PL398228A1 - Method for extracting compressed gaseous hydrocarbons and storage of CO ₂ in horizontal drillings - Google Patents

Method for extracting compressed gaseous hydrocarbons and storage of CO ₂ in horizontal drillings

Info

Publication number
PL398228A1
PL398228A1 PL398228A PL39822812A PL398228A1 PL 398228 A1 PL398228 A1 PL 398228A1 PL 398228 A PL398228 A PL 398228A PL 39822812 A PL39822812 A PL 39822812A PL 398228 A1 PL398228 A1 PL 398228A1
Authority
PL
Poland
Prior art keywords
gas
boreholes
slate
wells
shale
Prior art date
Application number
PL398228A
Other languages
Polish (pl)
Other versions
PL222247B1 (en
Inventor
Tadeusz Niezgoda
Danuta Miedzińska
Roman Gieleta
Grzegorz Sławiński
Agnieszka Derewońko
Andrzej Morka
Original Assignee
Wojskowa Akademia Techniczna
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wojskowa Akademia Techniczna filed Critical Wojskowa Akademia Techniczna
Priority to PL398228A priority Critical patent/PL222247B1/en
Priority to EP13461507.9A priority patent/EP2631422A3/en
Publication of PL398228A1 publication Critical patent/PL398228A1/en
Publication of PL222247B1 publication Critical patent/PL222247B1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2605Methods for stimulating production by forming crevices or fractures using gas or liquefied gas
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0035Apparatus or methods for multilateral well technology, e.g. for the completion of or workover on wells with one or more lateral branches
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/005Waste disposal systems
    • E21B41/0057Disposal of a fluid by injection into a subterranean formation
    • E21B41/0064Carbon dioxide sequestration
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/006Production of coal-bed methane
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/164Injecting CO2 or carbonated water
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimizing the spacing of wells
    • E21B43/305Specific pattern of wells, e.g. optimizing the spacing of wells comprising at least one inclined or horizontal well
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/70Combining sequestration of CO2 and exploitation of hydrocarbons by injecting CO2 or carbonated water in oil wells

Abstract

Przedmiotem wynalazku jest sposób sprzezonego wydobycia weglowodorów gazowych (np. gazu lupkowego) i w ich miejscu magazynowania CO2 lub innego gazu ciezszego od CH4 z poziomych odwiertów malosrednicowych wykonanych w pojedynczym odwiercie pionowym. Istota wynalazku polega na tym, ze najpierw zostaje odpowiednio przygotowany odwiert pionowy (1) w zlozu lupka gazowego (2) znajdujacego sie pomiedzy pokladami litej skaly (3). Z odwiertu pionowego (1) sa wyprowadzone promieniowo na obwodzie odwiertu glównego, malosrednicowe odwierty (4b, 4c) na kilku poziomach. Lupek w odwiertach umieszczonych na jednym z poziomów moze byc wstepnie perforowany (5) (rozkruszony) przy uzyciu róznych technik niszczenia skal. W nastepnym etapie boczne odwierty (4b, 4c) zostaja zamkniete, przy uzyciu czopów lub mini zaworów sterowanych z powierzchni. Z powierzchni poprzez odwiert glówny (1) wprowadza sie elastyczne lub pólelastyczne rury (w ilosci odpowiadajacej ilosci niezaczopowanych odwiertów bocznych) o malej srednicy, które sa izolowane lub wykonane z materialu wysoko izolacyjnego, badz tez wymagaja wstepnego schlodzenia. Rury zostaja wprowadzone do odwiertów bocznych. Nastepnie przez nie zostaje wprowadzony do zloza lupka gazonosnego (2) za pomoca pompy kriogenicznej ciekly sprezony i schlodzony CO2. Podczas podawania CO2 rury sa stopniowo wyciagane z odwiertów bocznych w celu dokladnego wypelnienia wszystkich szczelin na calej dlugosci tego odwiertu. Proces podawania CO2 konczy sie w momencie calkowitego wyciagniecia rury z odwiertu bocznego. Caly proces podawania CO2 wymaga stalej kontroli temperatury i cisnienia w odwiertach (1) i, co powoduje koniecznosc umieszczenia w nich zestawów odpowiednich czujników. Po zakonczeniu tego etapu odwierty równiez zostaja zamkniete czopem lub mini zaworem sterowanym z powierzchni (6a) (co powoduje powstanie konstrukcji samonosnej). W zlozu lupka (2) rozpoczyna sie proces rozprezania CO2 oraz jego przemiany fazowej pod wplywem panujacej w zlozu temperatury, co powoduje intensywne spekanie lupka, absorpcje CO2 i jednoczesna desorpcje gazu lupkowego. Proces ten trwa zwykle okolo 2 tygodni. Wstepna perforacja, która moze byc dokonana w bocznych odwiertach, do których wprowadza sie CO2, pozwala na zintensyfikowanie i rozszerzenie tworzacych sie spekan. Przy zamknietych ujsciach odwiertów bocznych zostaja umieszczone w zlozu czujniki cisnienia, które pozwalaja na kontrole procesów zachodzacych w lupku. Powstale w zlozu lupka gazonosnego (2) pekniecia (5a) umozliwiaja uwolnienie gazu lupkowego wypchnietego przez ciezszy CO2.Odwierty boczne (4b, 4c) zostaja otwarte i uwolniony gaz, bedacy pod wysokim cisnieniem wydobywa sie na powierzchnie poprzez odwiert pionowy (1). Proces odzysku gazu z odwiertu moze zachodzic samoistnie lub byc prowadzony podcisnieniowo. Prezentowany sposób wydobycia weglowodorów gazowych jest o wiele bardziej korzystny z punktu widzenia ochrony srodowiska. Sposób nie wymaga stosowania duzyThe subject of the invention is a method for the combined extraction of gaseous hydrocarbons (e.g. shale gas) and in their place of storing CO2 or other gas heavier than CH4 from horizontal small-diameter wells drilled in a single vertical well. The essence of the invention consists in the fact that first a vertical borehole (1) is properly prepared in the gas shale bed (2) located between the solid rock decks (3). From the vertical bore (1), there are led out radially on the perimeter of the main bore, small-diameter boreholes (4b, 4c) on several levels. The slate in the boreholes located at one of the levels may be pre-perforated (5) (crushed) using various rock-breaking techniques. In the next step, the side boreholes (4b, 4c) are closed using plugs or mini valves controlled from the surface. Flexible or semi-flexible pipes (corresponding to the number of unburied side boreholes) of small diameter are introduced from the surface through the main bore (1), which are insulated or made of highly insulating material, or require pre-cooling. The pipes are inserted into the side wells. Then, through it, liquid compressed and cooled CO2 is introduced into the gas-bearing slate bed (2) by means of a cryogenic pump. Pipes are gradually pulled out of the side wells during CO2 delivery to completely fill all gaps along the length of the side well. The CO2 feeding process ends when the pipe is fully withdrawn from the side bore. The whole process of CO2 feeding requires constant control of temperature and pressure in the boreholes (1) and, therefore, the necessity to place appropriate sensor sets in them. Upon completion of this stage, the boreholes are also closed with a plug or mini valve controlled from the surface (6a) (which creates a self-supporting structure). In the slate deposit (2), the process of CO2 expansion and its phase change under the influence of the temperature prevailing in the bed begins, which causes intensive cracking of the slate, CO2 absorption and simultaneous desorption of the shale gas. This process usually takes about 2 weeks. The initial perforation, which can be made in the side CO2-injected wells, allows for the intensification and expansion of the cracking formation. When the outlets of the side wells are closed, pressure sensors are placed in the bed, which allow the control of the processes taking place in the slate. The fractures (5a) formed in the gas-bearing shale deposit (2) allow the shale gas to be released and pushed out by the heavier CO2. The side boreholes (4b, 4c) are opened and the gas is released under high pressure through a vertical borehole (1). The process of gas recovery from the well may be self-limiting or be carried out under pressure. The presented method of extracting gaseous hydrocarbons is much more favorable from the point of view of environmental protection. The method does not require the use of much

PL398228A 2012-02-24 2012-02-24 Method for extracting compressed gaseous hydrocarbons and storage of CO ₂ in horizontal drillings PL222247B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL398228A PL222247B1 (en) 2012-02-24 2012-02-24 Method for extracting compressed gaseous hydrocarbons and storage of CO ₂ in horizontal drillings
EP13461507.9A EP2631422A3 (en) 2012-02-24 2013-02-25 Method of conjugated hydrocarbon gas extraction and storage CO2 in horizontal wellbores

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PL398228A PL222247B1 (en) 2012-02-24 2012-02-24 Method for extracting compressed gaseous hydrocarbons and storage of CO ₂ in horizontal drillings

Publications (2)

Publication Number Publication Date
PL398228A1 true PL398228A1 (en) 2013-09-02
PL222247B1 PL222247B1 (en) 2016-07-29

Family

ID=48047952

Family Applications (1)

Application Number Title Priority Date Filing Date
PL398228A PL222247B1 (en) 2012-02-24 2012-02-24 Method for extracting compressed gaseous hydrocarbons and storage of CO ₂ in horizontal drillings

Country Status (2)

Country Link
EP (1) EP2631422A3 (en)
PL (1) PL222247B1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105350948B (en) * 2014-08-22 2019-01-01 中国石油化工股份有限公司 Shale gas horizontal well fracturing method and shale gas horizontal well completion method
CN104790934A (en) * 2015-04-03 2015-07-22 中国石油化工股份有限公司 Coal bed gas horizontal well exploitation process
CA2995685C (en) 2015-10-28 2020-03-24 Halliburton Energy Services, Inc. Degradable isolation devices with data recorders
CN105804716B (en) * 2016-05-12 2019-05-17 中国矿业大学(北京) A kind of method of blastingfracture extraction shale gas and swashs and split bullet
CN107542443B (en) * 2016-06-29 2019-11-29 中国石油化工股份有限公司 A kind of straight prospect pit fracturing process of shale gas
WO2018049367A1 (en) 2016-09-12 2018-03-15 Schlumberger Technology Corporation Attaining access to compromised fractured production regions at an oilfield
EA201991640A1 (en) * 2017-01-04 2019-11-29 LINE INTENSIFICATION, INCLUDING HYDRAULIC BREAKTHROUGH LAYER THROUGH SPEED CHANNELS
WO2019014161A1 (en) 2017-07-10 2019-01-17 Schlumberger Technology Corporation Controlled release of hose
WO2019014160A1 (en) 2017-07-10 2019-01-17 Schlumberger Technology Corporation Radial drilling link transmission and flex shaft protective cover
CN107288614A (en) * 2017-07-18 2017-10-24 贵州大学 A kind of test bench installation of shale gas gassiness test
CN108301809A (en) * 2018-02-09 2018-07-20 中国石油化工股份有限公司临汾煤层气分公司 A kind of coal bed gas well dynamic adjustment pump extension discharge and mining method
CN110295878B (en) * 2018-03-21 2023-03-28 陕西延长石油(集团)有限责任公司研究院 Method for performing fracturing and enhanced oil recovery in tight oil reservoirs
CN108825194B (en) * 2018-04-17 2020-08-07 中国石油天然气股份有限公司 Carbon dioxide anhydrous sand adding fracturing method
CN108279283B (en) * 2018-05-03 2023-08-11 华北理工大学 Device for measuring adsorption and desorption characteristics of multi-component gas in coal spontaneous combustion process
CN109209306B (en) * 2018-09-12 2021-03-30 中国石油天然气股份有限公司 Horizontal well CO injection for ultra-low permeability tight oil reservoir2Asynchronous throughput energy supplementing method
US11193332B2 (en) 2018-09-13 2021-12-07 Schlumberger Technology Corporation Slider compensated flexible shaft drilling system
CN109838218B (en) * 2019-03-05 2021-03-16 西南石油大学 Experimental device and method for simulating multi-section fractured horizontal gas well stuffy well post-mining
CN110031603B (en) * 2019-05-10 2023-10-03 四川省科源工程技术测试中心有限责任公司 Shale desorption gas real-time monitoring device
CN110965964B (en) * 2019-12-16 2021-10-12 临沂矿业集团菏泽煤电有限公司 Gas extraction method for ultra-thick coal seam
CN113464121B (en) * 2021-05-12 2023-08-25 中煤科工集团西安研究院有限公司 Method for determining gamma geosteering drilling track of azimuth while drilling
CN114278257B (en) * 2021-12-24 2023-12-15 中海石油(中国)有限公司 Synchronization device and method for offshore oilfield exploitation and supercritical carbon dioxide sequestration
CN114412430B (en) * 2022-01-24 2022-09-27 中国矿业大学 Liquid carbon dioxide circulation fracturing coal bed gas reservoir permeability increasing device and method
CN114719455B (en) * 2022-05-07 2023-04-07 中国矿业大学 Based on different phase state CO 2 Directional stratum type geothermal reinforced mining method
US11867026B2 (en) 2022-05-16 2024-01-09 Saudi Arabian Oil Company Cooling drilling fluid
CN115182712B (en) * 2022-07-20 2023-06-13 中国长江三峡集团有限公司 Dry-hot rock geothermal and shale gas combined production system and construction method thereof
CN115234200B (en) * 2022-08-01 2023-05-09 中国矿业大学 Unconventional natural gas reservoir methane in-situ fixed-point blasting fracturing method
US20240068341A1 (en) * 2022-08-29 2024-02-29 Halliburton Energy Services, Inc. Phase Control For Subterranean Carbon Capture, Utilization And Storage
US11834926B1 (en) 2022-09-21 2023-12-05 Saudi Arabian Oil Company Super-cooling injection fluid
CN116771318B (en) * 2023-08-25 2023-11-07 大庆信辰油田技术服务有限公司 Sectional injection tool for carbon dioxide fracturing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410216A (en) * 1979-12-31 1983-10-18 Heavy Oil Process, Inc. Method for recovering high viscosity oils
CA1134258A (en) 1981-09-28 1982-10-26 Ronald S. Bullen Carbon dioxide fracturing process
US4982786A (en) * 1989-07-14 1991-01-08 Mobil Oil Corporation Use of CO2 /steam to enhance floods in horizontal wellbores
US6615917B2 (en) * 1997-07-09 2003-09-09 Baker Hughes Incorporated Computer controlled injection wells
US7264049B2 (en) 2004-05-14 2007-09-04 Maguire James Q In-situ method of coal gasification
GB2436576B (en) 2006-03-28 2008-06-18 Schlumberger Holdings Method of facturing a coalbed gas reservoir
US8839875B2 (en) * 2009-12-28 2014-09-23 Ben M. Enis Method and apparatus for sequestering CO2 gas and releasing natural gas from coal and gas shale formations

Also Published As

Publication number Publication date
PL222247B1 (en) 2016-07-29
EP2631422A2 (en) 2013-08-28
EP2631422A3 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
PL398228A1 (en) Method for extracting compressed gaseous hydrocarbons and storage of CO ₂ in horizontal drillings
Cao et al. CO2 gas fracturing: A novel reservoir stimulation technology in low permeability gassy coal seams
US11156066B2 (en) Perforating gun orienting system, and method of aligning shots in a perforating gun
US8740310B2 (en) Mining method for co-extraction of non-combustible ore and mine methane
US7730951B2 (en) Methods of initiating intersecting fractures using explosive and cryogenic means
US7784533B1 (en) Downhole combustion unit and process for TECF injection into carbonaceous permeable zones
EP2527586A1 (en) Method for induced fracturing in a subsurface formation
US8919236B2 (en) Perforating gun drop sub
CN107503747A (en) A kind of static blasting economic benefits and social benefits fracturing weakens top plate method
US20150252669A1 (en) Method and apparatus for reservoir testing and monitoring
Liu et al. Coalbed methane recovery from multilateral horizontal wells in Southern Qinshui Basin
Pandey et al. New fracture-stimulation designs and completion techniques result in better performance of shallow Chittim Ranch wells
RU2632791C1 (en) Method for stimulation of wells by injecting gas compositions
US20150218886A1 (en) Penetrating A Subterranean Formation
US1248689A (en) Metod of shooting oil-wells.
US20140318773A1 (en) Methane enhanced liquid products recovery from wet natural gas
RU2394159C1 (en) Procedure for degassing gas bearing ore and coal deposits at development of minerals
Fang et al. Gas mixture enhance coalbed methane recovery technology: pilot tests
US9580998B2 (en) Recovery or storage process
US9309741B2 (en) System and method for temporarily sealing a bore hole
RU2503799C2 (en) Method for shale gas production
Cai et al. A waterless fracturing treatment: liquid nitrogen fracturing and its application prospect
RU2439485C2 (en) Method to carry out blasting in mines with hazardous oil and gas content
RU2648133C1 (en) Method of open-underground development of steeply pitching coal
WO2014122496A1 (en) System and method for temporarily sealing a bore hole