PL4099168T3 - Optymalizacje obliczeń dla operacji uczenia maszynowego o niskiej precyzji - Google Patents
Optymalizacje obliczeń dla operacji uczenia maszynowego o niskiej precyzjiInfo
- Publication number
- PL4099168T3 PL4099168T3 PL22175421.1T PL22175421T PL4099168T3 PL 4099168 T3 PL4099168 T3 PL 4099168T3 PL 22175421 T PL22175421 T PL 22175421T PL 4099168 T3 PL4099168 T3 PL 4099168T3
- Authority
- PL
- Poland
- Prior art keywords
- machine learning
- low precision
- precision machine
- learning operations
- optimizations
- Prior art date
Links
- 238000010801 machine learning Methods 0.000 title 1
- 238000005457 optimization Methods 0.000 title 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
- G06T1/20—Processor architectures; Processor configuration, e.g. pipelining
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/0802—Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
- G06F12/0806—Multiuser, multiprocessor or multiprocessing cache systems
- G06F12/0811—Multiuser, multiprocessor or multiprocessing cache systems with multilevel cache hierarchies
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/16—Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
- G06F15/163—Interprocessor communication
- G06F15/167—Interprocessor communication using a common memory, e.g. mailbox
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/16—Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
- G06F15/163—Interprocessor communication
- G06F15/17—Interprocessor communication using an input/output type connection, e.g. channel, I/O port
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/483—Computations with numbers represented by a non-linear combination of denominational numbers, e.g. rational numbers, logarithmic number system or floating-point numbers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/57—Arithmetic logic units [ALU], i.e. arrangements or devices for performing two or more of the operations covered by groups G06F7/483 – G06F7/556 or for performing logical operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/30003—Arrangements for executing specific machine instructions
- G06F9/30007—Arrangements for executing specific machine instructions to perform operations on data operands
- G06F9/3001—Arithmetic instructions
- G06F9/30014—Arithmetic instructions with variable precision
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/30181—Instruction operation extension or modification
- G06F9/30185—Instruction operation extension or modification according to one or more bits in the instruction, e.g. prefix, sub-opcode
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline or look ahead
- G06F9/3861—Recovery, e.g. branch miss-prediction, exception handling
- G06F9/3863—Recovery, e.g. branch miss-prediction, exception handling using multiple copies of the architectural state, e.g. shadow registers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline or look ahead
- G06F9/3867—Concurrent instruction execution, e.g. pipeline or look ahead using instruction pipelines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline or look ahead
- G06F9/3885—Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units
- G06F9/3887—Concurrent instruction execution, e.g. pipeline or look ahead using a plurality of independent parallel functional units controlled by a single instruction for multiple data lanes [SIMD]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5027—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
- G06F9/5044—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals considering hardware capabilities
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
- G06T1/60—Memory management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/40—Specific encoding of data in memory or cache
- G06F2212/401—Compressed data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/14—Digital output to display device ; Cooperation and interconnection of the display device with other functional units
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T15/00—3D [Three Dimensional] image rendering
- G06T15/005—General purpose rendering architectures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Mathematical Physics (AREA)
- Artificial Intelligence (AREA)
- General Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Computer Hardware Design (AREA)
- Neurology (AREA)
- Nonlinear Science (AREA)
- Medical Informatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Processing (AREA)
- Image Generation (AREA)
- Advance Control (AREA)
- Feedback Control In General (AREA)
- Numerical Control (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Image Analysis (AREA)
- Executing Machine-Instructions (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/581,167 US10726514B2 (en) | 2017-04-28 | 2017-04-28 | Compute optimizations for low precision machine learning operations |
Publications (1)
Publication Number | Publication Date |
---|---|
PL4099168T3 true PL4099168T3 (pl) | 2024-04-08 |
Family
ID=61965680
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PL18164092.1T PL3396547T3 (pl) | 2017-04-28 | 2018-03-26 | Optymalizacje obliczeń dla operacji uczenia maszynowego o niskiej precyzji |
PL19182892T PL3594813T3 (pl) | 2017-04-28 | 2018-03-26 | Optymalizacje obliczeń dla operacji uczenia maszynowego niskiej precyzji |
PL22175421.1T PL4099168T3 (pl) | 2017-04-28 | 2018-03-26 | Optymalizacje obliczeń dla operacji uczenia maszynowego o niskiej precyzji |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PL18164092.1T PL3396547T3 (pl) | 2017-04-28 | 2018-03-26 | Optymalizacje obliczeń dla operacji uczenia maszynowego o niskiej precyzji |
PL19182892T PL3594813T3 (pl) | 2017-04-28 | 2018-03-26 | Optymalizacje obliczeń dla operacji uczenia maszynowego niskiej precyzji |
Country Status (8)
Country | Link |
---|---|
US (8) | US10726514B2 (pl) |
EP (6) | EP4141674A1 (pl) |
CN (6) | CN116414455A (pl) |
DK (1) | DK4099168T3 (pl) |
ES (3) | ES2865201T3 (pl) |
FI (1) | FI4099168T3 (pl) |
PL (3) | PL3396547T3 (pl) |
TW (6) | TWI682357B (pl) |
Families Citing this family (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10142137B2 (en) | 2017-03-02 | 2018-11-27 | Micron Technology, Inc. | Wireless devices and systems including examples of full duplex transmission |
US10726514B2 (en) * | 2017-04-28 | 2020-07-28 | Intel Corporation | Compute optimizations for low precision machine learning operations |
US10474458B2 (en) | 2017-04-28 | 2019-11-12 | Intel Corporation | Instructions and logic to perform floating-point and integer operations for machine learning |
US11842280B2 (en) * | 2017-05-05 | 2023-12-12 | Nvidia Corporation | Loss-scaling for deep neural network training with reduced precision |
CN110447010B (zh) | 2017-05-17 | 2023-09-26 | 谷歌有限责任公司 | 在硬件中执行矩阵乘法 |
US11941516B2 (en) | 2017-08-31 | 2024-03-26 | Micron Technology, Inc. | Cooperative learning neural networks and systems |
US11360934B1 (en) * | 2017-09-15 | 2022-06-14 | Groq, Inc. | Tensor streaming processor architecture |
US11114138B2 (en) | 2017-09-15 | 2021-09-07 | Groq, Inc. | Data structures with multiple read ports |
US11868804B1 (en) | 2019-11-18 | 2024-01-09 | Groq, Inc. | Processor instruction dispatch configuration |
US11243880B1 (en) | 2017-09-15 | 2022-02-08 | Groq, Inc. | Processor architecture |
US11170307B1 (en) | 2017-09-21 | 2021-11-09 | Groq, Inc. | Predictive model compiler for generating a statically scheduled binary with known resource constraints |
WO2019090325A1 (en) | 2017-11-06 | 2019-05-09 | Neuralmagic, Inc. | Methods and systems for improved transforms in convolutional neural networks |
KR20190052893A (ko) * | 2017-11-09 | 2019-05-17 | 삼성전자주식회사 | 뉴럴 네트워크 연산을 위한 전처리 장치 및 방법 |
US11715287B2 (en) | 2017-11-18 | 2023-08-01 | Neuralmagic Inc. | Systems and methods for exchange of data in distributed training of machine learning algorithms |
US10936942B2 (en) * | 2017-11-21 | 2021-03-02 | Google Llc | Apparatus and mechanism for processing neural network tasks using a single chip package with multiple identical dies |
US11373088B2 (en) * | 2017-12-30 | 2022-06-28 | Intel Corporation | Machine learning accelerator mechanism |
US11206050B2 (en) | 2018-02-06 | 2021-12-21 | Micron Technology, Inc. | Self interference noise cancellation to support multiple frequency bands |
JP7056225B2 (ja) * | 2018-02-26 | 2022-04-19 | 富士通株式会社 | 演算処理装置、情報処理装置、情報処理方法、およびプログラム |
US11100041B2 (en) * | 2018-03-09 | 2021-08-24 | Microsoft Technology Licensing, Llc | Techniques for tracking independent hardware graphics processing unit (GPU) performance |
US11514306B1 (en) * | 2018-03-14 | 2022-11-29 | Meta Platforms, Inc. | Static memory allocation in neural networks |
US20190297326A1 (en) * | 2018-03-21 | 2019-09-26 | Nvidia Corporation | Video prediction using spatially displaced convolution |
US10678508B2 (en) | 2018-03-23 | 2020-06-09 | Amazon Technologies, Inc. | Accelerated quantized multiply-and-add operations |
US11593633B2 (en) * | 2018-04-13 | 2023-02-28 | Microsoft Technology Licensing, Llc | Systems, methods, and computer-readable media for improved real-time audio processing |
WO2019222467A1 (en) | 2018-05-17 | 2019-11-21 | Niantic, Inc. | Self-supervised training of a depth estimation system |
GB2574372B (en) * | 2018-05-21 | 2021-08-11 | Imagination Tech Ltd | Implementing Traditional Computer Vision Algorithms As Neural Networks |
US11216732B2 (en) | 2018-05-31 | 2022-01-04 | Neuralmagic Inc. | Systems and methods for generation of sparse code for convolutional neural networks |
US10963787B2 (en) * | 2018-05-31 | 2021-03-30 | Neuralmagic Inc. | Systems and methods for generation of sparse code for convolutional neural networks |
US11449363B2 (en) | 2018-05-31 | 2022-09-20 | Neuralmagic Inc. | Systems and methods for improved neural network execution |
US10832133B2 (en) | 2018-05-31 | 2020-11-10 | Neuralmagic Inc. | System and method of executing neural networks |
US10769310B2 (en) * | 2018-07-20 | 2020-09-08 | Nxp B.V. | Method for making a machine learning model more difficult to copy |
US20200034699A1 (en) * | 2018-07-24 | 2020-01-30 | SK Hynix Inc. | Accelerating appratus of neural network and operating method thereof |
US11468291B2 (en) | 2018-09-28 | 2022-10-11 | Nxp B.V. | Method for protecting a machine learning ensemble from copying |
WO2020072274A1 (en) | 2018-10-01 | 2020-04-09 | Neuralmagic Inc. | Systems and methods for neural network pruning with accuracy preservation |
US20200117981A1 (en) * | 2018-10-11 | 2020-04-16 | International Business Machines Corporation | Data representation for dynamic precision in neural network cores |
US11366663B2 (en) * | 2018-11-09 | 2022-06-21 | Intel Corporation | Systems and methods for performing 16-bit floating-point vector dot product instructions |
US11455370B2 (en) | 2018-11-19 | 2022-09-27 | Groq, Inc. | Flattened input stream generation for convolution with expanded kernel |
US12014273B2 (en) * | 2018-12-12 | 2024-06-18 | Kneron (Taiwan) Co., Ltd. | Low precision and coarse-to-fine dynamic fixed-point quantization design in convolution neural network |
US11544559B2 (en) | 2019-01-08 | 2023-01-03 | Neuralmagic Inc. | System and method for executing convolution in a neural network |
US10963219B2 (en) | 2019-02-06 | 2021-03-30 | International Business Machines Corporation | Hybrid floating point representation for deep learning acceleration |
US11562214B2 (en) * | 2019-03-14 | 2023-01-24 | Baidu Usa Llc | Methods for improving AI engine MAC utilization |
US20220114108A1 (en) | 2019-03-15 | 2022-04-14 | Intel Corporation | Systems and methods for cache optimization |
US11954062B2 (en) | 2019-03-15 | 2024-04-09 | Intel Corporation | Dynamic memory reconfiguration |
US11768664B2 (en) * | 2019-03-15 | 2023-09-26 | Advanced Micro Devices, Inc. | Processing unit with mixed precision operations |
US11934342B2 (en) | 2019-03-15 | 2024-03-19 | Intel Corporation | Assistance for hardware prefetch in cache access |
KR20210135998A (ko) | 2019-03-15 | 2021-11-16 | 인텔 코포레이션 | 매트릭스 가속기 아키텍처를 위한 희소 최적화 |
US11044462B2 (en) * | 2019-05-02 | 2021-06-22 | Niantic, Inc. | Self-supervised training of a depth estimation model using depth hints |
US10931588B1 (en) * | 2019-05-10 | 2021-02-23 | Innovium, Inc. | Network switch with integrated compute subsystem for distributed artificial intelligence and other applications |
US10931602B1 (en) | 2019-05-10 | 2021-02-23 | Innovium, Inc. | Egress-based compute architecture for network switches in distributed artificial intelligence and other applications |
US11328222B1 (en) | 2019-05-10 | 2022-05-10 | Innovium, Inc. | Network switch with integrated gradient aggregation for distributed machine learning |
US11099902B1 (en) | 2019-05-10 | 2021-08-24 | Innovium, Inc. | Parallelized ingress compute architecture for network switches in distributed artificial intelligence and other applications |
US11301167B2 (en) * | 2019-05-16 | 2022-04-12 | Intel Corporation | Technologies for providing multiple tier memory media management |
US11531898B2 (en) | 2019-05-16 | 2022-12-20 | International Business Machines Corporation | Training of artificial neural networks |
US11120602B2 (en) * | 2019-06-03 | 2021-09-14 | Microsoft Technology Licensing, Llc | Acceleration of shader programs by compiler precision selection |
US11693626B2 (en) * | 2019-06-18 | 2023-07-04 | Cirrus Logic, Inc. | Variable accuracy computing system |
TWI701612B (zh) * | 2019-06-19 | 2020-08-11 | 創鑫智慧股份有限公司 | 用於神經網路中激勵函數的電路系統及其處理方法 |
US11507349B2 (en) * | 2019-06-26 | 2022-11-22 | Microsoft Technology Licensing, Llc | Neural processing element with single instruction multiple data (SIMD) compute lanes |
TWI702615B (zh) * | 2019-07-26 | 2020-08-21 | 長佳智能股份有限公司 | 視網膜病變評估模型建立方法及系統 |
US10956776B2 (en) | 2019-08-06 | 2021-03-23 | Alibaba Group Holding Limited | 2D convolutional accelerator that generates 3D results |
WO2021026225A1 (en) | 2019-08-08 | 2021-02-11 | Neuralmagic Inc. | System and method of accelerating execution of a neural network |
CN112394997A (zh) * | 2019-08-13 | 2021-02-23 | 上海寒武纪信息科技有限公司 | 八位整形转半精度浮点指令处理装置、方法及相关产品 |
JP7317630B2 (ja) * | 2019-08-14 | 2023-07-31 | キヤノン株式会社 | 画像処理装置、画像処理方法、及びプログラム |
US11057318B1 (en) | 2019-08-27 | 2021-07-06 | Innovium, Inc. | Distributed artificial intelligence extension modules for network switches |
US10979097B2 (en) | 2019-09-05 | 2021-04-13 | Micron Technology, Inc. | Wireless devices and systems including examples of full duplex transmission using neural networks or recurrent neural networks |
EP3792752A1 (en) * | 2019-09-11 | 2021-03-17 | Nokia Solutions and Networks Oy | Arithmetic unit |
WO2021061625A1 (en) * | 2019-09-23 | 2021-04-01 | Lightmatter, Inc. | Quantized inputs for machine learning models |
CN110765111B (zh) * | 2019-10-28 | 2023-03-31 | 深圳市商汤科技有限公司 | 存储和读取方法、装置、电子设备和存储介质 |
US11861761B2 (en) | 2019-11-15 | 2024-01-02 | Intel Corporation | Graphics processing unit processing and caching improvements |
EP4066146A1 (en) * | 2019-11-26 | 2022-10-05 | Mythic, Inc. | Systems and methods for implementing operational transformations for restricted computations of a mixed-signal integrated circuit |
CN114930351A (zh) | 2019-11-26 | 2022-08-19 | 格罗克公司 | 使用仅单个侧从多维阵列加载操作数并输出结果 |
US11216184B2 (en) | 2019-12-06 | 2022-01-04 | Western Digital Technologies, Inc. | Non-volatile memory with on-chip principal component analysis for generating low dimensional outputs for machine learning |
US11188328B2 (en) | 2019-12-12 | 2021-11-30 | International Business Machines Corporation | Compute array of a processor with mixed-precision numerical linear algebra support |
CN115104108A (zh) * | 2020-03-05 | 2022-09-23 | 华为云计算技术有限公司 | 用于分布式系统推理的深度学习模型的划分和位宽分配的方法和系统 |
US12039432B2 (en) * | 2020-03-18 | 2024-07-16 | Infineon Technologies Ag | Artificial neural network activation function |
WO2021202160A1 (en) * | 2020-03-30 | 2021-10-07 | Rambus Inc. | Stacked-die neural network with integrated high-bandwidth memory |
US11258473B2 (en) | 2020-04-14 | 2022-02-22 | Micron Technology, Inc. | Self interference noise cancellation to support multiple frequency bands with neural networks or recurrent neural networks |
CN113571087B (zh) * | 2020-04-29 | 2023-07-28 | 宏达国际电子股份有限公司 | 依据音频信号产生动作的方法及电子装置 |
US11321891B2 (en) | 2020-04-29 | 2022-05-03 | Htc Corporation | Method for generating action according to audio signal and electronic device |
TWI747258B (zh) * | 2020-04-29 | 2021-11-21 | 宏達國際電子股份有限公司 | 依據音訊訊號產生動作的方法及電子裝置 |
US11361253B2 (en) | 2020-08-18 | 2022-06-14 | Grid.ai, Inc. | Modularized model interaction system and method |
JP2023537864A (ja) * | 2020-08-19 | 2023-09-06 | メタ プラットフォームズ, インク. | チャネル制約付きハードウェアアクセラレータによって実装されたニューラルネットワークを使用して画像強調を実行するためのシステムおよび方法 |
US10970619B1 (en) * | 2020-08-21 | 2021-04-06 | Moffett Technologies Co., Limited | Method and system for hierarchical weight-sparse convolution processing |
US20220075669A1 (en) * | 2020-09-08 | 2022-03-10 | Technion Research And Development Foundation Ltd. | Non-Blocking Simultaneous MultiThreading (NB-SMT) |
US11175957B1 (en) | 2020-09-22 | 2021-11-16 | International Business Machines Corporation | Hardware accelerator for executing a computation task |
CN112241509B (zh) * | 2020-09-29 | 2024-03-12 | 格兰菲智能科技有限公司 | 图形处理器及其加速方法 |
US11556757B1 (en) | 2020-12-10 | 2023-01-17 | Neuralmagic Ltd. | System and method of executing deep tensor columns in neural networks |
US20220207337A1 (en) * | 2020-12-31 | 2022-06-30 | Deepx Co., Ltd. | Method for artificial neural network and neural processing unit |
US20220358375A1 (en) * | 2021-05-04 | 2022-11-10 | International Business Machines Corporation | Inference of machine learning models |
CN113190352B (zh) * | 2021-05-12 | 2024-02-06 | 北京中科通量科技有限公司 | 一种面向通用cpu的深度学习计算加速方法及系统 |
DE112022001140T5 (de) * | 2021-05-13 | 2024-05-08 | Nvidia Corporation | Durchführung einer matrixwertangabe |
US11899589B2 (en) | 2021-06-22 | 2024-02-13 | Samsung Electronics Co., Ltd. | Systems, methods, and devices for bias mode management in memory systems |
US20210397999A1 (en) * | 2021-06-25 | 2021-12-23 | Intel Corporation | Methods and apparatus to offload execution of a portion of a machine learning model |
US20230052433A1 (en) * | 2021-08-16 | 2023-02-16 | Samsung Electronics Co., Ltd. | Accelerator to reduce data dimensionality and associated systems and methods |
US12026518B2 (en) * | 2021-10-14 | 2024-07-02 | Braingines SA | Dynamic, low-latency, dependency-aware scheduling on SIMD-like devices for processing of recurring and non-recurring executions of time-series data |
US11960982B1 (en) | 2021-10-21 | 2024-04-16 | Neuralmagic, Inc. | System and method of determining and executing deep tensor columns in neural networks |
US20230132070A1 (en) * | 2021-10-27 | 2023-04-27 | International Business Machines Corporation | Features for black-box machine-learning models |
US11935175B2 (en) * | 2022-04-07 | 2024-03-19 | Huawei Technologies Co., Ltd. | Apparatus, method, and computer-readable medium for image processing using variable-precision shading |
TWI819645B (zh) * | 2022-06-08 | 2023-10-21 | 緯創資通股份有限公司 | 更新神經網路模型的方法和電子裝置 |
TWI845081B (zh) * | 2022-12-21 | 2024-06-11 | 國立成功大學 | 圖形處理器 |
TWI842389B (zh) * | 2023-02-13 | 2024-05-11 | 瑞昱半導體股份有限公司 | 訓練系統、訓練方法以及辨識系統 |
CN116129249B (zh) * | 2023-04-04 | 2023-07-07 | 上海燧原科技有限公司 | 一种图像处理方法、装置、电子设备和存储介质 |
Family Cites Families (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6643765B1 (en) * | 1995-08-16 | 2003-11-04 | Microunity Systems Engineering, Inc. | Programmable processor with group floating point operations |
US5953241A (en) * | 1995-08-16 | 1999-09-14 | Microunity Engeering Systems, Inc. | Multiplier array processing system with enhanced utilization at lower precision for group multiply and sum instruction |
JPH0991118A (ja) * | 1995-09-27 | 1997-04-04 | Hitachi Ltd | 浮動小数点演算装置 |
EP1306752A1 (en) | 1996-11-29 | 2003-05-02 | Matsushita Electric Industrial Co., Ltd. | Processor which can favourably execute a rounding process |
US6718457B2 (en) | 1998-12-03 | 2004-04-06 | Sun Microsystems, Inc. | Multiple-thread processor for threaded software applications |
US7418606B2 (en) | 2003-09-18 | 2008-08-26 | Nvidia Corporation | High quality and high performance three-dimensional graphics architecture for portable handheld devices |
US7873812B1 (en) | 2004-04-05 | 2011-01-18 | Tibet MIMAR | Method and system for efficient matrix multiplication in a SIMD processor architecture |
US20060101244A1 (en) * | 2004-11-10 | 2006-05-11 | Nvidia Corporation | Multipurpose functional unit with combined integer and floating-point multiply-add pipeline |
US7720900B2 (en) | 2005-09-09 | 2010-05-18 | International Business Machines Corporation | Fused multiply add split for multiple precision arithmetic |
US8051123B1 (en) | 2006-12-15 | 2011-11-01 | Nvidia Corporation | Multipurpose functional unit with double-precision and filtering operations |
CN101657795B (zh) * | 2007-04-11 | 2013-10-23 | 苹果公司 | 多处理器上的数据并行计算 |
US8106914B2 (en) | 2007-12-07 | 2012-01-31 | Nvidia Corporation | Fused multiply-add functional unit |
US8694250B2 (en) * | 2008-01-09 | 2014-04-08 | Trimble Navigation Limited | Processing multi-GNSS data from mixed-type receivers |
US8150902B2 (en) * | 2009-06-19 | 2012-04-03 | Singular Computing Llc | Processing with compact arithmetic processing element |
US8615541B2 (en) * | 2009-09-23 | 2013-12-24 | Nvidia Corporation | Extended-precision integer arithmetic and logical instructions |
US8522000B2 (en) | 2009-09-29 | 2013-08-27 | Nvidia Corporation | Trap handler architecture for a parallel processing unit |
US8103910B2 (en) * | 2009-11-13 | 2012-01-24 | International Business Machines Corporation | Local rollback for fault-tolerance in parallel computing systems |
US8464026B2 (en) | 2010-02-17 | 2013-06-11 | International Business Machines Corporation | Method and apparatus for computing massive spatio-temporal correlations using a hybrid CPU-GPU approach |
US20110283059A1 (en) | 2010-05-11 | 2011-11-17 | Progeniq Pte Ltd | Techniques for accelerating computations using field programmable gate array processors |
US8582373B2 (en) * | 2010-08-31 | 2013-11-12 | Micron Technology, Inc. | Buffer die in stacks of memory dies and methods |
US8493089B2 (en) * | 2011-04-06 | 2013-07-23 | International Business Machines Corporation | Programmable logic circuit using three-dimensional stacking techniques |
FR2974645A1 (fr) | 2011-04-28 | 2012-11-02 | Kalray | Operateur de multiplication et addition fusionnees a precision mixte |
US9529712B2 (en) * | 2011-07-26 | 2016-12-27 | Nvidia Corporation | Techniques for balancing accesses to memory having different memory types |
CN102750663A (zh) * | 2011-08-26 | 2012-10-24 | 新奥特(北京)视频技术有限公司 | 一种基于gpu的地理信息数据处理的方法、设备和系统 |
US8630375B2 (en) | 2011-08-29 | 2014-01-14 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for received signal processing in a multi-stage receiver |
EP2756382A4 (en) * | 2011-09-15 | 2015-07-29 | Exxonmobil Upstream Res Co | MATRIX AND VECTOR OPERATIONS OPTIMIZED IN LIMITED INSTRUCTION ALGORITHMS THAT COMPLETE EOS CALCULATIONS |
US9830158B2 (en) * | 2011-11-04 | 2017-11-28 | Nvidia Corporation | Speculative execution and rollback |
WO2013095338A1 (en) * | 2011-12-19 | 2013-06-27 | Intel Corporation | Simd integer multiply-accumulate instruction for multi-precision arithmetic |
WO2013095508A1 (en) | 2011-12-22 | 2013-06-27 | Intel Corporation | Speculative cache modification |
CN104011646B (zh) * | 2011-12-22 | 2018-03-27 | 英特尔公司 | 用于产生按照数值顺序的连续整数的序列的处理器、方法、系统和指令 |
WO2013101018A1 (en) * | 2011-12-29 | 2013-07-04 | Intel Corporation | Dot product processors, methods, systems, and instructions |
US8984042B2 (en) * | 2012-02-09 | 2015-03-17 | International Business Machines Corporation | Mixed precision estimate instruction computing narrow precision result for wide precision inputs |
US9693714B2 (en) | 2012-02-10 | 2017-07-04 | Senseonics, Incorporated | Digital ASIC sensor platform |
US10007527B2 (en) | 2012-03-05 | 2018-06-26 | Nvidia Corporation | Uniform load processing for parallel thread sub-sets |
CN102750127B (zh) * | 2012-06-12 | 2015-06-24 | 清华大学 | 一种协处理器 |
US9257364B2 (en) * | 2012-06-27 | 2016-02-09 | Intel Corporation | Integrated heat spreader that maximizes heat transfer from a multi-chip package |
US8922243B2 (en) * | 2012-12-23 | 2014-12-30 | Advanced Micro Devices, Inc. | Die-stacked memory device with reconfigurable logic |
US9047171B2 (en) * | 2012-09-29 | 2015-06-02 | Intel Corporation | Differentiating cache reliability to reduce minimum on-die voltage |
US9189399B2 (en) | 2012-11-21 | 2015-11-17 | Advanced Micro Devices, Inc. | Stack cache management and coherence techniques |
US9292414B2 (en) * | 2012-11-26 | 2016-03-22 | Nvidia Corporation | System, method, and computer program product for debugging graphics programs locally utilizing a system with a single GPU |
US9111393B2 (en) * | 2012-11-26 | 2015-08-18 | Nvidia Corporation | System, method, and computer program product for sampling a hierarchical depth map |
US20140173606A1 (en) * | 2012-12-19 | 2014-06-19 | Nvidia Corporation | Streaming processing of short read alignment algorithms |
US9135185B2 (en) * | 2012-12-23 | 2015-09-15 | Advanced Micro Devices, Inc. | Die-stacked memory device providing data translation |
US9478066B2 (en) * | 2013-03-14 | 2016-10-25 | Nvidia Corporation | Consistent vertex snapping for variable resolution rendering |
US9136987B2 (en) | 2013-03-15 | 2015-09-15 | International Business Machines Corporation | Replay suspension in a memory system |
US9535778B2 (en) * | 2013-03-15 | 2017-01-03 | International Business Machines Corporation | Reestablishing synchronization in a memory system |
US20140281366A1 (en) | 2013-03-15 | 2014-09-18 | Cognitive Electronics, Inc. | Address translation in a system using memory striping |
US9430418B2 (en) * | 2013-03-15 | 2016-08-30 | International Business Machines Corporation | Synchronization and order detection in a memory system |
US9430369B2 (en) | 2013-05-24 | 2016-08-30 | Coherent Logix, Incorporated | Memory-network processor with programmable optimizations |
US9305388B2 (en) * | 2013-08-23 | 2016-04-05 | Nvidia Corporation | Bit-count texture format |
US9633409B2 (en) | 2013-08-26 | 2017-04-25 | Apple Inc. | GPU predication |
US9978014B2 (en) * | 2013-12-18 | 2018-05-22 | Intel Corporation | Reconfigurable processing unit |
GB2523341A (en) * | 2014-02-20 | 2015-08-26 | Ibm | Iterative refinement apparatus |
CN103984522B (zh) * | 2014-05-27 | 2018-04-13 | 中国人民解放军国防科学技术大学 | Gpdsp中定点和浮点混合除法的实现方法 |
US9898795B2 (en) * | 2014-06-19 | 2018-02-20 | Vmware, Inc. | Host-based heterogeneous multi-GPU assignment |
KR102192956B1 (ko) * | 2014-06-23 | 2020-12-18 | 삼성전자주식회사 | 디스플레이 장치 및 그 제어 방법 |
US10061592B2 (en) | 2014-06-27 | 2018-08-28 | Samsung Electronics Co., Ltd. | Architecture and execution for efficient mixed precision computations in single instruction multiple data/thread (SIMD/T) devices |
US20160026912A1 (en) * | 2014-07-22 | 2016-01-28 | Intel Corporation | Weight-shifting mechanism for convolutional neural networks |
JP6012674B2 (ja) | 2014-07-25 | 2016-10-25 | 京セラドキュメントソリューションズ株式会社 | 画像形成装置 |
US9454497B2 (en) | 2014-08-15 | 2016-09-27 | Intel Corporation | Technologies for secure inter-virtual-machine shared memory communication |
US9645792B2 (en) | 2014-08-18 | 2017-05-09 | Qualcomm Incorporated | Emulation of fused multiply-add operations |
WO2016028293A1 (en) * | 2014-08-20 | 2016-02-25 | Landmark Graphics Corporation | Optimizing computer hardware resource utilization when processing variable precision data |
US10032244B2 (en) | 2014-08-21 | 2018-07-24 | Intel Corporation | Method and apparatus for implementing a nearest neighbor search on a graphics processing unit (GPU) |
US10223333B2 (en) | 2014-08-29 | 2019-03-05 | Nvidia Corporation | Performing multi-convolution operations in a parallel processing system |
US10235338B2 (en) * | 2014-09-04 | 2019-03-19 | Nvidia Corporation | Short stack traversal of tree data structures |
US9582201B2 (en) * | 2014-09-26 | 2017-02-28 | Western Digital Technologies, Inc. | Multi-tier scheme for logical storage management |
US9916130B2 (en) * | 2014-11-03 | 2018-03-13 | Arm Limited | Apparatus and method for vector processing |
US10636336B2 (en) * | 2015-04-17 | 2020-04-28 | Nvidia Corporation | Mixed primary display with spatially modulated backlight |
US9846623B2 (en) * | 2015-08-20 | 2017-12-19 | Qsigma, Inc. | Simultaneous multi-processor apparatus applicable to acheiving exascale performance for algorithms and program systems |
US20170083827A1 (en) * | 2015-09-23 | 2017-03-23 | Qualcomm Incorporated | Data-Driven Accelerator For Machine Learning And Raw Data Analysis |
US10423411B2 (en) * | 2015-09-26 | 2019-09-24 | Intel Corporation | Data element comparison processors, methods, systems, and instructions |
US10346351B2 (en) * | 2015-10-08 | 2019-07-09 | Via Alliance Semiconductor Co., Ltd. | Neural network unit with output buffer feedback and masking capability with processing unit groups that operate as recurrent neural network LSTM cells |
US10776690B2 (en) * | 2015-10-08 | 2020-09-15 | Via Alliance Semiconductor Co., Ltd. | Neural network unit with plurality of selectable output functions |
CN106570559A (zh) * | 2015-10-09 | 2017-04-19 | 阿里巴巴集团控股有限公司 | 一种基于神经网络的数据处理方法和装置 |
US9703531B2 (en) * | 2015-11-12 | 2017-07-11 | Arm Limited | Multiplication of first and second operands using redundant representation |
US10318008B2 (en) * | 2015-12-15 | 2019-06-11 | Purdue Research Foundation | Method and system for hand pose detection |
US9715373B2 (en) * | 2015-12-18 | 2017-07-25 | International Business Machines Corporation | Dynamic recompilation techniques for machine learning programs |
US20170214930A1 (en) * | 2016-01-26 | 2017-07-27 | Sandia Corporation | Gpu-assisted lossless data compression |
US11676024B2 (en) * | 2016-02-24 | 2023-06-13 | Sri International | Low precision neural networks using subband decomposition |
US9831148B2 (en) * | 2016-03-11 | 2017-11-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated fan-out package including voltage regulators and methods forming same |
CN109661672B (zh) | 2016-05-04 | 2023-08-22 | 渊慧科技有限公司 | 使用强化学习利用外部存储器增强神经网络 |
CN107526709A (zh) | 2016-06-15 | 2017-12-29 | 辉达公司 | 使用低精度格式的张量处理 |
US10083347B2 (en) | 2016-07-29 | 2018-09-25 | NTech lab LLC | Face identification using artificial neural network |
US10997496B2 (en) | 2016-08-11 | 2021-05-04 | Nvidia Corporation | Sparse convolutional neural network accelerator |
US10891538B2 (en) | 2016-08-11 | 2021-01-12 | Nvidia Corporation | Sparse convolutional neural network accelerator |
US10114613B2 (en) * | 2016-09-07 | 2018-10-30 | International Business Machines Corporation | Mixed-precision memcomputing system |
US10141938B2 (en) * | 2016-09-21 | 2018-11-27 | Xilinx, Inc. | Stacked columnar integrated circuits |
US10296292B2 (en) * | 2016-10-20 | 2019-05-21 | Advanced Micro Devices, Inc. | Dynamic variable precision computation |
US10417140B2 (en) | 2017-02-24 | 2019-09-17 | Advanced Micro Devices, Inc. | Streaming translation lookaside buffer |
US10282309B2 (en) | 2017-02-24 | 2019-05-07 | Advanced Micro Devices, Inc. | Per-page control of physical address space distribution among memory modules |
US10595039B2 (en) | 2017-03-31 | 2020-03-17 | Nvidia Corporation | System and method for content and motion controlled action video generation |
US10424069B2 (en) | 2017-04-07 | 2019-09-24 | Nvidia Corporation | System and method for optical flow estimation |
US10726514B2 (en) * | 2017-04-28 | 2020-07-28 | Intel Corporation | Compute optimizations for low precision machine learning operations |
US10643297B2 (en) * | 2017-05-05 | 2020-05-05 | Intel Corporation | Dynamic precision management for integer deep learning primitives |
US10339067B2 (en) * | 2017-06-19 | 2019-07-02 | Advanced Micro Devices, Inc. | Mechanism for reducing page migration overhead in memory systems |
-
2017
- 2017-04-28 US US15/581,167 patent/US10726514B2/en active Active
- 2017-10-20 US US15/789,565 patent/US10242423B2/en active Active
-
2018
- 2018-02-22 TW TW108117181A patent/TWI682357B/zh active
- 2018-02-22 TW TW111139972A patent/TWI819861B/zh active
- 2018-02-22 TW TW111122428A patent/TWI803357B/zh active
- 2018-02-22 TW TW112136546A patent/TW202403659A/zh unknown
- 2018-02-22 TW TW109145734A patent/TWI787692B/zh active
- 2018-02-22 TW TW107105950A patent/TWI781142B/zh active
- 2018-03-26 ES ES19182892T patent/ES2865201T3/es active Active
- 2018-03-26 EP EP22197260.7A patent/EP4141674A1/en active Pending
- 2018-03-26 PL PL18164092.1T patent/PL3396547T3/pl unknown
- 2018-03-26 EP EP18164092.1A patent/EP3396547B1/en active Active
- 2018-03-26 EP EP20205451.6A patent/EP3792761A1/en active Pending
- 2018-03-26 PL PL19182892T patent/PL3594813T3/pl unknown
- 2018-03-26 DK DK22175421.1T patent/DK4099168T3/da active
- 2018-03-26 EP EP22175421.1A patent/EP4099168B1/en active Active
- 2018-03-26 ES ES22175421T patent/ES2973431T3/es active Active
- 2018-03-26 ES ES18164092T patent/ES2926704T3/es active Active
- 2018-03-26 PL PL22175421.1T patent/PL4099168T3/pl unknown
- 2018-03-26 FI FIEP22175421.1T patent/FI4099168T3/fi active
- 2018-03-26 EP EP22204509.8A patent/EP4160413A1/en active Pending
- 2018-03-26 EP EP19182892.0A patent/EP3594813B1/en active Active
- 2018-04-27 CN CN202211546793.8A patent/CN116414455A/zh active Pending
- 2018-04-27 CN CN201910813309.5A patent/CN110737470B/zh active Active
- 2018-04-27 CN CN201910429570.5A patent/CN110349075B/zh active Active
- 2018-04-27 CN CN202010848468.1A patent/CN112330523A/zh active Pending
- 2018-04-27 CN CN202210661460.3A patent/CN115082283A/zh active Pending
- 2018-04-27 CN CN202110725327.5A patent/CN113496457A/zh active Pending
- 2018-11-21 US US16/197,821 patent/US10853906B2/en active Active
-
2019
- 2019-06-19 US US16/446,265 patent/US11138686B2/en active Active
-
2020
- 2020-08-03 US US16/983,080 patent/US11308574B2/en active Active
-
2022
- 2022-04-14 US US17/720,804 patent/US11468541B2/en active Active
- 2022-11-01 US US17/978,573 patent/US11948224B2/en active Active
-
2023
- 2023-08-25 US US18/456,235 patent/US20230401668A1/en active Pending
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
PL3594813T3 (pl) | Optymalizacje obliczeń dla operacji uczenia maszynowego niskiej precyzji | |
PL3407183T3 (pl) | Zoptymalizowany sprzęt obliczeniowy do operacji uczenia maszynowego | |
EP3516597A4 (en) | OPTIMIZE THE RUNNING TIME OF MACHINE LEARNING | |
EP3357637A4 (en) | MACHINE TOOL | |
EP3382107A4 (en) | CONTROL DEVICE FOR A CONSTRUCTION MACHINE | |
EP3203336A4 (en) | Control device for machine tool | |
EP3251803A4 (en) | Work machine | |
GB2540334B (en) | A control component for a current-driven optical media | |
EP3159759A4 (en) | Control device for machine tool | |
EP3396176A4 (en) | CONSTRUCTION MACHINE | |
GB201514927D0 (en) | User feedback for machine learning | |
EP3401056A4 (en) | MACHINE TOOL | |
EP3278910A4 (en) | Tool rest for machine tool | |
GB201504846D0 (en) | Machine tools | |
GB201810944D0 (en) | Machine learning | |
EP3225336A4 (en) | Machine tool | |
EP3203334A4 (en) | Control device for machine tool | |
EP3203335A4 (en) | Control device for machine tool | |
EP3357635A4 (en) | MACHINE TOOL | |
HUE061334T2 (hu) | Szerszámgép | |
HUE042007T2 (hu) | Berendezés vágány stabilizálására | |
NO20180926A1 (en) | Fluid machines | |
HK1244255A1 (zh) | 機床 | |
EP3275592A4 (en) | MACHINE TOOL | |
EP3205448A4 (en) | Control device for machine tool |