PL240793B1 - Laminat tytan-węgiel i sposób jego wytwarzania - Google Patents

Laminat tytan-węgiel i sposób jego wytwarzania Download PDF

Info

Publication number
PL240793B1
PL240793B1 PL437393A PL43739321A PL240793B1 PL 240793 B1 PL240793 B1 PL 240793B1 PL 437393 A PL437393 A PL 437393A PL 43739321 A PL43739321 A PL 43739321A PL 240793 B1 PL240793 B1 PL 240793B1
Authority
PL
Poland
Prior art keywords
thickness
laminate
layer
polymer composite
ceramic layer
Prior art date
Application number
PL437393A
Other languages
English (en)
Other versions
PL437393A1 (pl
Inventor
Jarosław Bieniaś
Patryk Jakubczak
Monika Ostapiuk
Magda Droździel
Piotr Podolak
Konrad Dadej
Kazimierz Drozd
Original Assignee
Lubelska Polt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lubelska Polt filed Critical Lubelska Polt
Priority to PL437393A priority Critical patent/PL240793B1/pl
Publication of PL437393A1 publication Critical patent/PL437393A1/pl
Publication of PL240793B1 publication Critical patent/PL240793B1/pl

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • B32B37/1018Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure using only vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/18Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2313/00Elements other than metals
    • B32B2313/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/02Ceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Laminated Bodies (AREA)

Description

PL 240 793 B1
Opis wynalazku
Przedmiotem wynalazku jest laminat tytan-węgiel i sposób wytwarzania laminatu tytan-węgiel.
Dotychczas z polskiego opisu patentowego nr PL 234079 (B1) znany jest laminat metalowo-polimerowy, typu tytan - kompozyt polimerowy charakteryzujący się tym, że składa się z warstw ze stopu tytanu o strukturze alfa o grubości od 0,1 mm do 1 mm, oraz warstw kompozytu polimerowego ułożonego pomiędzy warstwami ze stopu tytanu o grubości nie większej niż 0,5 mm i w ilości wynikającej ze sposobu ułożenia.
Z amerykańskiego zgłoszenia patentowego nr US5547735 (A) znany jest laminat składający się z co najmniej jednej warstwy ze stopu tytanu o strukturze beta i z co najmniej jednej warstwy kompozytu polimerowego wzmocnionego włóknem węglowym. Laminat jest utwardzany na gorąco przy użyciu prasy, bądź autoklawu.
Z europejskiego zgłoszenia patentowego nr EP2139759 (A1) znany jest laminat metalowo-włóknisty składający się z warstw metalu typu tytan lub aluminium oraz kompozytu polimerowego z włóknami węglowymi, włóknami szklanymi lub włóknami aramidowymi.
W europejskim zgłoszeniu patentowym nr EP2763849 (A1) został opisany laminat metalowo-włóknisty składający się z naprzemiennie ułożonych warstw metalu, np. stopów tytanu, stali, aluminium, bądź stopów magnezu, oraz warstw kompozytu polimerowego wzmacnianego włóknami węglowymi, szklanymi, aramidowymi, albo ich kombinacją. Laminaty poddaje się procesowi utwardzania pod działaniem temperatury i ciśnienia w celu uzyskania jednorodnej struktury.
Z artykułu „Influence of fiber type on the impact response of titanium-based fiber-metal laminates” autorstwa Li, Zhang, Guo, Shim, Yang, Chai znany jest laminat, który posiada warstwy ze stopu tytanu Ti-6A1-4V o grubości 0,5 mm i gęstości 0,226 g/cm2 oraz warstwy tkaniny z włókien węglowych i żywicy epoksydowej.
Z artykułu „The response of hybrid titanium carbon laminates to the low-velocity impact” autorstwa P. Jakubczak i J. Bieniaś znany jest laminat o grubości 1,5 mm, który z zewnętrznych stron posiada warstwy ze stopu tytanu GRADE2 o grubości 0,5 mm, natomiast pomiędzy warstwami tytanu posiada cztery warstwy kompozytu epoksydowego wzmocnionego wysokowytrzymałymi włóknami węglowymi AS7J o grubości pojedynczej warstwy równej 0,125 mm. Laminat utwardzono w autoklawie w temperaturze 135°C pod ciśnieniem 0,4 MPa.
W artykule „CFRP/titanium hybrid material for improving composite bolted joints” autorstwa B. Kolesnikov, L. Herbeck i H. Fink opisano laminat, który składał się z naprzemiennie ułożonych, warstw kompozytu o osnowie żywicy epoksydowej wzmacnianego włóknem węglowym o grubości 0,125 mm zamiennie z kompozytem o grubości 0,25 mm oraz warstw metalowych ze stopu tytanu Ti-6A1-4V o grubości 0,3 mm.
Celem wynalazku jest wytworzenie laminatu tytan-węgiel odpornego na uderzenia, który znajduje zastosowanie przy produkcji części samochodowych i lotniczych.
Istotą laminatu tytan-węgiel posiadającego od zewnętrznej strony arkusz blachy ze stopu tytanu, który na obu powierzchniach posiada warstwę ceramiczną, do której przylegają adhezyjnie cztery, jednakowe warstwy kompozytu polimerowego na bazie włókien węglowych połączonych żywicą epoksydową, według wynalazku, jest to, że w części środkowej laminatu znajduje się warstwa włókniny poliestrowej o grubości od 3 mm do 9 mm i o gramaturze 339 g/m2. Do obu powierzchni warstwy włókniny poliestrowej przylegają adhezyjnie cztery, jednakowe warstwy kompozytu polimerowego na bazie włókien węglowych połączonych żywicą epoksydową o grubości 0,2 mm każda, które przylegają adhezyjnie do warstwy ceramicznej o grubości od 1 μm do 20 μm, znajdującej się na arkuszu blachy ze stopu tytanu o grubości od 0,2 mm do 1 mm. Arkusz blachy ze stopu tytanu na zewnętrznej powierzchni posiada warstwę ceramiczną o grubości od 1 μm do 20 μm.
Istotą sposobu wytwarzania laminatu tytan-węgiel, według wynalazku, jest to, że na jeden z arkuszy blachy ze stopu tytanu o grubości od 0,2 mm do 1 mm posiadający na obu powierzchniach warstwę ceramiczną o grubości od 1 μm do 20 μm nakłada się kolejno cztery, jednakowe warstwy kompozytu polimerowego na bazie włókien węglowych połączonych żywicą epoksydową o grubości 0,2 mm każda. Następnie nakłada się warstwę włókniny poliestrowej o grubości od 3 mm do 9 mm i o gramaturze 339 g/m2, na którą nakłada się kolejno cztery, jednakowe warstwy kompozytu polimerowego na bazie włókien węglowych połączonych żywicą epoksydową o grubości 0,2 mm każda. Następnie nakłada się drugi z arkuszy blachy ze stopu tytanu o grubości od 0,2 mm do 1 mm posiadający na obu powierzchniach warstwę ceramiczną o grubości od 1 μm do 20 μm. Następnie wykonuje się pakiet
PL 240 793 B1 próżniowy i odsysa się powietrze do podciśnienia -0,08 MPa, po czym poddaje się całość procesowi utwardzania.
Korzystnie jest, gdy nakłada się kolejno cztery, jednakowe warstwy kompozytu polimerowego na bazie włókien węglowych połączonych żywicą epoksydową w kierunku ułożenia 079070790° albo 0707070° albo +45°/-45°/-45°/+45° albo 90790790790°.
Korzystnym skutkiem wynalazku jest to, że otrzymuje się laminat tytan-węgiel o wysokich właściwościach absorpcyjnych w badaniach odporności dynamicznej niskiej prędkości. Warstwa kompozytu polimerowego na bazie włókien węglowych połączonych z żywicą epoksydową łączy się do włókniny poliestrowej poprzez utwardzanie w autoklawie. Przesączona żywicą włóknina poliestrowa hamuje rozwój pęknięć w laminacie. Ponadto granica rozdziału kompozyt, a włóknina poliestrowa jest bardziej wytrzymała. Właściwości laminatu wytworzonego sposobem według wynalazku umożliwiają wykorzystanie go w przemyśle samochodowym i lotniczym.
Wynalazek został przedstawiony w przykładzie wykonania na rysunku, który przedstawia przekrój poprzeczny laminatu.
P r z y k ł a d 1
Sposób wytwarzania laminatu tytan-węgiel polegał na tym, że dwa arkusze blachy 1 ze stopu tytanu GRADE 2 o wymiarach 300 x 400 mm i grubości 0,3 mm oczyszczono poprzez piaskowanie z zastosowaniem ziaren tlenku glinu AI2O3 o grubości 180 μm. Następnie nałożono warstwę ceramiczną o udziale masowym 3-glicydoksy propylotrimetoksy silanu 1% i tetra-n-propoksy cyrkonu 99%. Każdą warstwę ceramiczną 2 o grubości 2 μm wytworzoną na arkuszach blachy 1 pozostawiono do wyschnięcia na czas 60 minut w temperaturze 23°C. Po wysuszeniu nałożono na jeden z arkuszy blachy 1 posiadający na obu powierzchniach warstwę ceramiczną 2 cztery, jednakowe warstwy kompozytu polimerowego na bazie włókien węglowych połączonych żywicą epoksydową 3 o grubości 0,2 mm każda, w kierunku ułożenia 0°/90°/0°/90°. Następnie nałożono warstwę włókniny poliestrowej 4 o grubości 3 mm i o gramaturze 339 g/m2. Na warstwę włókniny poliestrowej 4 nałożono kolejno cztery, jednakowe warstwy kompozytu polimerowego na bazie włókien węglowych połączonych żywicą epoksydową 3 o grubości 0,2 mm każda, w kierunku ułożenia 079070790°. Następnie nałożono drugi z arkuszy blachy 1 posiadający na obu powierzchniach warstwę ceramiczną 2. Całość ułożono na formie aluminiowej i za pomocą pakietu próżniowego odessano powietrze do podciśnienia -0,08 MPa. Następnie całość utwardzano w komorze autoklawu w temperaturze +135°C oraz w ciśnieniu 0,4 MPa. Wewnątrz komory autoklawu nagrzewano i chłodzono pakiet próżniowy z prędkością 2°C/min. Cały proces utwardzania z nagrzewaniem i chłodzeniem przebiegał w czasie 4,5 godziny. Po wyjęciu pakiet próżniowy z autoklawu schłodzono do temperatury 23°C.
W wytworzonym laminacie tytan-węgiel w części środkowej znajduje się warstwa włókniny poliestrowej 4 o grubości 3 mm i o gramaturze 339 g/m2. Do obu powierzchni warstwy włókniny poliestrowej 4 przylegają adhezyjnie cztery, jednakowe warstwy kompozytu polimerowego na bazie włókien węglowych połączonych żywicą epoksydową 3 o grubości 0,2 mm każda, które przylegają adhezyjnie do warstwy ceramicznej 2 o grubości 2 μm znajdującej się na arkuszu blachy 1 ze stopu tytanu GRADE 2 o grubości 0,3 mm, który na zewnętrznej powierzchni posiada warstwę ceramiczną 2 o grubości 2 μm.
Otrzymany laminat poddano badaniom na uderzenia o niskiej prędkości poniżej 5 m/s w zakresie energii 5 J i 20 J. Laminat charakteryzował się zmniejszonym zniszczeniem warstw kompozytowych oraz zwiększoną wartością absorpcji energii przez warstwę poliestrową. Siła maksymalna uzyskana w badaniach na uderzenia wynosiła dla 5 J - 2297 N, a dla 20 J - 4581 N.
P r z y k ł a d 2
Sposób wytwarzania laminatu tytan-węgiel przebiegał jak w pierwszym przykładzie wykonania, z tym, że wykorzystano dwa arkusze blachy 1 o grubości 1 mm posiadające na obu powierzchniach warstwę ceramiczną 2 o grubości 12 μm, jednakowe warstwy kompozytu polimerowego na bazie włókien węglowych połączonych żywicą epoksydową 3 o grubości 0,2 mm każda, które ułożono w kierunku ułożenia 0°/0°/0°/0° i warstwę włókniny poliestrowej 4 o grubości 9 mm i o gramaturze 339 g/m2.
W wytworzonym laminacie tytan-węgiel w części środkowej znajduje się warstwa włókniny poliestrowej 4 o grubości 9 mm i o gramaturze 339 g/m2. Do obu powierzchni warstwy włókniny poliestrowej 4 przylegają adhezyjnie cztery, jednakowe warstwy kompozytu polimerowego na bazie włókien węglowych połączonych żywicą epoksydową 3 o grubości 0,2 mm każda, które przylegają adhezyjnie do warstwy ceramicznej 2 o grubości 12 μm. Warstwa ceramiczna 2 o grubości 12 μm znajduje się na arkuszu blachy 1 ze stopu tytanu GRADE 2 o grubości 1 mm, który na zewnętrznej powierzchni posiada warstwę ceramiczną 2 o grubości 12 μm.

Claims (6)

  1. PL 240 793 B1
    Otrzymany laminat poddano badaniom na uderzenia o niskiej prędkości poniżej 5 m/s w zakresie energii 5 J i 20 J. Laminat charakteryzował się zmniejszonym zniszczeniem warstw kompozytowych oraz zwiększoną wartością absorpcji energii przez warstwę poliestrową. Siła maksymalna uzyskana w badaniach na uderzenia wynosiła dla 5 J - 2163 N, a dla 20 J - 4438 N.
    P r z y k ł a d 3
    Sposób wytwarzania laminatu tytan-węgiel przebiegał jak w pierwszym przykładzie wykonania, z tym, że wykorzystano dwa arkusze blachy 1 o grubości 0,5 mm posiadające na obu powierzchniach warstwę ceramiczną 2 o grubości 10 μm, jednakowe warstwy kompozytu polimerowego na bazie włókien węglowych połączonych żywicą epoksydową 3 o grubości 0,2 mm każda, które ułożono w kierunku ułożenia +45°/-45°/+45°/-45° i warstwę włókniny poliestrowej 4 o grubości 5 mm i o gramaturze 339 g/m2.
    W wytworzonym laminacie tytan-węgiel w części środkowej znajduje się warstwa włókniny poliestrowej 4 o grubości 5 mm i o gramaturze 339 g/m2. Do obu powierzchni warstwy włókniny poliestrowej 4 przylegają adhezyjnie cztery, jednakowe warstwy kompozytu polimerowego na bazie włókien węglowych połączonych żywicą epoksydową 3 o grubości 0,2 mm każda, które przylegają adhezyjnie do warstwy ceramicznej 2 o grubości 10 μm. Warstwa ceramiczna 2 znajduje się na arkuszu blachy 1 ze stopu tytanu GRADE 2 o grubości 0,5 mm, który na zewnętrznej powierzchni posiada warstwę ceramiczną 2 o grubości 10 μm.
    Otrzymany laminat poddano badaniom na uderzenia o niskiej prędkości poniżej 5 m/s w zakresie energii 5 J i 20 J. Laminat charakteryzował się zmniejszonym zniszczeniem warstw kompozytowych oraz zwiększoną wartością absorpcji energii przez warstwę poliestrową. Siła maksymalna uzyskana w badaniach na uderzenia wynosiła dla 5 J - 2029 N, a dla 20 J - 4626 N.
    P r z y k ł a d 4
    Sposób wytwarzania laminatu tytan-węgiel przebiegał jak w pierwszym przykładzie wykonania, z tym, że wykorzystano dwa arkusze blachy 1 o grubości 0,5 mm posiadające na obu powierzchniach warstwę ceramiczną 2 o grubości 5 μm, jednakowe warstwy kompozytu polimerowego na bazie włókien węglowych połączonych żywicą epoksydową 3 o grubości 0,2 mm każda, które ułożono w kierunku ułożenia 90790790790° i warstwę włókniny poliestrowej 4 o grubości 3 mm i o gramaturze 339 g/m2.
    W wytworzonym laminacie tytan-węgiel w części środkowej znajduje się warstwa włókniny poliestrowej 4 o grubości 3 mm i o gramaturze 339 g/m2. Do obu powierzchni warstwy włókniny poliestrowej 4 przylegają adhezyjnie cztery, jednakowe warstwy kompozytu polimerowego na bazie włókien węglowych połączonych żywicą epoksydową 3 o grubości 0,2 mm każda, które przylegają adhezyjnie do warstwy ceramicznej 2 o grubości 5 μm. Warstwa ceramiczna 2 znajduje się na arkuszu blachy 1 ze stopu tytanu GRADE 2 o grubości 0,5 mm, który na zewnętrznej powierzchni posiada warstwę ceramiczną 2 o grubości 5 μm.
    Otrzymany laminat poddano badaniom na uderzenia o niskiej prędkości poniżej 5 m/s w zakresie energii 5 J i 20 J. Laminat charakteryzował się zmniejszonym zniszczeniem warstw kompozytowych oraz zwiększoną wartością absorpcji energii przez warstwę poliestrową. Siła maksymalna uzyskana w badaniach na uderzenia wynosiła dla 5 J - 2188 N, a dla 20 J - 4343 N.
    Zastrzeżenia patentowe
    1. Laminat tytan-węgiel posiadający od zewnętrznej strony arkusz blachy (1) ze stopu tytanu, który na obu powierzchniach posiada warstwę ceramiczną (2), do której przylegają adhezyjnie cztery, jednakowe warstwy kompozytu polimerowego na bazie włókien węglowych połączonych żywicą epoksydową (3) znamienny tym, że w części środkowej laminatu znajduje się warstwa włókniny poliestrowej (4) o grubości od 3 mm do 9 mm i o gramaturze 339 g/m2, do której obu powierzchni przylegają adhezyjnie cztery, jednakowe warstwy kompozytu polimerowego na bazie włókien węglowych połączonych żywicą epoksydową (3) o grubości 0,2 mm każda, które przylegają adhezyjnie do warstwy ceramicznej (2) o grubości od 1 μm do 20 μm, znajdującej się na arkuszu blachy (1) ze stopu tytanu o grubości od 0,2 mm do 1 mm, który na zewnętrznej powierzchni posiada warstwę ceramiczną (2) o grubości od 1 μm do 20 μm.
  2. 2. Sposób wytwarzania laminatu tytan-węgiel znamienny tym, że na jeden z arkuszy blachy (1) ze stopu tytanu o grubości od 0,2 mm do 1 mm posiadający na obu powierzchniach warstwę ceramiczną (2) o grubości od 1 μm do 20 μm nakłada się kolejno cztery, jednakowe warstwy
    PL 240 793 B1 kompozytu polimerowego na bazie włókien węglowych połączonych żywicą epoksydową (3) o grubości 0,2 mm każda, po czym nakłada się warstwę włókniny poliestrowej (4) o grubości od 3 mm do 9 mm i o gramaturze 339 g/m2, na którą nakłada się kolejno cztery, jednakowe warstwy kompozytu polimerowego na bazie włókien węglowych połączonych żywicą epoksydową (3) o grubości 0,2 mm każda, po czym nakłada się drugi z arkuszy blachy (1) ze stopu tytanu o grubości od 0,2 mm do 1 mm posiadający na obu powierzchniach warstwę ceramiczną (2) o grubości od 1 μm do 20 μm, następnie wykonuje się pakiet próżniowy i odsysa się powietrze do podciśnienia -0,08 MPa, po czym poddaje się całość procesowi utwardzania.
  3. 3. Sposób, według zastrz. 2, znamienny tym, że nakłada się kolejno cztery, jednakowe warstwy kompozytu polimerowego na bazie włókien węglowych połączonych żywicą epoksydową (3) w kierunku ułożenia 0°/90°/0°/90°.
  4. 4. Sposób, według zastrz. 2, znamienny tym, że nakłada się kolejno cztery, jednakowe warstwy kompozytu polimerowego na bazie włókien węglowych połączonych żywicą epoksydową (3) w kierunku ułożenia 0°/0°/0°/0°.
  5. 5. Sposób, według zastrz. 2, znamienny tym, że nakłada się kolejno cztery, jednakowe warstwy kompozytu polimerowego na bazie włókien węglowych połączonych żywicą epoksydową (3) w kierunku ułożenia +45°/-45°/-45°/+45°.
  6. 6. Sposób, według zastrz. 2, znamienny tym, że nakłada się kolejno cztery, jednakowe warstwy kompozytu polimerowego na bazie włókien węglowych połączonych żywicą epoksydową (3) w kierunku ułożenia 90°/90°/90°/90°.
PL437393A 2021-03-25 2021-03-25 Laminat tytan-węgiel i sposób jego wytwarzania PL240793B1 (pl)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL437393A PL240793B1 (pl) 2021-03-25 2021-03-25 Laminat tytan-węgiel i sposób jego wytwarzania

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PL437393A PL240793B1 (pl) 2021-03-25 2021-03-25 Laminat tytan-węgiel i sposób jego wytwarzania

Publications (2)

Publication Number Publication Date
PL437393A1 PL437393A1 (pl) 2021-09-06
PL240793B1 true PL240793B1 (pl) 2022-06-06

Family

ID=77662586

Family Applications (1)

Application Number Title Priority Date Filing Date
PL437393A PL240793B1 (pl) 2021-03-25 2021-03-25 Laminat tytan-węgiel i sposób jego wytwarzania

Country Status (1)

Country Link
PL (1) PL240793B1 (pl)

Also Published As

Publication number Publication date
PL437393A1 (pl) 2021-09-06

Similar Documents

Publication Publication Date Title
Salve et al. A review: fiber metal laminates (FML’s)-manufacturing, test methods and numerical modeling
CN110953933B (zh) 一种三维约束陶瓷复合防弹面板
Nestler et al. Continuous film stacking and thermoforming process for hybrid CFRP/aluminum laminates
Khan et al. Effect of various surface preparation techniques on the delamination properties of vacuum infused Carbon fiber reinforced aluminum laminates (CARALL): Experimentation and numerical simulation
CN106183328B (zh) 一种纤维金属层板构件的制造方法及其采用的装置
Li et al. The shot peen forming of fiber metal laminates based on the aluminum-lithium alloy: Deformation characteristics
CN106536186A (zh) 金属片材和结合到金属片材的粘合剂层的层压材料
PL240793B1 (pl) Laminat tytan-węgiel i sposób jego wytwarzania
CN113829683A (zh) 一种复合装甲结构及其制造方法
KR101851533B1 (ko) 플라즈마처리로 접착성이 향상된 탄성받침의 제조공법
PL240794B1 (pl) Laminat tytan-szkło i sposób jego wytwarzania
PL240800B1 (pl) Laminat tytan-szkło-węgiel i sposób jego wytwarzania
JP6504188B2 (ja) プリプレグ材料、繊維強化樹脂複合材料、多層構造体、プリプレグ材料の製造方法および繊維強化樹脂複合材料の製造方法
JP2005161852A (ja) 金属/繊維強化プラスチック複合材料及びその製造方法
PL243181B1 (pl) Laminat tytan-szkło i sposób jego wytwarzania
PL240796B1 (pl) Laminat magnez-szkło i sposób jego wytwarzania
JP2018016016A (ja) 繊維強化樹脂複合材料、多層構造体及び繊維強化樹脂複合材料の製造方法
PL240795B1 (pl) Laminat magnez-szkło-węgiel i sposób jego wytwarzania
PL240792B1 (pl) Laminat magnez-węgiel i sposób jego wytwarzania
PL243179B1 (pl) Laminat tytan-szkło i sposób jego wytwarzania
PL240798B1 (pl) Laminat aluminium-węgiel i sposób jego wytwarzania
PL243178B1 (pl) Laminat magnez-szkło i sposób jego wytwarzania
PL243177B1 (pl) Laminat magnez-szkło i sposób jego wytwarzania
PL240799B1 (pl) Laminat aluminium-szkło-węgiel i sposób jego wytwarzania
PL240797B1 (pl) Laminat aluminium-szkło i sposób jego wytwarzania