PT1218028E - Células dendríticas activadas na presença das hormonas glucocorticóides são capazes de suprimir as respostas das células t a um antigénio específico - Google Patents

Células dendríticas activadas na presença das hormonas glucocorticóides são capazes de suprimir as respostas das células t a um antigénio específico Download PDF

Info

Publication number
PT1218028E
PT1218028E PT00971883T PT00971883T PT1218028E PT 1218028 E PT1218028 E PT 1218028E PT 00971883 T PT00971883 T PT 00971883T PT 00971883 T PT00971883 T PT 00971883T PT 1218028 E PT1218028 E PT 1218028E
Authority
PT
Portugal
Prior art keywords
cell
vol
dendritic cells
dendritic
antigen
Prior art date
Application number
PT00971883T
Other languages
English (en)
Inventor
Rienk Offringa
Delphine Gabrielle Josette Rea
Cornelis Johannes Maria Melief
Original Assignee
Leids Uni Medisch Ct
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leids Uni Medisch Ct filed Critical Leids Uni Medisch Ct
Publication of PT1218028E publication Critical patent/PT1218028E/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0639Dendritic cells, e.g. Langherhans cells in the epidermis
    • C12N5/064Immunosuppressive dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4615Dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/462Cellular immunotherapy characterized by the effect or the function of the cells
    • A61K39/4622Antigen presenting cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • A61K39/464416Receptors for cytokines
    • A61K39/464417Receptors for tumor necrosis factors [TNF], e.g. lymphotoxin receptor [LTR], CD30
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464476Heat shock proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K2035/122Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells for inducing tolerance or supression of immune responses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5154Antigen presenting cells [APCs], e.g. dendritic cells or macrophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5158Antigen-pulsed cells, e.g. T-cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/05Adjuvants
    • C12N2501/052Lipopolysaccharides [LPS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/22Colony stimulating factors (G-CSF, GM-CSF)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/39Steroid hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • C12N2501/505CD4; CD8
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • C12N2501/52CD40, CD40-ligand (CD154)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Epidemiology (AREA)
  • Biotechnology (AREA)
  • Mycology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Transplantation (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

DESCRIÇÃO
CÉLULAS DENDRÍTICAS ACTIVADAS NA PRESENÇA DAS HORMONAS GLUCOCORTICÓIDES SÃO CAPAZES DE SUPRIMIR AS RESPOSTAS DAS CÉLULAS T A UM ANTIGÉNIO ESPECÍFICO A invenção refere-se ao campo da medicina. Mais em particular a invenção refere-se ao campo da imunoterapia.
Antecedentes da invenção
As propriedades mais destacáveis dos imunoestimuladores das DC (células dendriticas) consistem na sua capacidade de transportar antigénios desde os tecidos periféricos até aos órgãos linfóides onde elas apresentam estes antigénios às células T num contexto co-estimulador óptimo (1) . Para obter esta sequência complexa de acontecimentos, as DC existem em estados funcionais diferentes. As DC imaturas comportam-se como sentinelas nos tecidos periféricos nos quais elas capturam eficazmente os antigénios. Após uma invasão patógena, a indução das respostas das células T protectoras requer a activação das DC imaturas nas células imunoestimuladoras maduras. A activação das DC é desencadeada nos tecidos inflamados pelas citoquinas como as IL-1 e TNF-α e pelos componentes bacterianos como o LPS (2, 3). As DC activadas migram para as áreas das células T nos gânglios linfáticos enquanto aumentam as suas capacidades co-estimuladoras e optimizam as suas funções apresentando antigénios. Após a interacção com células T com antigénios específicos, a activação das DC é seguidamente completada através da ligação ao par receptor-ligando (L) CD40-CD40L, conduzindo à produção da IL-12 (4, 5, 6) , que é uma citoquina fundamental para a iniciação 1/31 (7) do linfócito T auxiliar (Th) tipo 1 e do linfócito T citotóxico (CTL).
Uma activação das APC através das interacções das CD40-CD40L representa uma fase imunorreguladora importante para o estabelecimento da imunidade das células T protectoras contra os agentes patogénicos e tumores (8, 9, 10) . Este processo desempenha ainda um papel primordial na aparição de doenças destrutivas mediadas pelas células T como por exemplo as doenças auto-imunes, rejeição dos aloenxertos e doença enxerto versus hospedeiro (11, 12, 13). O tratamento actual destas doenças consiste principalmente na administração de glucocorticóides (GC), que exercem potentes efeitos anti-inflamatórios e imunossupressores. Devido a que os GC interferem negativamente em muitos aspectos da activação das células T como por exemplo a proliferação induzida pelo factor IL-2 e a produção das citoquinas inflamatórias (revisado em 14), há já muito tempo que as células T activadas têm sido consideradas os objectivos principais para a acção dos GC. Actualmente, diferentes linhas de evidência sugerem um papel das DC na supressão imunológica induzida pelos GC. Moser et al. (15) descobriu que os GC impediam a activação espontânea das DC murinas diminuindo portanto o seu potencial estimulador das células T. Kitajima et al. (16) mostrou que os GC poderiam dificultar a activação mediada pelas células T de uma linha de DC murina. Viera et al. descreveu que as DC humanas expostas aos GC produziam pouca IL-12 após a estimulação dos LPS (17) . Estas conclusões só se referem à perda das caracteristicas típicas das DC favorecendo portanto um papel inibitório simples dos GC na activação das DC. Uma acção imunorreguladora mais complexa no sistema DC Não tem sido considerada. 2/31 A presente invenção é o resultado de uma análise detalhada do impacto dos GC na activação mediada pelas CD40 das DC derivadas de monócitos. Estas DC desenvolvem-se depois de cultivadas com GM-CSF e com IL-4 (2, 18) ou depois da transmigração através das células endoteliais (19) e é sabido que amadurecem nas APC humanas mais potentes que induzem as Thl depois da ligação com CD40 (5, 20) .
Além de que estas APC podem ser facilmente geradas em grandes quantidades e por isso são as células escolhidas para a modulação baseada nas DC da imunidade das células T (21, 22). Contrariamente aos estudos anteriores, a presente invenção mostra que os GC assim como a dexametasona (DEX) não só evitam a activação das DC, mas também convertem a ligação de CD40 nas DC derivadas de monócitos humanos numa via de activação alternativa. A DEX afecta profundamente a maduração dependente das CD40 das DC derivadas dos monócitos humanos, não só impedindo o aumento das moléculas de adesão co-estimuladoras e de superfície do MHC, mas fazendo ainda com que estas células segreguem o mediador anti-inflamatório IL-10 em vez da citoquina IL-12 estimuladora das Thl. De acordo com estas alterações fenotípicas e funcionais, as DC através das CD40 na presença da DEX são estimuladoras deficientes das respostas tipo Thl. O mais importante é que a presente invenção mostra que estas DC são capazes de induzir um estado de hipossensibilidade nas células Thl, o que indica que estas células são capazes de suprimir de forma activa a imunidade tipo Thl.
Como j á o acima mencionado, o impacto dos GC nas DC tem sido o tema de vários estudos anteriores realizados por outros investigadores. No entanto, e contrariamente à presente invenção, estes estudos só salientavam os efeitos 3/31 inibitórios dos GC no sistema DC. Foi descoberto que a DEX bloqueia o aumento das moléculas CD80, CD86 e MHC classe II após a activação das DC de baço murina (15, 16), enquanto que muito recentemente foi demonstrado que a DEX também impede a diferenciação das DC de precursores de monócitos (28) . Nestes estudos, a incapacidade das DC de adquirir a expressão alta das moléculas co-estimuladoras e MHC estava acompanhada de uma redução no seu potencial estimulador das células T, mas o efeito dos GC na produção da IL-12 não foi investigado. Por outro lado, Viera et al. descobriu que o efeito dos GC na activação das DC induzidas por LPS consistia numa redução de 4 vezes a síntese da IL-12p70 (17). Este efeito parcial na secreção da IL-12 contrasta com a supressão completa da produção da IL-12p70 que é o tema da presente invenção, e pode ser explicada pelo facto de que as suas DC imaturas tratadas com GC foram muito bem lavadas antes da estimulação com LPS. De facto descobrimos que depois da remoção dos GC, os efeitos destes medicamentos foram rapidamente reversíveis nas DC imaturas. A presença continua dos GC durante a activação por CD40 das DC foi claramente preferida para modular estável e completamente a activação das DC (dados não mostrados). Tomados em conjunto, os descobrimentos anteriores indicaram que o impacto dos GC no sistema DC deveria ser meramente interpretado como um evento inibitório. É de salientar que a presente invenção demonstra claramente que os GC como por exemplo a DEX não só suprime a activação das DC mas também reorienta este processo para um programa funcional diferente. A activação das DC através da ligação de CD40-CD40L é um evento estimulador fundamental para a geração de respostas efectivas CTL dependentes de Thl e CD4 in vivo (10, 36, 37, 38) . Esta via no entanto está também envolvida no 4/31 desenvolvimento de respostas indesejadas das células T conduzindo a doenças auto-imunes ou rejeição de um órgão transplantado (11, 12, 13) . Até agora, o tratamento de pacientes que sofrem de doenças deste tipo consistia principalmente na administração sistémica de hormonas GC. Este tratamento não só suprime as respostas das células T patógenas mas também induz a um estado geral de imunossupressão e efeitos secundários metabólicos e endócrinos. A presente invenção demonstra que a activação das DC derivadas de monócitos humanos através das CD40, na presença dos GC como a DEX, gera uma APC produtora da IL-10 que é um estimulador deficiente de respostas tipo Thl e que pode até conferir hipossensibilidade às células Thl. Assim, a presente invenção indica que estas DC carregadas com antigénios apropriados podem ser aproveitadas com uma abordagem nova para especificamente regular a diminuição das respostas das células T in vivo.
As células dendriticas da invenção possuem capacidades diferentes das previamente descritas para as células dendriticas. Assim, podemos considerar que estas células formam parte de uma classe de células diferentes da classe formada pelas células dendriticas "clássicas". As células dendriticas da invenção podem ser utilizadas de forma diferente das células dendriticas habituais. As células dendriticas da invenção podem por exemplo ser utilizadas para suprimir, pelo menos em parte, uma resposta imunitária indesejada num hospedeiro. Portanto, num aspecto a invenção provê um método para preparar uma composição farmacêutica para reduzir uma resposta indesejada das células T num hospedeiro, compreendendo este método a cultura de monócitos de sangue periférico do dito hospedeiro para as diferenciar nas células dendriticas, activando as ditas células dendriticas na presença de uma hormona 5/31 glucocorticóide e carregando as ditas células dendriticas activadas com um antigénio contra o qual a dita resposta das células T deve ser reduzida. Uma resposta indesejada das células T pode ser qualquer tipo de resposta das células T. Por exemplo, mas sem estar limitada a uma resposta das células T associada a uma doença auto-imune ou uma doença por transplante como por exemplo uma doença do enxerto versus hospedeiro ou uma doença do hospedeiro versus enxerto. Habitualmente, uma composição farmacêutica da invenção compreende uma célula dendritica da invenção suspensa num liquido adequado para conservar a função da dita célula dendritica no dito liquido e/ou adequado para ser administrado a um hospedeiro. Preferencialmente o hospedeiro é um humano. Preferencialmente o dito hospedeiro corre o risco de vir a desenvolver ou sofre de uma doença auto-imune ou alergia. Preferencialmente, o dito hospedeiro sofre ou corre o risco de vir a sofrer de uma doença de hospedeiro versus enxerto e/ou uma doença de enxerto versus hospedeiro. Com a expressão "em risco de" entender-se-á que é esperado que o dito hospedeiro possa desenvolver a dita doença, por exemplo mas sem limitar-se a um hospedeiro receptor de um transplante. Sendo considerado que este hospedeiro corre o risco de desenvolver uma doença do hospedeiro versus enxerto. Habitualmente o antigénio é um peptídeo capaz de se ligar a uma molécula de um complexo principal de histocompatibilidade I e/ou II. Estes peptideos são conhecidos na técnica e um técnico especializado pode determinar se um dado peptídeo compreende ou não um antigénio. Um antigénio pode ser derivado de uma proteína de origem natural. Um antigénio pode também ser um peptídeo sintético ou um seu equivalente, preferencialmente com uma sequência de aminoácidos equivalente a um peptídeo derivado de uma proteína. 6/31
Noutro aspecto a invenção provê uma composição farmacêutica para reduzir uma resposta indesejada das células T num hospedeiro, sendo a dita composição obtida pela cultura de monócitos do sangue periférico do dito hospedeiro para as diferenciar nas células dendriticas, activando as ditas células na presença de uma hormona glucocorticóide e carregando as ditas células dendriticas activadas com um antigénio contra as quais a dita resposta das células T deve ser reduzida. Numa forma de realizar a invenção é provido um método para reduzir uma resposta indesejada das células T no hospedeiro, compreendendo este método a administração de uma composição da invenção ao dito hospedeiro. A invenção provê ainda um método para reduzir uma resposta "indesejada" das células T no hospedeiro compreendendo este método a cultura de monócitos de sangue periférico a partir do dito hospedeiro para as diferenciar nas células dendriticas, activando as ditas células dendriticas e/ou os seus precursores na presença de uma hormona glucocorticóide e carregando as ditas células dendriticas activadas com um antigénio contra o qual a dita resposta das células T deve ser reduzida e a administração da dita composição ao dito hospedeiro.
Numa forma de realizar a invenção a dita activação é feita através de um receptor CD40. A activação das DC através da activação do receptor CD40 pode envolver a incubação com uma proteína de fusão CD8-CD40L, ou com um trimérico a partir de CD40L constituído por moléculas de CD40L às quais foram unidas uma leucina zipper modificada, anticorpos anti-CD40 ou células que expressam CD40L. Outros sinais que podem ser empregues para a activação das DC como as 7/31 descritas na presente invenção incluem os lipopolissacarideos (LPS) e os polil/C.
Noutro aspecto a invenção provê um método para obter uma célula dendritica capaz de tolerar as células T para um antigénio, compreendendo este método prover a dita célula dendritica com uma hormona glucocorticóide, a activação da dita célula dendritica e prover a dita célula dendritica com o dito antigénio. Com a expressão "tolerar" entender-se-á que a dita célula dendritica tem um efeito imunossupressor sobre a dita célula T. Uma célula T tolerada essencialmente não responde com a divisão celular quando exposta a uma célula que apresenta um antigénio, dita célula T responderá com divisão celular num estado não tolerado. Uma célula T tolerada essencialmente não responde com a morte de uma célula que apresenta um antigénio, dita célula T responderá com a morte das células no estado não tolerado.
Numa forma de realizar a invenção a dita célula dendritica e/ou precursor da mesma está provida da dita hormona glucocorticóide in vitro. Uma célula T é preferencialmente uma célula T especifica de um antigénio, preferencialmente uma célula T citotóxica ou uma célula Th.
Noutro aspecto a invenção provê uma célula dendritica isolada capaz de modificar a função de uma célula T de um antigénio especifico, que de contrário aumentaria uma resposta imunitária dada, resultando numa célula T que é capaz de reduzir essa resposta imunitária. Numa forma de realização a invenção provê um método para modificar uma célula T específica de um antigénio compreendendo este método prover uma célula dendritica de acordo com a invenção com o dito antigénio e cultivar juntas a dita 8/31 célula T e a dita célula dendrítica. Preferencialmente, a dita cultura conjunta é realizada in vitro. Dito método pode ainda compreender a multiplicação das ditas células T modificadas funcionalmente.
Também é descrita uma célula T modificada funcionalmente isolada obtenível por um método de acordo com a invenção.
Noutro aspecto a invenção provê a utilização de uma hormona glucocorticóide para obter uma célula dendrítica capaz de modificar funcionalmente uma célula T. A invenção provê ainda uma composição farmacêutica que compreende uma célula dendrítica e/ou uma célula T modificada funcionalmente de acordo com a invenção. A invenção provê ainda a utilização de uma célula dendrítica e/ou uma célula T modificada funcionalmente de acordo com a invenção para a preparação de um medicamento. A invenção também provê um método para o tratamento de um indivíduo que sofre ou corre o risco de vir a sofrer de uma doença associada a pelo menos parte do sistema imunitário do dito indivíduo, compreendendo este método a administração ao dito indivíduo de uma célula dendrítica e/ou uma célula T modificada funcionalmente de acordo com a invenção. Preferencialmente, a dita célula dendrítica e/ou a dita célula T modificada funcionalmente, ou precursores das mesmas são derivadas de um doador HLA-compatível. Preferencialmente, o dito doador HLA-compatível é o dito indivíduo.
Os métodos de tratamentos da invenção são preferencialmente utilizados para o tratamento de um indivíduo que sofre de 9/31 uma doença auto-imune, uma alergia, uma doença do enxerto versus hospedeiro e/ou uma doença do hospedeiro versus enxerto.
Exemplos
Exemplo 1
Degradação da CD40-CD40L mediada pelas alterações
fenotípicas da DEX
Exploramos o impacto da DEX nas alterações fenotípicas induzidas pela ligação da CD40 com as DC derivadas de monócitos imaturas. Na ausência da DEX, a proteína de fusão CD8-CD40L induziu a um aumento das moléculas co-estimuladoras CD80, CD86 e CD40, das moléculas de MHC classe I e II, dos marcadores de adesão CD54 e CD58 e do marcador de maduração de DC CD83 (figura 1). Na presença da DEX, estas alterações fenotípicas induzidas por CD8-CD40L foram consideravelmente degradadas: o aumento das moléculas CD80, CD86, CD40, CD54, CD58 e do MHC classe I e II foi amplamente inibido e o CD83 não foi expresso (figura 1). É importante salientar que as DC tratadas com DEX não reverteram a um estado monócito/macrófago como o mostrado pela falta de expressão de CD14 (figura 1). A titulação da DEX mostrou uma inibição completa das alterações fenotípicas mediadas por CD40 a 10”6 M e 10“7 M, um bloqueio parcial a 10“8 M e nenhum efeito a 10-9 M e a IO”10 (dados não mostrados) . Adicionalmente, a acção de DEX foi dependente da ligação ao receptor do GC, devido a que ela foi suprimida pela adição simultânea do RU486 antagonista do receptor dos GC (dados não mostrados). Nas experiências executadas com LPS ou com TNF-α como agentes de activação, foram obtidos resultados idênticos. No entanto, a 10/31 combinação da DEX e TNF-alfa induziu a uma morte celular massiva (recuperação das células viáveis 5-10% das culturas de controlo) , um fenómeno que não foi observado quando as DC tratadas com DEX foram estimuladas com LPS ou através de CD40 (recuperação das células viáveis 60 a 100% das culturas de controlo) (não mostrado).
Em seguida analisamos se as DC activadas poderiam ainda a continuar ser afectadas pela DEX. As DC incubadas com CD8-CD40L durante 48 horas e seguidamente expostas à DEX mantiveram um fenótipo activado estável (figura 2).
Concluímos que a DEX evita as alterações fenotípicas induzidas por sinais de CD40 nas DC imaturas e que as DC já activadas são resistentes à acção da DEX.
Exemplo 2
A DEX não interfere com a regulação da maquinaria de captação do antigénio das DC
Contrariamente às DC activadas, As DC imaturas incorporam eficazmente os antigénios através da macropinocitose e da endocitose mediados pelos receptores de manose (2, 3, 25, 26) . Analisamos que de algum a DEX pode afectar a captura da maquinaria do antigénio das DC e a sua diminuição por reticulação com CD40. Como é mostrado na figura 3, a incorporação de FITC-BSA e FITC-BSA manosilado por DC imaturas e por DC imaturas tratadas com DEX foi comparável. Após a activação com CD40 foi observada uma diminuição da aceitação similar de FITC-BSA e FITC-BSA manosilado tanto para DC tratadas com DEX como não tratadas (figura 3) . Estes resultados foram os primeiros que nos indicaram que a DEX não bloqueia todos os aspectos da activação das DC, já 11/31 que ela não interfere na diminuição da maquinaria de captura de antiqénios das DC.
Exemplo 3 DC activadas com CD40 tratadas com DEX segregam a IL-10 em vez da IL-12
Uma característica fundamental das DC activadas com CD40 para iniciar a imunidade das células T consiste na sua capacidade para produzir a citoquina pro-inflamatória IL-12 (5, 6, 27) . Investigamos se a DEX afectava a produção de IL-12 por DC estimuladas através da CD40, e exploramos a possibilidade de que a DEX pudesse promover a secreção da citoquina anti-inflamatória IL-10. Como é mostrado na figura 4, a activação com CD40 das DC induziu fortemente a secreção de IL-12p40 e IL-12p70 (até 120ng/ml e 170pg/ml respectivamente) mas só estimulou deficientemente a produção da IL-10 (até 68pg/ml). Pelo contrário, a activação com CD40 das DC tratadas com DEX resultou numa produção consideravelmente reduzida de IL-12p40 (até 100 vezes) e a supressão completa da secreção de IL-12p70, enquanto que a produção da IL-10 foi muito aumentada (até 50 vezes) (figura 4). As DC imaturas e os seus equivalentes tratados com DEX não segregaram quantidades detectáveis da IL-12 e da IL-10 (figura 4) . Assim, a ligação com CD40 das DC na presença da DEX activa a secreção de altos niveis da citoquina anti-inflamatória IL-10 em vez da IL-12.
Exemplo 4
As DC activadas com CD40 tratadas com DEX podem suprimir a imunidade tipo Thl 12/31 A resposta visivelmente modificada das DC à ligação com CD40 na presença da DEX levou-nos a comparar o potencial estimulador das células T destas células com as dos seus equivalentes não tratadas com DEX. Num MLR alogeneico, as DC activadas com CD40 induziram a uma resposta muito proliferativa das células T enquanto que a adição da DEX antes da activação com CD40 reduziu a sua capacidade estimuladora das células T às das DC imaturas (figura 5) . Quando avaliamos a sua capacidade para estimular um clone especifico de hsp65 CD4+ à Thl, foi descoberto que as DC activadas com CD40 pulsadas com a proteina hsp65 ou com o epitopo do peptideo especifico p3-13 eram potentes indutoras da proliferação das células T assim como da produção de IFN-g dependente das células T (figura 5). Pelo contrário, na presença de DC activadas com CD40 tratadas com DEX e pulsadas com Ag, foi significantemente reduzida a proliferação das células T e a produção de IFN-g (p<0.001 e p<0.01 respectivamente) (figura 5). Em seguida investigamos se as DC activadas com CD40 tratadas com DEX foram simplesmente estimuladoras deficientes das células Thl ou se elas puderam exercer efeitos supressores nestas células T. Consequentemente testamos a capacidade das células T especificas de hsp65 estimuladas com DC activadas com CD40 tratadas com DEX pulsadas com p3-13 para responder a um segundo desafio antigénico potente. A figura 6 mostra que a cultura prévia das células T com as DC activadas com CD40 produziu uma forte proliferação das células T e a produção de IFN-gama após uma segunda re-estimulação especifica de um antigénio. Pelo contrário, a cultura prévia com as DC activadas com CD40 tratadas com DEX produziu uma capacidade proliferativa e de produção de IFN-gama de células Thl consideravelmente reduzida. Assim, a activação com CD40 das DC na presença da DEX produz APC que não são meras indutoras deficientes das respostas das células T mas que 13/31 também induzem a um estado de hipossensibilidade nas células Thl.
Exemplo 5
As DC activadas tratadas com DEX suprimem a imunidade anti-transplante in vivo
Numa primeira tentativa de testar se as DC tratadas com DEX poderiam suprimir uma imunidade indesejada, preparamos um modelo de transplante de pele nos ratos. É sabido que os transplantes de pele de ratos C57B1/6, quando são enxertados em ratos receptores completamente alogeneicos Balb/c, são rapidamente rejeitados como resultado de uma resposta imunitária das células T anti-transplante muito alorreactivas. Foram executadas experiências para analisar se o pré-tratamento dos ratos receptores com as DC tratadas com DEX produziam a supressão desta resposta hospedeiro versus enxerto. Utilizamos uma linha celular de DC murina estabelecida de origem C57B1/6, chamada Dl, que exibe um fenótipo imaturo estável in vitro a não ser que estas recebam um sinal activante através dos anticorpos agonisticos anti-CD40 ou LPS. Esta activação produz DC completamente maduras que são altamente capazes de iniciar CTL in vitro assim como in vivo (39; 40). O amadurecimento da Dl envolve um forte aumento da expressão da superfície celular da molécula co-estimuladora CD86 (B7.2), do receptor de CD40 e do MHC Classe II (figura 7). Idêntica às nossas observações em DC humanas, o amadurecimento da Dl na presença da DEX impediu consideravelmente o aumento destas moléculas na superfície celular (figura 7). Isto sugeriu que as células Dl tratadas com DEX poderiam ser aproveitadas para suprimir a imunidade das células T in vivo. Assim, os ratos Balb/C foram injectados com células 14/31
Dl que tinham sido activadas na ausência ou presença da DEX. Uma semana depois da imunização, a resposta alorreactiva dos esplenócitos destes ratos, assim como a dos ratos de controlo, foram testados in vitro. Os ratos tratados previamente com células Dl imaturas que tinham sido cultivadas na presença ou ausência da DEX não exibiram uma imunidade alorreactiva tipo Thl significativamente alterada quando comparadas com os ratos de controlo (figura 8) . Isto está de acordo com as nossas observações com DC humanas, que também mostraram que as DC imaturas tratadas com DEX não exibiram propriedades diferentes das DC imaturas normais. Como o esperado, os ratos imunizados com Dl completamente maduras mostraram uma capacidade de resposta aumentada. É importante salientar que os ratos tratados previamente com Dl activadas na presença da DEX mostraram uma imunidade alorreactiva tipo Thl muito reduzida (figura 8).
Posteriormente foi testada se a redução de alo-respostas neste último grupo de ratos, como medida in vitro, reflectiria uma imunidade alorreactiva diminuída in vivo. Grupos de ratos Balb/C foram imunizados com células Dl amadurecidas na ausência ou presença da DEX. Uma semana mais tarde, foram enxertados transplantes de pele de origem C57B1/6 nestes ratos, e a sobrevivência do enxerto foi controlada. Os enxertos foram rapidamente rejeitados nos ratos de controlo e nos ratos imunizados com células Dl maduras normais (figura 9). Neste último grupo a rejeição não aumentou apesar das respostas alorreactivas maiores nestes ratos (figura 8) . Muito provavelmente, a resposta nos ratos de controlo é já a suficiente para a rejeição máxima. Cabe destacar que a rejeição do enxerto é significativamente adiada (p<0.05) nos ratos tratados previamente com Dl madura na presença da DEX (figura 9) . 15/31
Este resultado corresponde com a alorreactividade imensamente reduzida nestes ratos como o determinado in vitro (figura 8).
Em conclusão, as experiências de enxertos de pele nos ratos demonstraram que as DC maduras na presença da DEX podem ser efectivamente empregues para suprimir a imunidade indesejada como por exemplo a contra transplantes. Ainda que nas experiências mostradas os transplantes sejam finalmente rejeitados, deverá ser considerado que o doador e o receptor mostravam grandes diferenças relativas aos antigénios de transplante. Nos seres humanos, doadores e receptores são o mais compatíveis possíveis para estes antigénios. Experiências com murinos que aproveitem melhor a compatibilidade entre doador e receptor estão em vias de execução. Os dados das figuras 8 e 9 mostram que o tratamento prévio com as DC maduras tratadas com DEX, nesta situação, produzirá efeitos muito mais profundos.
Materiais e métodos
Geração das DC
Foram geradas DC imaturas de precursores de monócitos de sangue periférico. 0 PBMC Humano de doadores saudáveis, isolados através de uma centrifugação de densidade Ficoll-Hypaque foram colocados em placas a 1.5xl07 por poço em placas com 6 poços (Costar Corp., Cambridge, MA) em RPMI 1640 (Life Technologies, Paisley, Scotland) completado com 2mM de glutamina, lOOUI/ml de penicilina e 10% FCS. Depois de 2 horas a 37°C, as células não aderentes foram removidas e as células aderentes foram cultivadas num meio que continha 500U/ml IL-4 (Pepro Tech Inc. Rocky Hill, NJ) e 16/31 800U/ml de GM-CSF (gentilmente cedidas pelo Dr S. Osanto, LUMC, Leiden, NL) durante um total de 7 dias.
Activação das DC imaturas com uma proteína de fusão CD8-CD40L A activação das DC com CD40 foi executada com uma proteina de fusão composta pelo dominio extracelular humano CD40L e a cadeia murina CD8a (CD8-CD40L). 0 ADNc de CD8-CD40L descrito por Garrone et al. (23) foi transferido num vector de expressão eucariótico que continha o gene de resistência à higromicina, e utilizado para a geração de células de ovário do hamster chinês (CHO) transfectadas de forma estável. Os sobrenadantes da cultura que continham a proteina de fusão CD8-CD40L foram concentrados com um sistema celular de centrifugação pressurizada (Amicon, Inc., Beverly, MA), controlando a sua ligação a CD40 e testando as condições de activação das DC óptimas (não mostradao) . As DC foram incubadas a 5 x 105/ml/poço numa placa de 24 poços (Costar Corp., Cambridge, MA) e activadas na presença do sobrenadante 1/10 CD8-CD40L. Passadas 48 horas, as células e os sobrenadantes foram analisados. Há que considerar que os sobrenadantes de controlo obtidos das células de CHO não modificadas ou das células de CHO modificadas com o ADNc de CD8a careciam de funções activantes das DC e eram idênticos ao meio de cultura.
Tratamento das DC com DEX e RU486
As DC imaturas com sete dias foram tratadas com DEX 10“6 M (Sigma, St Louis, MO) na presença de GM-CSF e IL-4 ou GM-CSF sozinho. Passadas 24 horas as DC ou foram analisadas ou foram adicionalmente estimuladas via CD40 pela adição da proteina de fusão CD8-CD40L às culturas como o acima 17/31 descrito. Nalgumas experiências foi utilizado o antagonista receptor de glucocorticóide RU485 (Roussel-UCLAF, Romainville, France) com uma concentração final de lOmM, sozinho ou em combinação com DEX.
Análise do fenótipo de superfície das DC por citometria de fluxo
As células foram tingidas em gelo com anticorpos monoclonais de rato conjugadas com PE ou FITC (MoAb) durante 30 minutos em PBS 1% FCS e foram analisadas num FACScan® (Becton Dickinson, San Jose, CA) . Foram utilizados os seguintes MoAb: FITC-anti-CD80 (BB1), PE-anti-CD8 6 (FUN-1), FITC-anti-CD40 (5C3), PE-anti-CD54 (HA 58) e PE-anti-CD58 (1C3) (Pharmingen, San Diego, CA), PE-anti-CD14 (L243) e PE-anti-HLA-DR (Mf-P9) (Becton Dickinson), PE-anti-CD83 (HB15A) (Immunotech, Marseille, France) e PE-anti-HLA classe I (Tu 149) (Caltag Laboratories, Burlingame, CA) .
Experiências de captação dos antigénios
As DC foram suspensas de novo num meio tamponado com 25mM de HEPES. FITC-BSA e FITC-BSA manosilado (ambos de Sigma) foram adicionados a uma concentração final de lmg/ml e as células foram incubadas a 37°C ou a 0°C para determinar a captação residual. Passada 1 hora, as DC foram muito bem lavadas com PBS arrefecido em gelo e foram analisadas por FACS® utilizando iodeto de propidio para eliminar as células mortas.
Detecção da citoquina por ELISA 18/31
Os sobrenadantes da cultura foram analisados em diluições de duas séries em duplicado. 0 IL-12p70 foi detectado com a utilização de um kit ELISA de sanduiche de fase sólida (Diaclone Research, Besancon, France) (sensibilidade 3pg/ml). Para a detecção do IL-12p40 e do IFN-g, captura de MoAb e a detecção policlonal marcada com biotina Ab foram obtidas de Peter van de Meijde (BPRC, Rijswijk, NL) (sensibilidade lOpg/ml). A IL-10 foi detectada com a utilização do kit de ELISA da IL-10 compacta humano Pelikine (CLB, Amesterdam, NL) (sensibilidade 3pg/ml).
Reacção dos linfócitos misturados alogeneicos (MLR)
As PBMC adultas alogeneicas não aderentes de um individuo não aparentado foram cultivadas em placas de 96 poços com fundo plano (Costar Corp., Cambridge, MA) a uma densidade de 1.5 x 105/poço com várias quantidades de DC irradiadas em triplicado com raios g (3, 000 rads) . Ao 5o. dia a proliferação foi avaliada pela capatação [3H]timidina (0.5mCi/poço, actividade especifica 5Ci/mMol, Amersham Life Science, Buckinghamshire, UK) durante um pulso de 16 horas.
Ensaios de estimulação da Thl O clone Rpl5 1-1 de CD4+ Thl restringido com HLA-DR3 especifico de hsp65 de Mycobacterium tuberculosis e M. leprae utilizado neste estudo reconhece um peptideo hsp65 determinante correspondente aos residuos peptídicos 3 a 13 (p3-13) (24). As DC imaturas tratadas com DEX e compativeis com HLA-DR e os seus equivalentes não tratados com DEX foram pulsadas com lOmg/ml de p3-13 ou com lOmg/ml de hsp65 durante 2 horas, muito bem lavadas e estimuladas através de CD40 como o acima descrito. Para as DC imaturas tratadas com DEX pulsadas com Ag, a activação com CD40 foi executada 19/31 na presença de DEX. As células T específicas de hsp65 (104) foram cultivadas durante 3 dias com diferentes quantidade de DC irradiadas em triplicado com raios g (3,000 rads) em placas de 96 poços com fundo plano (Costar Corp.) . A incorporação de [3H]timidina foi medida ao 3o. dia depois de um pulso de 16 horas. Antes de adicionar [3H]timidina, 50ml de sobrenadantes foram recolhidos de cada poço e os sobrenadantes do poço triplicados foram agrupados para medir a produção de IFN-g. Para testar a resposta das células T específicas de hsp65 a um segundo desafio antigénico potente, 104 células T foram primeiro cultivadas durante 48horas com 5 x 103 de DC pulsadas com o peptídeo e preparadas como o acima indicado, seguidamente foram colhidas e deixadas a repousar num meio que continha 5U/ml de IL-2. Três dias mais tarde, as células T 104 viáveis foram re-estimuladas com 5 x 103 de DC pulsadas com o peptídeo geradas a partir do mesmo doador utilizado para a primeira cultura e foi testada a sua capacidade para proliferar e para produzir IFN-g como o anteriormente descrito.
Análise estatística
Foi utilizada a análise da covariância para comparar a proliferação das células T e a produção de IFN-g em função do número das DC, entre as DC activadas com CD40 tratadas com a DEX e as DC activadas com CD40 não tratadas com a DEX (figura 5).
Legendas das figuras
Figura 1 O tratamento prévio com as DEX inibe as alterações fenotípicas induzidas pela ligação com CD40. 20/31
As DC imaturas com sete dias foram cultivadas durante 24 horas na ausência ou presença de 1CT6 M DEX e activadas durante 48 horas por CD40 com a proteína de fusão CD8-CD40L. Só é mostrada a comparação com as DC imaturas mantidas no meio. Os histogramas vazios mostram a coloração de fundo com controlos isotípicos MoAb e os histogramas sólidos representam a coloração específica dos marcadores de superfície das células indicadas. Estão indicadas as intensidades de fluorescência média específica. As intensidades de fluorescência média dos controlos isotípicos foram entre 3 e 4. Os dados são representativos de 4 experiências independentes.
Figura 2 As DC activadas através da CD40 mantêm um fenótipo activado depois de uma exposição a DEX.
As DC imaturas foram activadas com a proteína de fusão CD8-CD40L. As DEX (IO-6 M) ou meio de controlo foram adicionadas 48 horas mais tarde e as células foram analisadas depois de mais 2 dias de cultura. Só é mostrada a comparação com as DC imaturas mantidas no meio. Os histogramas vazios mostram a coloração de fundo com controlos isotípicos MoAb e os histogramas sólidos representam a coloração específica dos marcadores de superfície das células indicadas. São indicadas as intensidades de fluorescência média específica. As intensidades de fluorescência média dos controlos isotípicos foram entre 3 e 5. Os dados são representativos de 2 experiências independentes.
Figura 3 0 tratamento prévio com DEX não afecta a regulação da maquinaria de captação dos antigénios das DC. 21/31
As DC imaturas foram incubadas na ausência ou na presença de IO”6 M DEX durante 24 horas e seguidamente activadas ou não durante 48 horas com CD40 com a proteína de fusão CD8-CD40L. As células foram pulsadas durante 1 hora com um meio que continha lmg/ml de FITC-BSA ou lmg/ml de FITC-BSA manosilado. Os histogramas vazios mostram a autofluorescência de fundo, os histogramas sólidos cinzentos mostram a captação de fundo a 0°C e os histogramas sólidos negros mostram a captação específica a 37°C. Os dados são representativos de 3 experiências independentes.
Figura 4 0 tratamento prévio com DEX altera o perfil da secreção da citoquina das DC activadas com CD40.
As DC imaturas de controlo ou expostas a DEX foram deixadas a cultivar sem nenhum tratamento adicional ou foram estimuladas com a proteína de fusão CD8-CD40L. Os sobrenadantes da cultura foram colhidos 48 horas mais tarde e a secreção da IL-10, IL-12p40 e IL-12p70 foram analisadas por um ensaio ELISA específico. Os dados são representativos de 6 experiências independentes.
Figura 5 0 tratamento prévio com DEX afecta as capacidades estimuladoras das células T das DC activadas via CD40 e conduz a um estado de hipossensibilidade das células Thl. MLR alogeneico: PBMC alogeneicas não aderentes foram cultivadas com quantidades diferentes das DC activadas com CD40, das DC activadas com CD40 tratadas com DEX ou DC imaturas. A resposta proliferativa foi medida ao 5o. dia.
Ensaios de estimulação Thl: As células T específicas de hsp65 foram cultivadas com quantidades diferentes de DC 22/31 activadas com CD40 compatíveis com HLA-DR ou com DC activadas com CD40 tratadas com DEX pulsadas com a proteína hsp65 ou com o epítopo peptídico específico p3-13. A resposta proliferativa e a produção de IFN-g dependente das célula T foi analisado no 3o. dia. Os dados são representativos de 4 experiências independentes.
Figura 6 As DC activadas com CD40 tratadas com DEX induzem a um estado de hipossensibilidade nas células Thl.
As células T específicas de hsp65 previamente cultivadas com DC activadas com CD40 tratadas com DEX pulsadas com o epítopo peptídico p3-13 foram colhidas passadas 48 horas, e deixadas a repousar na presença de 5U/ml da IL2 durante 3 dias, e foram re-estimuladas com DC pulsadas com p3-13. A resposta proliferativa e a produção de IFN-g foram medidas ao 3o. dia. Foram obtidos resultados idênticos com 2 experiências independentes.
Figura 7 As células Dl foram deixadas sem tratar ou foram cultivadas durante dois dias na presença do LPS (1 μg/ml) e/ou DEX (IO-6 M) . A expressão de superfície de CD86 (B7.2), do MHC Classe II e da CD40 foi controlada com a coloração com o Ab marcado com FITC apropriado e posterior análise FACS. Foram obtidos resultados idênticos para as células Dl maduras na presença da CD40L murina (não mostrada).
Figura 8 Os ratos Balb/C foram imunizados com 10-6 células Dl que foram preparadas como o indicado.
Uma semana mais tarde, os esplenócitos foram isolados e testados para a sua resposta contra os esplenócitos C57B1/6 23/31 numa cultura misturada de linfócitos. Passadas 24 horas, foi testado o conteúdo de IFN-g dos sobrenadantes da cultura num ensaio ELISA específico.
Figura 9 Os ratos Balb/C (5 por grupo) foram imunizados como o indicado. Uma semana mais tarde, os transplantes de pele de origem C57B1/6 foram enxertados e a sobrevivência do enxerto foi controlada. 24/31
REFERÊNCIAS 1. Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature 392: 248, 1998. 2. Sallusto F, Lanzavecchia A: Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony stimulating factor and downregulated by tumor necrosis factor a. J Exp Med 179: 1109, 1994. 3. Sallusto F, Cella M, Danieli C, Lanzavecchia A: Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 182: 389, 1995. 4. Caux C, Massacrier C, Vandervliet B, Dubois B, van Kooten C, Durand I, Banchereau J: Activation of human dendritic cells through CD40 cross-linking. J Exp Med 180: 1263, 1994. 5. Cella M, Sheidegger D, Palmer-Lehman K, Lane P, Lanzavechia A, Alber G: Ligation of CD40 on dendritic cells triggers production of high leveis of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 184: 747, 1996.
6. Koch F, Stanzl U, Jennevin P, Janke K, Heufler C, Kampgen E, Romani N, Schuler G: High leveis IL-12 production by murine dendritic cells: upregulation via MHC 25/31 class II and CD40 molecules and downregulation by IL-4 and IL-10. J Exp Med 184: 741, 1996. 7. Trinchieri G: Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Iinmunol 13: 251, 1995. 8. Kamanaka M, Yu P, Yasui T, Koshida K, Kawaba T, Horii T, Kishimoto T, Kikutani H: Protective role of CD40 in Leishmania major infection at two distinct phases of cell-mediated immunity. Immunity 4: 275, 1996. 9. Yang Y, Wilson JM: CD40 ligand-dependent T cell activation: requirement of B7-CD28 signaling through CD40. Science 273: 1862, 1996. 10. Mackey MF, Gunn JR, Ting P, Kikutani H, Dranoff G, Noelle RJ, Barth Jr RJ: Protective immunity induced by tumor vaccines requires interactions between CD40 and its ligand CD154, Câncer Res 57: 2569, 1997. 11. Grewal IS, Foellmer HG, Grewal KD, Xu J, Hardardottir F, Baron JL, Janeway Jr CA, Flavell RA: Requirement for CD40 ligand in costimulation induction, T cell activation and experimental allergic encephalomyelitis. Science 273: 1864, 1996. 12. Kirk AD, Harlan DM, Armstrong NN, Davis TA, Dong Y, Gray GS, Hong X, Thomas D, Fechner JH, Knechtle SJ: CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc Natl Acad Sei USA 94: 8789, 1997. 26/31 13. Durie FH, Aruffo A, Ledbetter J, Crassi KM, Green WR, Fast LD, Noelle RJ: Antibody to the ligand of CD40, gp39, blocks the occurrence of the acute and chronic forms of graft-vs-host disease. J Clin Invest 94: 1333, 1994. 14. Almawi WY, Beyhum HN, Rahme AA, Rieder MJ: Regulation of cytokine and cytokine receptor expression by glucocorticoids. J Leukoc Biol 60: 563, 1996. 15. Moser M, De Smedt T, Sornasse T, Tielemans F, and Chentoufi AA: Glucocorticoids down-regulate dendritic cell function in vitro and in vivo. Eur J Immunol 25: 2818, 1995. 16. Kitajima T, Ariitzumi K, Bergstresser PR, Takashima A: A novel mechanism of glucocorticoid-induced immune suppression: the inhibition of T cell-mediated terminal maturation of a murine dendritic cell line. J Clin Invest 98: 142, 1996. 17. Viera PL, Kalinski P, Wierenga EA, Kapsenberg ML, de Jong EC: Glucocorticoids inhibit bioactive IL-12p70 production by in vitro-generated human dendritic cells without affecting their T cell stimulatory potential. J Immunol 161: 5245, 1998. 18. Romani N, Gruner S, Brang D, Kampgen E, Lenz A, Trockenbacher B, Konwalinka G, Fritsch PO, Steinman RM, Schuler G: Proliferating dendritic cell progenitors in human blood. J Exp Med 180: 83, 1994. 19. Randolph GC, Beaulieu S, Lebecque S, Steinman RM, Muller WA: Differentiation of monocytes into dendritic 27/31 cells in a model of transendothelial trafficking. Science 282: 480, 1998. 20. Rissoan MC, Soumelis V, Kadowaki N, Grouard G, Briere F, de Waal Malefyt R, Liu Y-J: Reciprocai control of T helper cell and dendritic cell differentiation. Science 283: 1183, 1999. 21. Bender A, Sapp M, Schuler G, Steinman RM, Bhardwaj N: Improved methods for the generation of dendritic cells from non proliferating progenitors in human blood. J Iirununol Methods 196:121, 1996. 22. Romani N, Reider D, Heuer M, Ebner S, Kampgen E, Eibl B, Niederwieser D, Schuler G: Generation of mature dendritic cells from human blood: an improved method with special regard to clinicai applicability. J Immunol Methods 196:137, 1996. 23. Garrone P, Neidhardt E-M, Garcia E, Galibert L, van Kooten C, Banchereau J: Fas ligation induces apoptosis of CD40-activated human B lymphocytes. J Exp Med 182: 1265, 1995. 24. Geluk A, van Meigaarden KE, Janson AAM, Drijfhout J-W, Meloen R, de Vries RRP, Ottenhoff T: Functional analysis of DR17(DR3)-restricted mycobacterial T cell epitopes reveals DR17 binding motif and enables the design of allele-specific competitor peptides. J Immunol 149: 2864, 1992. 25. Engering AJ, Cella M, Fluitsma D, Brockhaus M, Hoefsmit ECM, Lanzavecchia A, Pieters J: The mannose receptor functions as a high capacity and broad specificity antigen 28/31 receptor in human dendritic cells. Eur J Immunol 27: 2412 1997. 26. Tan MCAA, Mommaas AA, Drijfhout J-W, Jordens R, Onderwater JJM, Verwoerd D, Mulder AA, van der Heiden AN, Scheidegger D, Oomens LCJM, Ottenhoff THM, Tulp A, Neefjes JJ, Koning F: Mannose receptor-mediated uptake of antigens strongly enhances HLA class II-restricted antigen presentation by cultured dendritic cells. Eur J Immunol 27: 2426, 1997. 27. de Saint Vis B, Fugier-Vivier I, Massacrier C, Gaillard C, Vanbervliet B, Ait-Yahia S, Banchereau J, Liu Y-J, Lebecque S, Caux C: The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. J Immunol 160: 1666, 1998. 28. Piemonti L, Monti P, Allavena P, Sironi M, Soldini L, Leone BE, Socci C, Di Cario V: Glucocorticoids affect human dendritic cell differentiation and maturation. J Immunol 162: 6473, 1999. 29. Blotta MH, Dekruyff RH, Umetsu DT: Corticosteroids inhibit IL-12 production in human monocytes and enhance their capacity to induce IL-4 synthesis in CD4+ lymphocytes. J Immunol 158: 5589, 1997. 30. Visser J, van Boxel-Dezaire A, Methrost D, Brunt T, de Kloet ER, Nagelkerken L: Differential regulation of interleukin 10 (IL-10) and IL-12 by glucocorticoids in vitro. Blood. 91: 4255, 1998. 29/31 31. van Kooten C, Banchereau J: Function of CD40 on B cells, dendritic cells and other cells. Curr Opin Immunol 9: 330, 1997. 32. Scheinman RI, P.C. Cogswell PC, Lofquist AK, and Baldwin Jr AS: Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science 270: 283, 1995. 33. Auphan N, Dinato JA, Rosette C, Helmberg A, Karin N: Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science 270: 286, 1995. 34. Murphy TL, Cleveland MG, Kulesza P, Magram J, Murphy KM: Regulation of interleukin 12 p40 expression through an NF-kappa B half site. Mol Cell Biol 15: 5258, 1995. 35. Yoshimoto T, Nagase H, Ishida T, Inoue J, Nariuchi H: Induction of interleukin-12 p40 transcript by CD40 ligation via activation of nuclear factor-kappaB. Eur J Immunol 27: 3461, 1997. 36. Ridge JP, Di Rosa F, Matzinger P: A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393: 474, 1998. 37. Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR: Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393: 478, 1998. 38. Schoenberger SP, Toes REM, van der Voort EI, Offringa R, Melief CJM: T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393: 480, 1998. 30/31 39. Winzler C, Rovere P, Rescigno M, Granucci F, Penna G, Adorini L, Zimmermann VS, Davoust J, Ricciardi- Castagnoli P: Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J Exp Med 1997 Jan 20; 185 (2) :317-28. 40. Schuurhuis DH, Laban S, Toes RE, Ricciardi-Castagnoli P, Kleijmeer MJ, van der Voort EI, Rea D, Offringa R, Geuze HJ, Melief CJ, Ossendorp F: Immature dendritic cells acquire CD8(+) cytotoxic T lymphocyte priming capacity upon activation by T helper cell-independent or -dependent stimuli. J Exp Med 2000 Jul 3; 192 (1) : 145-50.
Lisboa, 31/31

Claims (20)

  1. REIVINDICAÇÕES 1. Método para preparar uma composição farmacêutica para modificar funcionalmente uma célula T especifica de um antigénio de um hospedeiro, caracterizado por o dito método compreender a cultura de monócitos de sangue periférico do dito hospedeiro para as diferenciar nas células dendriticas, activar as ditas células dendriticas na presença de uma hormona glucocorticóide e carregar as ditas células dendriticas na presença da dita hormona glucocorticóide com um antigénio para o qual a dita célula T deve ser especifica.
  2. 2. Composição farmacêutica para modificar funcionalmente uma célula T especifica de um antigénio de um hospedeiro, caracterizada por a dita composição ser obtida pela cultura de monócitos de sangue periférico do dito hospedeiro para as diferenciar nas células dendriticas, activar as ditas células dendriticas na presença de uma hormona glucocorticóide e carregar as ditas células dendriticas na presença da dita hormona glucocorticóide com um antigénio para o qual a dita célula T deve ser especifica.
  3. 3. Método de acordo com a reivindicação 1, caracterizado por a dita activação ser feita através de um receptor CD40.
  4. 4. Método de acordo com a reivindicação 3, caracterizado por a dita activação envolver a incubação das células dendriticas com a proteína de fusão CD8- CD40L, ou trimérica a partir da CD40L constituída por moléculas de CD40L às quais foram unidas uma leucina zipper modificada, anticorpos anti-CD40, ou células que expressam a CD40L. 1/11
  5. 5. Método de acordo com a reivindicação 1, caracterizado por a dita activação envolver a incubação das células dendriticas com lipopolissacarídeos (LPS) ou polil/C.
  6. 6. Método de acordo com as reivindicações 1, e de 3 a 5, caracterizado por as ditas células dendriticas serem infectadas com um ou mais virus recombinantes que codificam o(s) antigénio(s) de interesse antes de activar as ditas células dendriticas na presença de uma hormona glucocorticóide.
  7. 7. Método de acordo com as reivindicações 1, e de 3 a 6 caracterizado por as ditas células dendriticas serem incubadas com uma ou mais proteínas recombinantes ou grandes peptídeos sintéticos (> 20 aminoácidos) que representam o(s) antigénio(s) de interesse antes de activar as ditas células dendriticas na presença de uma hormona glucocorticóide.
  8. 8. Método de acordo com as reivindicações 1, e de 3 a 7 caracterizado por as ditas células dendriticas serem incubadas com células ou com um homogeneizado celular que contém o(s) antigénio(s) de interesse antes de activar as ditas células dendriticas na presença de uma hormona glucocorticóide.
  9. 9. Método de acordo com as reivindicações 1, e de 3 a 8 caracterizado por as ditas células dendriticas serem carregadas com peptídeos sintéticos que representam o(s) antigénio(s) de interesse depois da activação das ditas células dendriticas na presença de uma hormona glucocorticóide. 2/11
  10. 10. Método de acordo com as reivindicações 1, e de 3 a 9 caracterizado por as ditas células dendriticas, depois da activação na presença de uma hormona glucocorticóide, segregarem a interleuquina-10.
  11. 11. Método de acordo com quaisquer uma das reivindicações 1, e de 3 a 10, caracterizado por a dita célula dendritica e/ou um precursor da mesma estar provido com a dita hormona glucocorticóide in vitro.
  12. 12. Método de acordo com quaisquer uma das reivindicações 1, e de 3 a 11 caracterizado por a dita célula T ser uma célula T-auxiliar.
  13. 13. Célula dendritica isolada preparada de acordo com quaisquer uma das reivindicações de 3 a 12, caracterizada por esta ser capaz de modificar funcionalmente uma célula T especifica de um antigénio em relação à resposta ao dito antigénio.
  14. 14. Método para modificar funcionalmente uma célula T especifica de um antigénio, caracterizado por este compreender prover uma célula dendritica de acordo com a reivindicação 13 com o dito antigénio e cultivar in vitro a dita célula T e a dita célula dendritica.
  15. 15. Método de acordo com a reivindicação 14, caracterizado por este ainda compreender a multiplicação da dita célula T funcionalmente modificada.
  16. 16. A utilização de uma hormona glucocorticóide caracterizada por esta ser utilizada para obter uma célula dendritica capaz de modificar funcionalmente uma célula T. 3/11
  17. 17. Composição farmacêutica caracterizado por esta compreender uma célula dendritica de acordo com a reivindicação 13.
  18. 18. Utilização de uma célula dendritica de acordo com a reivindicação 13 e/ou uma células T funcionalmente modificada obtida num método de acordo com a reivindicação 14 ou 15 caracterizada por esta ser utilizada na preparação de um medicamento.
  19. 19. Utilização de uma célula dendritica de acordo com a reivindicação 13 e/ou uma célula T funcionalmente modificada obtida num método de acordo com a reivindicação 14 ou 15 caracterizada por esta ser utilizada na produção de um medicamento para o tratamento de uma doença auto-inmune, uma alergia, uma doença de enxerto versus hospedeiro e/ou uma doença de hospedeiro versus enxerto. Lisboa, 4/11 REFERÊNCIAS CITADAS NA DESCRIÇÃO Esta lista de referências citadas pelo Titular tem como único objectivo ajudar o leitor e não forma parte do documento de patente europeia. Ainda que na sua elaboração se tenha tido o máximo cuidado, não se podem excluir erros ou omissões e a EPO não assume qualquer responsabilidade a este respeito. Literatura citada na descrição que não são Pedidos de Patente • BANCHEREAU J; STEINMAN RM: Dendritic cells and the control of immunity. Nature, 1998, vol. 392, 248 [0041] • SALLUSTO F; LANZAVECCHIA A: Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony stimulating factor and downregulated by tumor necrosis factor a. J Exp Med, 19 94, vo 1. 179, 1109 [0041] • SALLUSTO F; CELLA M; DANIELI C; LANZAVECCHIA A: Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med, 1995, vol. 182, 389 [0041] • CAUX C; MASSACRIER C; VANDERVLIET B; DUBOIS B; VAN KOOTEN C; DURAND I; BANCHEREAU J: Activation of human dendritic cells through CD40 cross-linking. J Exp Med, 1994, vol. 180, 1263 [0041] 5/11 PALMER-LEHMAN K; LANE P; CELLA M; SHEIDEGGER D; LANZAVECHIA A; ALBER G: Ligation of CD40 on dendritic cells triggers production of high leveis of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med, 1996, vol. 184, 74 7 [0041] KOCH F; STANZL U; JENNEVIN P; JANKE K; HEUFLER C; KAMPGEN E; ROMANI N; SCHULER G: High leveis IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J Exp Med, 1996, vol. 184, 741 [0041] TRINCHIERI G: Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol, 1995, vol. 13, 251 [0041] KAMANAKA M; YU P; YASUI T; KOSHIDA K; KAWABA T; HORII T; KISHIMOTO T ; KIKUTANI H: Protective role of CD4 0 in Leishmania ma j or infection at two distinct phases of cell-mediated immunity. Immunity, 1996, vol. 4, 275 [0041] YANG Y; WILSON JM: CD4 0 ligand-dependent T cell activation: requirement of B7-CD28 signaling through CD40. Science, 1996, vol. 273, 1862 [0041] MACKEY MF; GUNN JR; TING P; KIKUTANI H; DRANOFF G; NOELLE RJ; BARTH JR RJ: Protective immunity induced by tumor vaccines requires interactions between CD40 and its ligand CD154. Câncer Res, 1997, vol. 57, 2569 [0041] • GREWAL IS; FOELLMER HG; GREWAL KD; XU J; HARDARDOTTIR F; BARON JL; JANEWAY JR CA; FLAVELL RA: Requirement for CD40 ligand in costimulation induction, T cell activation and experimental allergic encephalomyelitis. Science, 1996, vol. 273, 1864 [0041] • KIRK AD; HARLAN DM; ARMSTRONG NN; DAVIS TA; DONG Y; GRAY GS; HONG X; THOMAS D; FECHNER JH; KNECHTLE SJ: CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc Natl Acad Scí USA, 1997, vol. 94, 8789 [0041] • DURIE FH; ARUFFO A; LEDBETTER J; CRASSI KM; GREEN WR; FAST LD; NOELLE RJ: Antibody to the ligand of CD4 0, gp39, blocks the occurrence of the acute and chronic forms of graft-vs-host disease. J Clin Invest, 1994, vol. 94, 1333 [0041] • ALMAWI WY; BEYHUM HN; RAHME AA; RIEDER MJ: Regulation of cytokine and cytokine receptor expression by glucocorticoids. J Leukoc Bio, 1996, vol, 60, 563 [0041] • MOSER M; DE SMEDT T; SORNASSE T; TIELEMANS F; CHENTOUFI AA: Glucocorticoids down-regulate dendritic cell function in vitro and in vivo. Eur J Immunol, 1995, vol. 25, 2818, [0041] • KITAJIMA T; ARIITZUMI K; BERGSTRESSER PR; TAKASHIMA A: A novel mechanism of glucocorticoid-induced iinmune suppression: the inhibition of T cell-mediated terminal maturation of a murine dendritic cell line. J Clin Inves, 1996, vol. 98, 142, [0041] 7/11 • VIERA PL; KALINSKI P; WIERENGA EA; KAPSENBERG ML; DE JONG EC: Glucocorticoids inhibit bioactive IL-12p70 production by in vitro-generated human dendritic cells without affecting their T cell stimulatory potential. J Immunol, 1998, vol. 161, 5245 [0041] • ROMANI N; GRUNER S; BRANG D; KAMPGEN E; LENZ A; TROCKENBACHER B; KONWALINKA G; FRITSCH PO; STEINMAN RM; SCHULER G: Proliferating dendritic cell progenitors in human blood. J Exp Med, 1994, vol. 180, 83 [0041] • RANDOLPH GC; BEAULIEU S; LEBECQUE S; STEINMAN RM; MULLER WA: Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science, 1998, vol. 282, 480 [0041] • RISSOAN MC; SOUMELIS V; KADOWAKI N; GROUARD G; BRIERE F; DE WAAL MALEFYT R; LIU Y-J: Reciprocai control of T helper cell and dendritic cell differentiation. Science, 1999, vol. 283, 1183 [0041] • BENDER A; SAPP M; SCHULER G; STEINMAN RM; BHARDWAJ N: Improved methods for the generation of dendritic cells from non proliferating progenitors in human blood. J Immunol Methods, 1196 vol. 196, 121 [0041] • ROMANI N; REIDER D; HEUER M; EBNER S; KAMPGEN E; EIBL B; NIEDERWIESER D; SCHULER G: Generation of mature dendritic cells from human blood: an improved method with special regard to clinicai applicability. J Immunol Methods, 1996, vol. 196, 137 [0041] 8/11 • GARRONE P; NEIDHARDT E-M; GARCIA E; GALIBERT L; VAN KOOTEN C; BANCHEREAU J: Fas ligation induces apoptosis of CD40-activated human B lymphocytes. J Exp Med, 1995, vol. 182, 1265 [0041] • GELUK A; VAN MEIGAARDEN KE; JANSON AAM; DRIJFHOUT J-W; MELOEN R; DE VRIES RRP; OTTENHOFF T: Functional analysis of DR17(DR3)-restricted mycobacterial T cell epitopes reveals DR17 binding motif and enables the design of allele-specific competitor peptides. J Immunol, 1992, vol. 149, 2864 [0041] • ENGERING AJ; CELLA M; FLUITSMA D; BROCKHAUS M; HOEFSMIT ECM; LANZAVECCHIA A; PIETERS J: The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells. Eur J Immunol, 1997, vol. 27, 2412 [0041] • TAN MCAA; MOMMAAS AA; DRIJFHOUT J-W; JORDENS R; ONDERWATER JJM; VERWOERD D; MULDER AA; VAN DER HEIDEN AN; SCHEIDEGGER D; OOMENS LCJM: Mannose receptor-mediated uptake of antigens strongly enhances HLA class II-restricted antigen presentation by cultured dendritic cells. Eur J Immunol, 1997, vol. 27, 2426 [0041] • DE SAINT VIS B; FUGIER-VIVIER I; MASSACRIER C; GAILLARD C; VANBERVLIET B; AIT-YAHIA S; BANCHEREAU J; LIU Y-J; LEBECQUE S; CAUX C: The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. J Immunol, 1998, vol. 160, 1666 [0041] • PIEMONTI L; MONTI P; ALLAVENA P; SIRONI M; SOLDINI L; LEONE BE; SOCCI C; Dl CARIO V: Glucocorticoids affect 9/11 human dendritic cell differentiation and maturation. J Immunol, 1999, vol. 162, 6473 [0041] • BLOTTA MH; DEKRUYFF RH; UMETSU DT: Cortiçosteroids inhibit IL-12 production in human monocytes and enhance their capacity to induce IL-4 synthesis in CD4 + lymphocytes. J Immunol, 1997, vol. 158, 5589 [0041] • VISSER J; VAN BOXEL-DEZAIRE A; METHROST D; BRUNT T; DE KLOET ER; NAGELKERKEN L: Differential regulation of interleukin 10 (IL-10) and IL-12 by glucocorticoids in vitro. Blood, 1998, vol 91, 4255 [0041] • VAN KOOTEN C; BANCHEREAU J: Function of CD40 on B cells, dendritic cells and other cells. Curr Opin Immunol, 1997, vol. 9, 330 [0041] • SCHEINMAN RI; P.C. COGSWELL PC; LOFQUIST AK; BALDWIN JR AS: Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science, 1995, vol. 270, 283 [0041] • AUPHAN N; DINATO JA; ROSETTE C; HELMBERG A; KARIN N: Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science, 1995, vol. 270, 286 [0041] • MURPHY TL; CLEVELAND MG; KULESZA P; MAGRAM J; MURPHY KM: Regulation of interleukin 12 p40 expression through an NF-kappa B half site. Mol Cell Biol, 1995, vol. 15, 5258 [0041] 10/11 • YOSHIMOTO T; NAGASE H; ISHIDA T; INOUE J; NARIUCHI H: Induction of interleukin-12 p40 transcript by CD40 ligation via activation of nuclear factor-kappaB. Eur J Immunol, 1997, vol. 27, 3461 [0041] • RIDGE JP; Dl ROSA F; MATZINGER P: A condi tioned dendritic cell can be a temporal bridge between a CD4 + T-helper and a T-killer cell. Nature, 1998, vol. 393, 474 [0041] • BENNETT SR; CARBONE FR; KARAMALIS F; FLAVELL RA; MILLER JF; HEATH WR: Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature, 1998, vol. 393, 478 [0041] • SCHOENBERGER SP; TOES REM; VAN DER VOORT EI; OFFRINGA R; MELIEF CJM: T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature, 1998, vol. 393, 480 [0041] • WINZLER C; ROVERE P; RESCIGNO M; GRANUCCI F; PENNA G; ADORINI L; ZIMMERMANN VS; DAVOUST J; RICCIARDI-CASTAGNOLI P: Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J Exp Med,
  20. 20 January 1997, vol.185 (2), 317-28 [0041] • SCHUURHUIS DH; LABAN S; TOES RE; RICCIARDI-CASTAGNOLI P; KLEIJMEER MJ; VAN DER VOORT EI; REA D; OFFRINGA R; GEUZE HJ; MELIEF CJ: Immature dendritic cells acquire CD8(+) cytotoxic T lymphocyte priming capacity upon activation by T helper cell-independent or -dependent stimuli. J Exp Med, 03 July 2000, vol.l92( 1), 145-50 [0041] 11/11
PT00971883T 1999-10-04 2000-10-04 Células dendríticas activadas na presença das hormonas glucocorticóides são capazes de suprimir as respostas das células t a um antigénio específico PT1218028E (pt)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15744299P 1999-10-04 1999-10-04

Publications (1)

Publication Number Publication Date
PT1218028E true PT1218028E (pt) 2008-07-10

Family

ID=22563732

Family Applications (1)

Application Number Title Priority Date Filing Date
PT00971883T PT1218028E (pt) 1999-10-04 2000-10-04 Células dendríticas activadas na presença das hormonas glucocorticóides são capazes de suprimir as respostas das células t a um antigénio específico

Country Status (11)

Country Link
US (1) US7560105B1 (pt)
EP (1) EP1218028B1 (pt)
AT (1) ATE386539T1 (pt)
AU (1) AU1062501A (pt)
CA (1) CA2388229A1 (pt)
CY (1) CY1107952T1 (pt)
DE (1) DE60038119T2 (pt)
DK (1) DK1218028T3 (pt)
ES (1) ES2301494T3 (pt)
PT (1) PT1218028E (pt)
WO (1) WO2001024818A1 (pt)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10038699A1 (de) * 2000-07-31 2002-02-14 Michael Sittinger Mittel zur Verringrung der Abstoßungsreaktionen bei Transplantaten
FR2826975B1 (fr) * 2001-07-09 2004-06-04 Bio Merieux Utilisation de lipoproteines oxydees pour obtenir la differenciation de monocytes en cellules dendritiques matures
US7727523B2 (en) * 2001-08-13 2010-06-01 Yale University Method for suppressing immune system response to transplanted tissue or cells
NZ570709A (en) * 2003-06-13 2010-04-30 Univ Pennsylvania Nucleic acid sequences encoding and compositions comprising IgE signal peptide and/or IL-15 and methods for using the same
EP2553449A2 (en) * 2010-03-26 2013-02-06 Westfälische Wilhelms-Universität Münster Substitute therapy for glucocorticoids

Also Published As

Publication number Publication date
ES2301494T3 (es) 2008-07-01
ATE386539T1 (de) 2008-03-15
DE60038119D1 (de) 2008-04-03
US7560105B1 (en) 2009-07-14
AU1062501A (en) 2001-05-10
CA2388229A1 (en) 2001-04-12
EP1218028B1 (en) 2008-02-20
DE60038119T2 (de) 2009-02-26
EP1218028A1 (en) 2002-07-03
CY1107952T1 (el) 2013-09-04
DK1218028T3 (da) 2008-06-23
WO2001024818A1 (en) 2001-04-12

Similar Documents

Publication Publication Date Title
Nouri-Shirazi et al. Direct and indirect cross-tolerance of alloreactive T cells by dendritic cells retained in the immature stage1
Kuwana Induction of anergic and regulatory T cells by plasmacytoid dendritic cells and other dendritic cell subsets
US20230287347A1 (en) Exosome for stimulating t cell and pharmaceutical use thereof
O’Connell et al. Immature and mature CD8α+ dendritic cells prolong the survival of vascularized heart allografts
US20020004041A1 (en) Methods for abrogating a cellular immune response
US7837990B2 (en) In vivo expanded NKT cells and methods of use thereof
Gao et al. CD40‐deficient dendritic cells producing interleukin‐10, but not interleukin‐12, induce T‐cell hyporesponsiveness in vitro and prevent acute allograft rejection
JP2004512030A (ja) 特異的細胞溶解性t細胞応答を誘導するための組成物および方法
JP4662776B2 (ja) 抗原負荷した樹状細胞ワクチンを前駆体から発生させる迅速ワンステップ法
Hao et al. Nonspecific CD4+ T cells with uptake of antigen-specific dendritic cell-released exosomes stimulate antigen-specific CD8+ CTL responses and long-term T cell memory
US20110268767A1 (en) Use of allogeneic cell lines to load antigen-presenting cells to elicit or eliminate immune responses
Itoh et al. Streptococcal preparation OK432 promotes functional maturation of human monocyte-derived dendritic cells
Raimondi et al. Dendritic cells, tolerance and therapy of organ allograft rejection
Decker et al. Double loading of dendritic cell MHC class I and MHC class II with an AML antigen repertoire enhances correlates of T-cell immunity in vitro via amplification of T-cell help
Gill et al. Induction of pathogenic cytotoxic T lymphocyte tolerance by dendritic cells: a novel therapeutic target
Ehser et al. Suppressive dendritic cells as a tool for controlling allograft rejection in organ transplantation: promises and difficulties
Chakraborty et al. Stimulatory and inhibitory differentiation of human myeloid dendritic cells
PT1218028E (pt) Células dendríticas activadas na presença das hormonas glucocorticóides são capazes de suprimir as respostas das células t a um antigénio específico
JP4662691B2 (ja) ガン性疾患を治療するための刺激された末梢血単核細胞の使用
Sato et al. Combination of monocyte-derived dendritic cells and activated T cells which express CD40 ligand: a new approach to cancer immunotherapy
Nakamura et al. Phenotypic stability of mature dendritic cells tuned by TLR or CD40 to control the efficiency of cytotoxic T cell priming
Krueger et al. Autoantigen-specific protection of non-obese diabetic mice from cyclophosphamide-accelerated diabetes by vaccination with dendritic cells
Kim et al. Dendritic cells loaded with exogenous antigen by electroporation can enhance MHC class I–mediated antitumor immunity
Fan et al. Alloantigen-specific T-cell hyporesponsiveness induced by dnIKK2 gene-transfected recipient immature dendritic cells
Yano et al. A new strategy using autologous dendritic cells and lymphokine-activated killer cells for cancer immunotherapy: efficient maturation of DCs by co-culture with LAK cells in vitro