Uprawniony z patentu: Siemens Aktiengesellschaft, Monachium (Re¬ publika Federalna Niemiec i Berlin Zachodni) Uklad do wytwarzania jednostronnie zamknietych rur z materialu pólprzewodnikowego Przedmiotem wynalazku jest uklad do wytwa¬ rzania zamknietych jednostronnie rur z materialu pólprzewodnikowego w drodze wytracania z ga¬ zowego zwiazku materialu pólprzewodnikowego na pusty nosnik rurowy, zamkniety z jednej strony, nagrzewany przez plynacy przezen prad i w któ¬ rego wnetrzu jest umieszczony pret z przewodza¬ cego materialu polaczony galwanicznie z nosni¬ kiem.Znane sa juz uklady w których we wnetrzu nos¬ nika byl umieszczony pret zelazny. W czasie pracy stwierdzono, ze temperatura nosnika byla przy zamknietym koncu o wiele nizsza niz na pozosta¬ lych jego czesciach. Reakcja wytracania materialu pólprzewodnikowego z gazowego zwiazku przebie¬ gala w tym miejscu o wiele wolniej co nie moglo zagwarantowac równomiernej grubosci scianek rury.Celem wynalazku jest wyeliminowanie tych nie¬ dogodnosci i uzyskanie równomiernego wytracania materialu pólprzewodnikowego na calej dlugosci nosnika.Cel ten osiagnieto przez opracowanie ukladu we¬ dlug wynalazku w któryni zastosowano pret z grafitu wegla szklistego, wegla spektralnie czyste¬ go czy tez z pirografitu. Pret wykonany z takiego materialu ma wzglednie duza opornosc wlasciwa.Ten sam prad, który przeplywa przez nosnik ply¬ nie równiez i przez pret powodujac jego nagrze¬ wanie. Cieplo oddawane przez pret podnosi tem- 15 20 25 30 2 perature zamknietego konca nosnika dzieki czemu uzyskuje sie zasadniczo jednakowe wytracanie wzdluz calej dlugosci nosnika.Pret wykonany z grafitu lub jednego z wymie¬ nionych materialów ma jeszcze te zalete, ze w od¬ róznieniu od takich metali jak zelazo czy miedz nie jest atakowany w wysokich temperaturach przez gazowe zwiazki materialów pólprzewodniko¬ wych. Pret jest wprasowywany lub wkrecany w wybranie wykonane w zamknietym koncu nosnika.Wybraniem tym moze byc równiez otwór przelo¬ towy wykonany w zamknietym koncu nosnika, przy czym otwór ten jest zamkniety przez srodkowa czesc wkreconej lub wprasowanej pokrywy o grzyb¬ kowatym przekroju. W tym przypadku pret jest swym czolem Wkrecany lub wprasowywany do tej¬ ze srodkowej czesci. Jezeli wybranie stanowi otwór przelotowy wykonany w zamknietym koncu nosni¬ ka wówczas otwór ten moze byc zamkniety przez wkrecone lub wprasowane w otwór zakonczenie preta przy czym na czolowa sciane preta jest na¬ krecona lub w nia wprasowana srodkowa czesc po¬ krywy o grzybkowatym przekroju. Grzybkowata pokrywa ma srednice równa zewnetrznej srednicy nosnika.Rozwiazanie wedlug wynalazku jest przedstawio¬ ne przykladowo na rysunku, na którym fig. 1 przedstawia uklad do wytwarzania zamknietych z jednego konca rur z materialu pólprzewodniko¬ wego, fig. 2 — przekrój górnej czesci nosnika, 82 56982 5 3 a fig. 3 — przekrój górnej czesci nosnika w dru¬ gim przykladzie wykonania wynalazku.Uklad wedlug wynalazku zawiera reaktor 1 po¬ laczony gazoszczelnie z dnem 2. W dnie 2 sa umieszczone rury 4 przez które jest wprowadzany 5 zwiazek gazowy wytracanego materialu pólprze¬ wodnikowego oraz gaz reagujacy. Rury 4 sa oto¬ czone innymi rurami 5 przez które wychodza po¬ zostale resztki gazu. W dnie 2 znajduja sie prze¬ pusty 6 przez które sa przeprowadzone do wnetrza 10 reaktora 1 doprowadzenia pradowe 7. Przepusty 6 sa wykonane np. z teflonu a doprowadzenia pradowe 7 ze srebra. Na górnej czesci doprowa¬ dzen pradowych 7 sa osadzone dwa uchwyty 8 19 wykonane np. z grafitu. Na uchwycie 8 jest umiesz- 15 czony rurowy nosnik 11 wykonany np. z grafitu, a na uchwycie 9 pret grafitowy 10. Nosnik 11 i pret 10 maja na swej górnej czesci wykonany gwint 12 laczacy mechanicznie i elektrycznie pret 10 z nos¬ nikiem 11. Pret moze byc wykonany równiez z we- 20 gla. szklistego, wegla spektralnie czystego czy tez pirografitu. Przylozenie napiecia do elektrod 7 po¬ woduje rozgrzanie nosnika 11 i preta 10.Pret 10 przekazuje cieplo na drodze promienio¬ wania we wszystkich kierunkach dzieki czemu 25 szczególnie górna powierzchnia nosnika zostaje na- "grzana do temperatury bliskiej temperaturze pozo¬ stalych czesci nosnika.Skutecznosc dzialania preta 10 moze ulec dalszej poprawie wskutek polaczenia czolowych scian preta 30 10 i nosnika 11 przy pomocy gwintu 12. Polacze¬ nie takie zwieksza opór przejscia pomiedzy pretem 10 i nosnikiem 11 dzieki czemu na scianach czolo¬ wych obu czesci nastepuje zamiana wiekszej ilosci energii elektrycznej w cieplna, proporcjonalnie o 35 zwiekszonej opornosci i zgodnie z prawem Ohma.Wielkosc opornosci przejscia a tym samym roz¬ klad temperatury wzdluz nosnika moze byc opty¬ malnie ustawiany przez odpowiednio glebokie wkrecenie preta 10 w sciane czolowa nosnika 11.Ustawiania tego dokonuje sie przed rozgrzaniem ukladu i przed wytracaniem materialu pólprze¬ wodnikowego. Czolowa sciana nosnika jest celowo zamykana pokrywa 13 dziejki czemu nosnik na zew¬ natrz przedstawia calkowicie gladka powierzchnie.W tym celu, w srodkowej czesci pokrywy 13 i w scianie czolowej preta 10 naciety jest gwint 14 przy pomocy którego mozna skrecic pokrywe 13 z pretem 10 a tym samym i z nosnikiem 11.Wytracanie rury 15 z materialu pólprzewodniko¬ wego odbywa sie w znany sposób podobnie do wy- 50 twarzania pretów z materialu pólprzewodnikowego.Jako zwiazek gazowy stosuje sie trójchiorosilan SiHCl3 a jako gaz reagujacy wodór H2. Wytracanie przebiega w temperaturze od okolo 1100 do 1200°C a najkorzystniej w temperaturze 1150°C. Opornosc 55 4 przejscia reguluje sie przez bardziej lub mniej gle¬ bokie wkrecenie preta.W drugim przykladzie wykonania pret 10 jest polaczony z nosnikiem 11 przy pomocy pokrywki 16. Pokrywka 16 posiada powierzchnie przyIgowa 17 tak zwymiarowana ze umozliwia wprasowanie pokrywki w nosnik 11. Na swej wewnetrznej stro¬ nie pokrywka 16 posiada powierzchnie przylgowa 18 tak zwymiarowana, by umozliwic wprasowanie preta 10 w pokrywe 16 wzglednie nacisniecie po¬ krywy 16 na pret 10. Równiez i w tym rozwia¬ zaniu pomiedzy pretem 10 a nosnikiem 11 znaj¬ duje sie utworzona przez powierzchnie przylgowe 17 i 18 strefa o zwiekszonej opornosci przejscia. :V Równiez i w tym przypadku temperatura czolowej ^ sciany urzadzenia zostaje podwyzszona tak dalece * by umozliwic równomierne wytracanie materialu pólprzewodnikowego na calej powierzchni nosnika.Opornosc przejscia jest regulowana przez zmiane dlugosci odcinka wprasowywanego. W kazdym z rozwiazan mozna równiez stosowac jedno polacze¬ nie srubowe i jedno polaczenie wciskowe. PLPatent proprietor: Siemens Aktiengesellschaft, Munich (Federal Republic of Germany and West Berlin) System for the production of unilaterally closed semiconductor material pipes The subject of the invention is a system for the production of unilaterally closed semiconductor material pipes by deletion from a gaseous material compound on a hollow tubular carrier, closed on one side, heated by the flowing current, and in which a rod of conductive material is placed inside, galvanically connected with the carrier. There are already known systems in which a rod was placed inside the carrier. iron. During operation it was found that the temperature of the carrier was much lower with the end closed than on the rest of the carrier. The precipitation reaction of the semiconductor material from the gaseous compound was much slower at this point, which could not guarantee an even thickness of the pipe walls. The aim of the invention is to eliminate these inconveniences and obtain an even loss of the semiconductor material over the entire length of the carrier. This goal was achieved by the development of the system According to the invention, a rod made of glassy carbon graphite, spectrally pure carbon or pyrographite was used. A pretzel made of such a material has a relatively high inherent resistance. The same current that flows through the carrier also flows through the rod causing it to heat up. The heat given off by the rod raises the periphery of the closed end of the carrier, thereby achieving substantially equal loss along the entire length of the carrier. A clay made of graphite or one of the materials mentioned also has the advantage that, unlike metals such as iron or copper are not attacked at high temperatures by gaseous compounds of semiconductor materials. The preference is pressed or screwed into a recess made in the closed end of the carrier. This recess may also be a through hole provided in the closed end of the carrier, the opening being closed by the middle part of the screwed or pressed-in cover with a mushroom-shaped cross section. In this case, the rod is screwed on its face or pressed into the central part. If the recess is a through-hole made in the closed end of the carrier, then this opening may be closed by the end of the rod screwed on or pressed into the hole, with the middle part of the cover with a mushroom-shaped cross-section curved or pressed into the front wall of the rod. The mushroom-shaped cover has a diameter equal to the outer diameter of the carrier. The embodiment according to the invention is illustrated, for example, in the drawing, in which Fig. 1 shows a system for manufacturing semiconductor material tubes closed at one end, Fig. 2 - cross section of the upper part of the carrier, 82 56982 5 3 and Fig. 3 is a cross-section of the upper part of the carrier in the second embodiment of the invention. The system according to the invention comprises a reactor 1 gas-tightly connected to the bottom 2. In the bottom 2 there are pipes 4 through which the gaseous compound of the lost material is introduced. semiconductor and a reactant gas. The pipes 4 are surrounded by other pipes 5 through which residual gas exits. In the bottom 2 there are passages 6 through which current inlets 7 are led into the interior 10 of the reactor 1. The passages 6 are made, for example, of Teflon and the current inlets 7 are made of silver. On the upper part of the current leads 7 are mounted two holders 8 19 made, for example, of graphite. On the handle 8 there is a tubular carrier 11 made, for example, of graphite, and on the handle 9 a graphite rod 10. The carrier 11 and the rod 10 have a thread 12 on their upper part, mechanically and electrically connecting the rod 10 to the carrier 11. The pretzel may also be made of carbon. glassy, spectrally pure carbon or pyrographite. Applying a voltage to the electrodes 7 heats the carrier 11 and the rod 10. Pret 10 transfers heat by radiation in all directions so that especially the upper surface of the carrier is heated to a temperature close to that of the rest of the carrier. the performance of the rod 10 can be further improved by joining the front walls of the rod 30 and the carrier 11 by means of a thread 12. Such a connection increases the resistance of the transition between the rod 10 and the carrier 11, so that on the front walls of both parts, more electrical energy is exchanged in heat, proportionally with increased resistance and in accordance with Ohm's law. The magnitude of the transition resistance and thus the temperature distribution along the carrier can be optimally set by turning the rod 10 deeply into the front wall of the carrier 11. This setting is made before warming up the system and before the erosion of the semiconductor material and the carrier is deliberately closed with the lid 13, so that the outer surface of the carrier shows a completely smooth surface. For this purpose, in the central part of the cover 13 and in the front wall of the rod 10, a thread 14 is cut with which the cover 13 with the rod 10 can be twisted and thus and with the carrier 11. The recycle of the semiconductor material tube 15 takes place in a known manner similar to the production of rods from the semiconductor material. SiHCl3 trichiorosilane is used as the gaseous compound and H2 is used as the reactant gas. The precipitation takes place at a temperature of about 1100 to 1200 ° C and most preferably at a temperature of 1150 ° C. The resistance of the pass 55 is adjusted by screwing the rod more or less deeply. In the second embodiment, the rod 10 is connected to the carrier 11 by means of a cover 16. The cover 16 has an engagement surface 17 dimensioned so that it allows the cover to be pressed into the carrier 11. On its own on the inside of the lid 16 has a rebate surface 18 dimensioned so as to allow the bar 10 to be pressed into the lid 16 or the lid 16 to be pressed against the bar 10. Also in this solution, between the bar 10 and the carrier 11 is formed by the surfaces rebate 17 and 18 zone with increased transition resistance. : V In this case, too, the front wall temperature of the device is raised so far * as to allow for even erosion of the semiconductor material over the entire surface of the carrier. The resistance of the transition is governed by a change in the length of the iron-in section. Each solution can also use one screw connection and one press fit. PL