcaggacaat gtcgccgcot ccaccccagg 420 cagaacccca gaggggctgc gggagctgca gcttcgaagt ctcacagaga tcctgaaggg 490 aggagttttg atccgtggga accctcagct ctgctaccag gacatggttt tgtggaagga 540 cgtcttccgc aagaataacc aactggctcc tgtcgatata gacaccaatc gttcccgggc 600 ctgtccacct tgtgcGcccg cctgcaaaga caatcactgt tggggtgaga gtccggaaga 660 ctgtcagatc ttgactggca ccatctgtac cagtggttgt gcccggtgca agggccggct 720 gcccactgac tgctgccatg agcagtgtgc cgcaggctgc acgggcccca agcattctga 780 ctgcctggcc tgcctccact tcaatcatag tggtatctgt gagctgcact gcccagccct 840 cgtcacctac aacacagaca cctttgagtc catgcacaac cctgagggtc gctacacctt 900 tggtgccagc tgcgtgacca cctgccccta caactacctg tctacggaag tgggatcctg 960 cactctggtg tgtcccccga ataaccaaga ggtcacagct gaggacggaa cacagcgttg 1020 tgagaaatgc agcaagccct gtgctcgagt gtgctatggt ctgggcatgg agcaccttcg 1080 aggggcgagg gccatcacca gtgacaatgt ccaggagttt gatggctgca agaagatctt 1140 tgggagcctg gcatttttgc cggagagctt tgatggggac ccctcctccg gcattgctag 1200 cccgctccag ccagagcagc tccaagtgtt tgagactctg gaagagatca caggttacct 1260 atacatctca gcatggccgg acagcctgcc tgacctcagc gtcttccaga acctgcaagt 1320 aatccgggga cgaattctgc acaatggcgc ctactcgctg accctgcaag ggctgggcat 1380 cagctggctg gggctgcgct cactgaggga actgggcagt ggactggccc tcatccacca 1440 taacacccac ctctgcttcg tgcacacggt gccctgggac cagctctttc ggaacccgca 1500 ccaagctctg ctccacactg ccaaccggcc agaggacgag tgtgtgggcg agggcctggc 1560 ctgccaccag ctgtgcgccc gagggcactg ctggggtcca gggcccaccc agtgtgtcaa 1620 ctgcagccag ttccttcggg gccaggagtg cgtggaggaa tgccgagtac tgcaggggct 1680 ccccagggag tatgtgaatg ccaggcactg tttgccgtgc caccctgagt gtcagcccca 1740 gaatggctca gtgacctgtt ttggaccgga ggctgaccag tgtgtggcct gtgcccacta 1800 taaggacect cccttctgcg tggcccgctg ccccagcggt gtgaaacctg acctctccta 1860 catgcccatc tggaagtttc cagatgagga gggcgcatgc cagccttgcc ccatcaactg 1920 cacccactcc tgtgtggacc tggatgacaa gggctgcccc gccgagcaga gagccagccc 1980 tctgacgtcc atcgtctctg cggtggttgg cattctgctg gtcgtggtct tgggggtggt 2040 ctttgggatc ctcatcaagc gacggcagca gaagatccgg aagtaa 2086 49 <210> 15 <211>71 <212> ADN <213> humana/rato <4 0 0> 15 ccggaagtaa ataatcgacg ttcaaataat cgacgttcaa ataatcgacg ttcaaataat 60 cgacgttcaa t 71 <210> 16 <211>71 <212> ADN <213> humana/rato <4 0 0> 16 ctagattgaa cgtcgattat ttgaacgtcg attatttgaa cgtcgattat ttgaacgtcg 60 attatttact t 71 <210> 17 <211>71
<212> ADN <213> humana/rato <4 0 0> 17 ccggaagtaa ataatagagc ttcaaataat agagcttcaa ataatagagc ttcaaataat 60 71 agagcttcaa t 50 <210> 18 <211>71 <212> ADN <213> humana/rato <4 0 0> 18 <210> 19 <211> 27 <212> ADN <213> humana/rato <4 0 0> 19 ctagattgaa gctctattat ttgaagctct attatttgaa gctctattat ttgaagctct 60 attatttact t 71 ctaggaagct tgtttaactt gctagct 27 <210> 20 <211> 27 <212> ADN <213> humana/rato <4 0 0> 20
agctagctag caagttaaac aagcttc 27 <210> 21 <211> 68 <212> ADN <213> humana/rato 51 <4Ο0> 21 ctagataatc gacgttcaaa taatcgacgt tcaaataatc gacgttcaaa taatcgacgt 60 tcaagttt 68 <210> 22 <211> 64 <212> ADN <213> humana/rato <400> 22 aaacttgaac gtcgattatt tgaacgtcga ttatttgaac gtcgattatt tgaacgtcga 60 ttat <210> 23 <211> 68 <212> ADN <213> humana/rato <400> 23 ctagataata gagcttcaaa taatagagct tcaaataata gagcttcaaa taatagagct 60 tcaagttt 68 <210> 24 <211> 64 <212> ADN <213> humana/rato <4 0 0> 24 aaacttgaag ctctattatt tgaagctcta ttatttgaag ctctattatt tgaagctcta 60 ttat 64 <210> 25 52 <211> 20
<212> ADN <213> humana/rato <400> 25 taatacgact cactataggg 20 <210> 26 <211> 32 <212> ADN <213> humana/rato <400> 26 ggccggttac ccgcgattcc ggggggcagg ag 32 ccggctagct agcctgtcct tcctgcagga tatcc 35 <210> 27 <211> 35 <212> ADN <213> humana/rato <4 0 0> 27 <210> 28 <211> 35 <212> ADN <213> humana/rato <4 0 0> 28 ccggctagct agcggagggg tcttgatcca gcgga 35 <210> 29 53 <211> 35 <212> ADN <213> humana/rato <4 0 0> 29 ccggctagct agcctgccca ctgactgctg ccatg 35 <210> 30 <211> 35 <212> ADN <213> humana/rato <4 0 0> 30 ccggctagct agctgcaccc tcgtctgccc cctgc 35 <210>31 <211> 35
<212> ADN <213> humana/rato <400> 31 ccggctagct agcccgctcc agccagagca gctcc 35 <210> 32 <211> 35 <212> ADN <213> humana/rato <4 0 0> 32 ccggctagct agcaacaccc acctctgctt cgtgc 35 54 <210> 33 <211> 35 <212> ADN <213> humana/rato <4 0 0> 33 ccggctagct agccccaggg agtatgtgaa tgcca 35 <210> 34 <211> 20 <212> ADN <213> humana/rato <4 0 0> 34 tagaaggcac agtcgaggct 20 <210> 35 <211> 43 <212> ADN <213> humana/rato <4 0 0> 35 ccggctagct agccgcgatt ccggggggca ggagggcgag gag 43 <210> 36 <211> 69 <212> ADN <213> humana/rato <400> 36 ctaggcatca tcatcatcat cataatggtc ataccggtga acaaaaactc atctcagaag aggatctgg <210> 37 <211> 69 <212> ADN <213> humana/rato <4 0 0> 37 ctagccagat cctcttctga gatgagtttt tgttcaccgg tatgaccatt atgatgatga tgatgatgc <210> 38 <211> 35 <212> ADN <213> humana/rato <4 0 0> 38 ccggctagct agcgctggca ttggcaggca cgtag 35 <210> 39 <211> 35 <212> ADN <213> humana/rato <4 0 0> 39 ccggctagct agccaggatc tctgtgagac ttcga 35 <210> 40 <211> 35 <212> ADN <213> humana/rato 56 <4Ο0> 40 ccggctagct agcgcccttg caccgggcac aacca 35 <210>41 <211> 35
<212> ADN <213> humana/rato <400> 41 ccggctagct agctcccact tccgtagaca ggtag 35 <210> 42 <211> 35
<212> ADN <213> humana/rato <400> 42 ccggctagct agcaatgccg gaggaggggt cccca 35 57
REFERÊNCIAS CITADAS NA DESCRIÇÃO
Esta lista de referências citadas pelo requerente é apenas para a conveniência do leitor. A mesma não faz parte do documento de Patente Europeia. Embora tenha sido tomado muito cuidado na compilação das referências, não se poderão excluir erros e omissões e o IEP não assume qualquer responsabilidade neste sentido.
Literatura não relacionada com patentes referida na descrição • HYNES ; STEM. BB A, 1994, vol. 1198, 165 [0004] • BOYLE. Curr. Op. Oncol., 1992, vol. 4, 156 [0004] • BARGMANN et al. Cell, 1986, vol. 45, 649 [0004] • COUSSENS et al. Sciente, 1985, vol. 230, 1132 [0005] • YAMAMOTO et al. Nature, 1986, vol. 319, 230 [0005] • Dl MARCO et al. Mol. Cell. Biol., 1990, vol. 10, 3247 [0005] • KLAPPER et al. Adv Câncer Res, 2000, vol. 77, 25 [0005] • KWONG et al. Mol Carcinog, 1998, vol. 23, 62 [0005] • XIE et al. J Natl Câncer Inst, 2000, vol. 92, 412 [0005] • CHO HS et al. Nature, 2003, vol. 421, 756 [0005] • PRESS et al. Oncogene, 1990, vol. 5, 953 [0006] • KERN et al. Câncer Res., 1986, vol. 50, 5184 [0007] • COHEN et al. Oncogene, 1989, vol. 4, 81 [0007] • SLAMON et al. Science, 1989, vol. 244, 707 [0007] • JARDINES et al. Pathobiology, 1993, vol. 61, 268 [0007] 58 LOLLINI P.; FORNI G. Trends Immunol., 2003, vol. 24, 62 [0008] AMICI A. et al. Gene Ther., 2000, vol. 7, 703 [0009] ROVERO S. et al. J. of Immunol., 2000, vol. 165, 5133 [0009] CHEN et al. Câncer Res, 1998, vol. 58, 1965 [0009] WEI WZ et al. Int. J. Câncer, 1999, vol. 81, 748 [0009] PILON SA et al. J. of Immunol., 2001, vol. 167, 32 01 [0009] PIECHOCKI MP et al. J. Immunol., 2001, vol. 167, 3367 [0009] REILLY et al. Câncer Res., 2001, vol. 61, 880 [0010] CURCIO C. et al. J. Cl in. Invest., 2003, vol. 111, 1161 [0010] CHU R.S. et al. J. Exp. Med. , 1997, vol. 186, 1623 [0014] LIU MA. J Int Med, 2003, vol. 253, 402 [0015] RIELLY et al. Câncer Res, 2001, vol. 61, 880 [0028] AMICI et al. Gene Ther., 2000, vol. 7, 703 [0032]

Claims (13)

1 REIVINDICAÇÕES 1. Um vetor de transferência de ADN contendo uma sequência que codifica um fragmento da pl85neu, em que a dita sequência é selecionada a partir do grupo que consiste nas SEQ. ID N.°s 2, 10, 11, 12, 13, 14.
2. Um vetor de transferência de ADN de acordo com a reivindicação 1, que é um plasmideo.
3. O plasmideo da reivindicação 2, contendo ainda um promotor de transcrição.
4. O plasmideo da reivindicação 3, em que o promotor é CMV.
5. O plasmideo da reivindicação 2, contendo ainda 4 motivos CpG.
6. O plasmideo da reivindicação 5, contendo ainda 8 motivos CpG.
7. Composição farmacêutica contendo um vetor de transferência de ADN de acordo com qualquer uma das reivindicações 1-6 misturado com veiculos e excipientes farmaceuticamente aceitáveis.
8. A composição de acordo com a reivindicação 7, que é adequada para administração parentérica.
9. A composição da reivindicação 8, que está na forma de 2 solução injetável.
10. Uma combinação de, pelo menos, dois plasmídeos diferentes de acordo com as reivindicações 2-6, para utilização terapêutica simultânea, sequencial ou separada.
11. Uma combinação de acordo com a reivindicação 10, que está numa forma adequada para vacinação por ADN.
12. A utilização de um vetor de acordo com a reivindicação 1 ou um plasmideo de acordo com as reivindicações 2-6 para preparar uma composição farmacêutica para a prevenção ou tratamento de tumores positivos para pl85neu ou tumores primários, metástases ou reincidências de tumores que expressam a pl85neu.
13. A utilização de um vetor de acordo com a reivindicação 1 ou um plasmideo de acordo com as reivindicações 2-6, para a preparação de uma vacina de ADN.
PT47658539T 2003-10-09 2004-10-06 Adn que codifica p185neu e utilizações terapêuticas do mesmo PT1670498E (pt)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT001942A ITMI20031942A1 (it) 2003-10-09 2003-10-09 Dna codificante p185^neu e suoi usi terapeutici

Publications (1)

Publication Number Publication Date
PT1670498E true PT1670498E (pt) 2013-04-15

Family

ID=34509441

Family Applications (1)

Application Number Title Priority Date Filing Date
PT47658539T PT1670498E (pt) 2003-10-09 2004-10-06 Adn que codifica p185neu e utilizações terapêuticas do mesmo

Country Status (20)

Country Link
US (3) US7795016B2 (pt)
EP (1) EP1670498B9 (pt)
JP (1) JP4829114B2 (pt)
KR (2) KR101215768B1 (pt)
CN (1) CN100546647C (pt)
AU (1) AU2004283430B2 (pt)
CA (1) CA2541840C (pt)
DK (1) DK1670498T3 (pt)
ES (1) ES2402767T3 (pt)
HK (1) HK1094531A1 (pt)
IL (1) IL174821A (pt)
IT (1) ITMI20031942A1 (pt)
NO (1) NO340097B1 (pt)
NZ (1) NZ546411A (pt)
PL (1) PL1670498T3 (pt)
PT (1) PT1670498E (pt)
RU (1) RU2350652C2 (pt)
SG (1) SG146693A1 (pt)
SI (1) SI1670498T1 (pt)
WO (1) WO2005039618A1 (pt)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20031942A1 (it) * 2003-10-09 2005-04-10 Indena Spa Dna codificante p185^neu e suoi usi terapeutici
ITMI20041965A1 (it) * 2004-10-15 2005-01-15 Augusto Amici "dna codificante forme tronche e chimeriche della proteina p185neu e suoi usi terapeutici"
US20160038577A1 (en) * 2014-08-06 2016-02-11 Indena S.p.A. Con Socio Unico Use of anti-erbb2 vaccines in association with an electric field
CN116042649B (zh) * 2022-11-11 2023-07-21 河北省农林科学院棉花研究所(河北省农林科学院特种经济作物研究所) 一种编码富含半胱氨酸的非分泌型小分子肽及其编码基因与应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239116B1 (en) * 1994-07-15 2001-05-29 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
KR100555211B1 (ko) * 2002-07-16 2006-03-03 주식회사 팬제노믹스 항암효과를 갖는 Her-2/neu DNA 백신
ITMI20031942A1 (it) * 2003-10-09 2005-04-10 Indena Spa Dna codificante p185^neu e suoi usi terapeutici

Also Published As

Publication number Publication date
IL174821A (en) 2012-02-29
CA2541840C (en) 2013-07-09
ES2402767T3 (es) 2013-05-08
CA2541840A1 (en) 2005-05-06
KR101215768B1 (ko) 2012-12-26
US20110071212A1 (en) 2011-03-24
EP1670498B9 (en) 2013-08-21
DK1670498T3 (da) 2013-03-11
IL174821A0 (en) 2006-08-20
KR20110125682A (ko) 2011-11-21
KR20070004526A (ko) 2007-01-09
CN100546647C (zh) 2009-10-07
KR101226873B1 (ko) 2013-01-25
EP1670498B1 (en) 2013-02-13
AU2004283430A1 (en) 2005-05-06
EP1670498A1 (en) 2006-06-21
JP2007508004A (ja) 2007-04-05
US20110245330A1 (en) 2011-10-06
ITMI20031942A1 (it) 2005-04-10
RU2350652C2 (ru) 2009-03-27
SI1670498T1 (sl) 2013-05-31
AU2004283430B2 (en) 2010-08-05
SG146693A1 (en) 2008-10-30
NO340097B1 (no) 2017-03-13
RU2006111336A (ru) 2007-10-20
US7795016B2 (en) 2010-09-14
US20070299023A1 (en) 2007-12-27
CN1863547A (zh) 2006-11-15
US8298821B2 (en) 2012-10-30
HK1094531A1 (en) 2007-04-04
WO2005039618A1 (en) 2005-05-06
PL1670498T3 (pl) 2013-07-31
JP4829114B2 (ja) 2011-12-07
US8389494B2 (en) 2013-03-05
NZ546411A (en) 2009-02-28
NO20061542L (no) 2006-04-05

Similar Documents

Publication Publication Date Title
US8470333B2 (en) Chimeric peptides comprising HER-2 B-cell epitopes and T-helper epitopes
JPH10509878A (ja) 突然変異上皮成長因子受容体を標的とする試薬および方法
US8389494B2 (en) p185neu-encoding DNA and therapeutical uses thereof
US8207141B2 (en) Plasmids coding for p185neu protein sequence variants and therapeutic uses thereof
WO2012048667A1 (zh) 表皮生长因子受体的外显子缺失变异体
CA2217491A1 (en) Polynucleotide immunogenic agents
WO2004052927A1 (fr) Gene associe a la calvitie et polypeptide code par ce gene, et utilisations correspondantes