PL240234B1 - Organiczny materiał o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych oraz sposób jego otrzymywania - Google Patents

Organiczny materiał o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych oraz sposób jego otrzymywania Download PDF

Info

Publication number
PL240234B1
PL240234B1 PL436106A PL43610620A PL240234B1 PL 240234 B1 PL240234 B1 PL 240234B1 PL 436106 A PL436106 A PL 436106A PL 43610620 A PL43610620 A PL 43610620A PL 240234 B1 PL240234 B1 PL 240234B1
Authority
PL
Poland
Prior art keywords
heparin
mixture
hours
base
pore
Prior art date
Application number
PL436106A
Other languages
English (en)
Other versions
PL436106A1 (pl
Inventor
Andrzej Swinarew
Jadwiga Gabor
Hubert Okła
Szymon Skoczyński
Ewa Trejnowska
Barbara Szpikowska-Sroka
Magdalena Popczyk
Arkadiusz Stanula
Original Assignee
Akademia Wychowania Fizycznego Im Jerzego Kukuczki W Katowicach
Univ Slaski
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akademia Wychowania Fizycznego Im Jerzego Kukuczki W Katowicach, Univ Slaski filed Critical Akademia Wychowania Fizycznego Im Jerzego Kukuczki W Katowicach
Priority to PL436106A priority Critical patent/PL240234B1/pl
Publication of PL436106A1 publication Critical patent/PL436106A1/pl
Priority to PCT/IB2021/061010 priority patent/WO2022113015A1/en
Priority to EP21897295.8A priority patent/EP4251695A1/en
Publication of PL240234B1 publication Critical patent/PL240234B1/pl

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Materials For Medical Uses (AREA)

Description

PL 240 234 B1
Opis wynalazku
Przedmiotem wynalazku jest materiał o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych, przeznaczony zwłaszcza do budowy aparatury medycznej, w szczególności do budowy podzespołów mających bezpośredni styk z krwią oraz sposób jego otrzymywania.
Materiały o właściwościach porotwórczych wykorzystywane są do wytwarzania membran selektywnych, czyli takich, które przepuszczają jedynie cząstki o określonej wielkości. Z takich materiałów wytwarza się między innymi membrany do zastosowania przy produkcji przedmiotów codziennego użytku, takich jak: namioty, kurtki, filtry, ale także membrany osmotyczne mające zastosowanie w medycynie: w filtrach do terapii nerkozastępczej oraz w oksygenatorach do utlenowania krwi.
Najpopularniejszym, wysoko zaawansowanym technologicznie - w zastosowaniach niemedycznych - materiałem porotwórczym (stosowanym na przykład do produkcji kurtek), z którego wykonywane były membrany jest poli(tetrafluoroetylen).
Natomiast w zastosowaniach medycznych, to jest do budowy aparatury medycznej, z dotychczasowego stanu techniki znane są różne materiały, w tym materiały do budowy porowatych membran stosowanych w aparaturze mającej bezpośredni kontakt z płynami ustrojowymi.
Na przykład z opisu patentowego PL225257 znany jest układ membranowy do miejscowej immobilizacji komórek eukariotycznych, posiadający suport oraz co najmniej jedną biwarstwę, utworzoną kolejno z jednej warstwy polielektrolitu obejmującej hydrożele polisacharydowe, zwłaszcza alginian sodu zawierający w swej strukturze inkorporowany fulerenol oraz proteinę A, charakteryzujący się tym, że pierwsza warstwa jest nałożona bezpośrednio na grupę izolowanych komórek posadowionych następnie na suporcie wykonanym z tego samego materiału pod względem składu oraz drugiej warstwy polimerowej z alifatycznych amin II lub III rzędowych - zawierających grupy etylowe lub metylowe z inkorporowanym fulerenolem. W układzie tym jedna warstwa nałożona jest bezpośrednio na grupę izolowanych komórek eukariotycznych, i pozwala on na izolację komórek eukariotycznych od środowiska zewnętrznego, w szczególności mikroorganizmów, jednocześnie nie ograniczając transportu substancji odżywczych przez membranę, pozwalając na ich ukierunkowany wzrost.
Z opisu patentowego PL212620 znana jest specjalnie modyfikowana membrana poliolefinowa (PP, PE) oraz sposób modyfikowania mikroporowatych membran poliolefinowych przeznaczonych do izolacji bakterii Gram(+), polegający na tym, że w strukturę membrany poliolefinowej o wysokiej porowatości wprowadza się w znany sposób roztwór polikationu, wybranego z grupy obejmującej aminokwasy alifatyczne, zwłaszcza białkowe, korzystnie polarne i rozpuszczone w roztworze NaCl, a następnie w strukturę membrany wprowadza się w znany sposób, korzystnie przez moczenie, roztwór polianionu, wybranego z grupy obejmującej polimer aminy II lub III rzędowej, zwłaszcza metyloaminy i etyloaminy, korzystnie zawierające 100% grup metylowych lub etylowych, rozpuszczony w roztworze NaCl.
Z opisu patentowego PL 197199 znana jest również polimerowa membrana protonowo przewodząca na bazie uwodnionego poli(kwasu perfluorosulfonowego) charakteryzująca się tym, że stanowi ją produkt reakcji radiacyjnego szczepienia poli(kwasu perfluorosulfonowego) z kwasem winylofosfonowym użytym w ilości od 1 do 40% wagowych lub kwasem 2-akryloamido-2-metylopropanosulfonowym użytym w ilości od 1 do 40% wagowych.
Z opisu patentowego PL165872 znany jest sposób wytwarzania wielowarstwowej membran y porowatej z politetrafluoroetylenu zawierającej co najmniej dwie warstwy posiadające pory o różnych przeciętnych średnicach, który obejmuje etapy: napełnienia cylindra wytłaczarki co najmniej dwoma różniącymi się rodzajami drobnoziarnistych proszków politetrafluoroetylenowych, przy czym z każdym zmieszany został ciekły środek poślizgowy.
Z opisu patentowego EP0409496 znany jest proces otrzymywania mikroporowatych membran zawierających co najmniej częściowo krystaliczny aromatyczny polimer zawierający w łańcuchu eter lub wiązania tioeterowe i ketonowe. Proces pozwala na wytwarzanie membran z niektórych aromatycznych polimerów o wysokiej temperaturze topnienia, na przykład PEDK.
Rodzaj materiałów z jakich wykonywane były membrany znane ze wskazanych wyżej rozwiązań pozwala - ze względów sterycznych - na ich zastosowanie do oksygenacji krwi, jednakże ich istotne ograniczenia biochemiczne w znaczącym stopniu limitują to zastosowanie. Membrany te nie zawierały bowiem dodatków zapewniających uwalnianie substancji przeciwkrzepliwych, co w takich zastosowaniach było ich istotną niedogodnością. Ponadto, ze względu na swoją strukturę charakteryzują się rozwiniętą topografią powierzchni w skali mikrometrycznej, co było przyczyną ich negatywnego działania na organizmy żywe. Na poziomie komórkowym membrany te powodują steryczne uszkodzenie błon
PL 240 234 B1 komórkowych, co skutkuje destabilizacją komórek. Ponadto membrany nie mogą hamować tworzenia skrzeplin i nie zabezpieczają przed tworzeniem się biofilmu bakteryjnego.
Jak dotąd, w zastosowaniach medycznych, jako materiały o właściwościach porotwórczych stosowane były przede wszystkim polipropylen (PP) i poliuretan (PU). Na przykład w urządzeniach stosowanych w procesie utlenowania (oksygenacji) krwi, jako materiał porowaty do budowy membran wykorzystywany był poliuretan, a do budowy elementów do rozdzielania warstw membran (spacer) stosowany był polipropylen. Pomimo wysokiej skuteczności takich membran pod względem wymiany gazowej, mają one ograniczenia związane przede wszystkim z inicjowaniem reakcji zapalnej z niskiej bioinercji tych materiałów. Wpływało to na tworzenie się stopniowo narastających skrzeplin na powierzchni membrany. W takim przypadku, aby utrzymać skuteczność utlenowania krwi, konieczne było zwiększenie stężenia tlenu, co indukuje stres oksydacyjny i nasila proces wykrzepiania, wywołując niekorzystną kaskadę szybko następujących po sobie niekorzystnych czynników, ponieważ należy ciągle zwiększać stężenie tlenu, aby utrzymać poziom saturacji krwi, a to nasila stres oksydacyjny i potęguje wykrzepianie. Po przekroczeniu pewnego progu, ilość skrzeplin jest już tak duża, że urządzenie nie nadaje się do dalszej pracy (nie spełnia swojej funkcji) i należy wymienić cały układ oksygenatora.
W związku z tym zaistniała potrzeba opracowania nowego materiału na membrany, przeznaczonego zwłaszcza do zastosowań medycznych, który pozwalałby na osiągnięcie wysokiego poziomu właściwości porotwórczych, a jednocześnie zapewniałby jego biokompatybilność i bioinercję (obojętność) w kontakcie z krwią pacjenta. Powodem zastosowania nowego materiału do wytworzenia membrany w oksygenatorze jest potrzeba zmniejszenia ryzyka indukowania stanu zapalnego, a co za tym idzie spowalniania procesów wykrzepiania na membranie i wydłużenia żywotności urządzenia.
Z dotychczasowego stanu techniki znane są różne związki o działaniu przeciwzakrzepowym. Między innymi znana jest heparyna - organiczny związek chemiczny, polisacharyd zbudowany głównie z N-siarczanu i O-siarczanu glikozoaminoglikanu zbudowanego z reszt D-glukozaminy i kwasu L-iduronowego połączonych w nierozgałęziony łańcuch. Heparyna jest naturalnym czynnikiem, który poprzez hamowanie przejścia protrombiny w trombinę powoduje silne działanie przeciwzakrzepowe krwi oraz ze względu na oddziaływanie na lipidy poprzez aktywację lipazy jest również stosowana jako czynnik przeciwzakrzepowy używany do opłaszczeń przeciwzakrzepowych. Uwalniana w sposób kontrolowany może również hamować agregację trombocytów oraz ich adhezję (przyleganie do powierzchni) do ścian naczyń krwionośnych. Heparyna jest wyłapywana przez ściany naczynia i zwiększa ich ładunek ujemny, co utrudnia przyleganie trombocytów i zapobiega powstawaniu skrzepów przyściennych. Heparyna jest stosowana jako lek przeciwzakrzepowy, zapobiegając tworzeniu się skrzeplin, standardowo stosowany u chorych poddawanych zabiegom chirurgicznym i unieruchomionym z powodu choroby, w żylnej chorobie zakrzepowo-zatorowej, ostrych zespołach wieńcowych.
Jak dotąd nie są natomiast znane materiały o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych, zawierające immobilizowaną w swoim składzie heparynę, półprzepuszczalne dla gazów, przeznaczone zwłaszcza do budowy membran stosowanych w medycznych układach gazowymiennych, zwłaszcza do oksygenacji krwi (oksygenatory) oraz efektywne sposoby otrzymywania takich materiałów, a ich opracowanie stało się celem twórców niniejszego wynalazku.
Istotę wynalazku stanowi organiczny materiał o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych, składający się z:
- bazy w postaci polipropylenu (PP) lub poliuretanu (PU) lub politereftalanu etylenu (PET) lub poliwęglanu (PC) lub polioksymetylenu (POM) lub polisulfonu (PSU) lub silikonu lub polimeru fluorowego, korzystnie poli(tetrafluoroetylenu) (PTFE) lub polifluorku winylidenu (PVDF) lub kopolimeru tetrafluoroetylenu i heksafluoropropylenu (FEP),
- domieszki 4-(difenyloamino)benzaldehydu, w proporcji baza-domieszka od 50 ^ do 5000 ^ 1, korzystnie 100 * 1,
- domieszki 1,3-indandionu w proporcji baza-domieszka od 50 ^ 1 do 5000 ^ 1, korzystnie 100 ^ 1, oraz
- domieszki heparyny wbudowanej w mikrostrukturę materiału bazowego, w proporcji baza-domieszka od 80 * 1 do 1200 * 1, korzystnie 150 * 1.
Istotę wynalazku stanowi również sposób otrzymywania organicznego materiału o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych, charakteryzujący się tym, że do reaktora z materiału niereaktywnego, wprowadza się w atmosferze gazu inertnego (obojętnego) rozpuszczalnik polarny oraz kwas wybrany spośród: kwas siarkowy VI, kwas chlorowodorowy lub kwas octowy, w proporcjach od 2 ^ 0,002 do 7 ^ 0,002, korzystnie 5 ^ 0,002, a następnie na 50 mL tak powstałej mieszaniny
PL 240 234 B1 dodaje się 4-(difenyloamino)benzaldehyd w ilości od 0,2 g do 0,7 g oraz 1,3-indandion w ilości od 0,01 g do 0,08 g i miesza do uzyskania jednorodnej mieszaniny nie krócej niż 1 minutę, po czym zawiesinę przemywa się gazem inertnym przez czas co najmniej 5 minut, korzystnie nie dłużej niż 60 minut, podgrzewa doprowadzając do wrzenia pod chłodnicą zwrotną w atmosferze gazu inertnego i miesza intensywnie przy 100-1000 obr./min, korzystnie 350-450 obr./min, w czasie co najmniej 18 godzin, korzystnie nie dłużej niż 30 godzin. Po procesie mieszania powstałą mieszaninę chłodzi się do temperatury od 20 do 35°C i poddaje chromatografii kolumnowej w złożu SO2 i w fazie ruchomej mieszaniny heksanu i chlorku metylenu, w ilości heksanu od 0,5 do 2-krotności objętości mieszaniny reakcyjnej, a chlorku metylenu od 0,5 do 2-krotności objętości mieszaniny reakcyjnej. Następnie suszy się próżniowo w czasie co najmniej 20 godzin, korzystnie 24 godzin, do stałej masy, po czym rekrystalizuje się z chloroformu. Produkt po rekrystalizacji z chloroformu (rekrystalizat) umieszcza się w homogenizatorze i wprowadza bazę w postaci: polipropylenu (PP) lub poliuretanu (PU) lub poli(tereftalanu etylenu) (PET) lub poliwęglanu (PC) lub polioksymetylenu (POM) lub polisulfonu (PSU) lub silikonu lub polimeru fluorowego, korzystnie poli(tetrafluoroetylenu) (PTFE) lub polifluorku winylidenu (PVDF) lub kopolimeru tetrafluoroetylenu i heksafluoropropylenu (FEP), w proporcji baza-rekrystalizat od 50 ^ 2 do 5000 ^ 2, korzystnie 100 ^ 2, a następnie miesza aż do uzyskania jednorodnej mieszaniny i suszy przez czas co najmniej 20 godzin w temperaturze 80-110°C, po czym materiał wytłacza się na głowicy liniowej w postaci struny, korzystnie o średnicy zewnętrznej od 2 do 10 mm, lub na głowicy krzyżowej w postaci rurki, korzystnie o średnicy zewnętrznej od 2 do 10 mm, lub na głowicy płaskiej w postaci folii, korzystnie o grubości 0,1 do 3 mm, a w kolejnym etapie przeprowadza się proces immobilizacji heparyny do struktury sterycznej tak otrzymanego materiału w sposób zapewniający jej zawartość w materiale w proporcji baza-heparyna od 80 ^ 1 do 1200 ^ 1, korzystnie 150 ^ 1, w taki sposób, że po wstępnym ochłodzeniu w łaźni zawierającej przesycony wodny roztwór heparyny do temperatury ±30°C od temperatury przejścia plastycznego, korzystnie poniżej temperatury przejścia plastycznego, dokonuje się jego rozciągnięcia na kalandrach (znanymi metodami tworzenia włókien lub folii), tak aby otrzymać wydłużenie od 5 do 20-krotne, korzystnie 10-krotne, co skutkuje powstaniem mikroporów, w których immobilizuje się heparyna, przy czym w wariancie z wytłoczoną struną proces jej rozciągania prowadzi się liniowo - zachowując formę struny lub w dwóch kierunkach - tworząc ze struny płaską folię.
Korzystnie, sposób według wynalazku prowadzi się w reaktorze ze szkła, ceramiki lub stali nierdzewnej.
Korzystnie, sposób według wynalazku prowadzi się w reaktorze w postaci okrągłodennej kolby trójszyjnej, z uwagi na jej dobre właściwości funkcjonalne.
Korzystnie, jako gaz inertny stosuje się argon albo azot, albo ksenon.
Korzystnie, jako rozpuszczalnik polarny stosuje się bezwodny etanol.
Korzystnie, materiał stanowiący bazę dodaje się w postaci przemiału albo kruszywa, albo najkorzystniej granulatu.
Korzystnie, na etapie kalandrowania podczas immobilizacji czynnika aktywnego w postaci heparyny stosuje się cykliczne zmniejszanie i zwiększanie naprężenia, co zwiększa skuteczność immobilizacji heparyny w porach materiału.
Struktura chemiczna makrocząsteczek materiałów otrzymanych sposobem według wynalazku wpływa na ich dobre właściwości porotwórcze, a jednocześnie zapewnia jego biokompatybilność i bioinercję (całkowitą obojętność). W przypadku zastosowania tych materiałów do wytworzenia membran do oksygenatorów ograniczone jest ryzyko indukowania stanów zapalnych, a co za tym idzie spowalnia się proces wykrzepiania na membranie. Sposób według wynalazku umożliwia otrzymanie materiałów o wielkości porów w zakresie nano, tak aby pojedyncza molekuła tlenu i dwutlenku węgla była w stanie przenikać przez pory, a jednocześnie żeby pory były mniejsze niż wielkocząsteczkowe pakiety, z jakich zbudowane są płyny ustrojowe, co w efekcie pozwala skutecznie utlenować krew, bez ryzyka przenikania przez pory cząsteczek krwi.
Poza powyższymi zaletami, rozwiązanie według wynalazku pozwala na otrzymanie membran o bardzo szerokim zakresie wielkości porów od skali nano/mikro (zastosowanie zwłaszcza do oksygenacji, wymiany gazowej) do skali makroporów o wielkości nawet dziesiątych części milimetra (zastosowanie jako materiały wodoszczelne, oddychające). Sposób według wynalazku umożliwia precyzyjne sterowanie wielkością tworzonych porów.
Zastosowanie immobilizowanej heparyny pozwala na utrzymanie stałego jej stężenia na powierzchni kontaktowej detalu przez cały okres stosowania materiałów (programowanego życia produktu).
PL 240 234 B1
Zminimalizowana jest możliwość nadmiernego wypłukiwania heparyny, a ze względu na kontrolowany dyfuzyjnie proces uwalniania heparyny, jej stężenie kontaktowe na powierzchni produktu jest stałe.
Wprowadzenie heparyny do materiału według wynalazku nadaje mu również pożądane właściwości przeciwzakrzepowe i przeciwzapalne. Heparyna jak już wyżej zaznaczono ma silne działanie przeciwzakrzepowe krwi oraz ze względu na oddziaływanie na lipidy poprzez aktywację lipazy jest również stosowana jako czynnik przeciwzakrzepowy używany do opłaszczeń przeci wzakrzepowych. Domieszka heparyny wbudowana jest zarówno w pory materiału jak i w mikropęknięcia powstałe jako defekty równowagowe na etapie tworzenia materiału. Poprawia to istotnie ciągłość powierzchniową struktury materiału, a przez to zabezpiecza przed zaleganiem materiału organicznego w porach i mikropęknięciach i znacząco obniża wykrzepianie.
Wprowadzenie domieszek 4-(difenyloamino)benzaldehydu i 1,3-indandionu powoduje zmniejszenie naprężeń wewnętrznych materiału, co skutkuje lepszą orientacją makrocząsteczek w trakcie procesu przetwórstwa oraz wytwarzania porów, co finalnie obserwuje się jako gładką strukturę zewnętrzną dzięki czemu nie ma mechanicznych sterycznych ognisk powstawania skrzeplin ze względu na jednolitość materiału jak i brak ostrych krawędzi dookoła porów i pęknięć.
Sposób otrzymywania organicznego materiału o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych z dodatkiem heparyny według wynalazku zostanie bliżej objaśniony na podstawie poniższych przykładów.
P r z y k ł a d 1
Do szklanego reaktora w postaci osuszonej okrągłodennej kolby trójszyjnej w atmosferze argonu wprowadza się 50 mL mieszaniny bezwodnego etanolu i kwasu siarkowego (VI) w proporcjach 5 ^ 0,002 i dodaje się 0,2 g 4-(difenyloamino)benzaldehydu oraz 0,01 g 1,3-indandionu. Całość miesza się 5 minut i przemywa argonem przez 10 minut. Następnie podgrzewa się doprowadzając do wrzenia pod chłodnicą zwrotną w atmosferze argonu i miesza intensywnie przy 400 obr./min w czasie 24 godzin. Po uzyskaniu homogennej mieszaniny, układ chłodzi się do temperatury 20°C i poddaje chromatografii kolumnowej w złożu SiO2 i w fazie ruchomej mieszaniny heksanu i chlorku metylenu, w ilości heksanu wynoszącej 0,5-krotność objętości mieszaniny reakcyjnej a chlorku metylenu wynoszącej 0,5-krotność objętości mieszaniny reakcyjnej. Następnie produkt suszy się próżniowo w czasie 24 godzin do stałej masy, po czym rekrystalizuje się z chloroformu, rekrystalizat umieszcza się w homogenizatorze i dodaje się 21 g granulatu PTFE. Układ miesza się do uzyskania jednorodnej mieszaniny i suszy przez 20 godzin w temperaturze 80°C. Materiał wytłacza się na głowicy liniowej w postaci struny o średnicy 3 mm, a po ochłodzeniu w łaźni zawierającej przesycony wodny roztwór heparyny do temperatury 20°C poniżej temperatury przejścia plastycznego, dokonuje się jego rozciągnięcia poprzez cykliczne zwiększanie i zmniejszanie naprężenia rozciągającego w zakresie 60 ^ 90% na kalandrach aż do otrzymania 7-krotnego wydłużenia i wbudowania się heparyny do struktury sterycznej materiału. Proces rozciągania prowadzi się liniowo, zachowując formę struny. W tego typu procesie otrzymuje się stosunek heparyny do bazy na poziomie 1 : 150.
Tak otrzymany materiał na bazie poli(tetrafluoroetylenu) może być stosowany jako filtr do skrzeplin w sprzęcie medycznym lub jako półprzepuszczalna powłoka na zabezpieczenie przeciwdeszczowe o wysokich parametrach odprowadzenia pojedynczych molekuł pary wodnej. Tak otrzymany materiał umożliwia wytworzenie porów rzędu 150 mikrometrów.
P r z y k ł a d 2
Do szklanego reaktora w postaci osuszonej okrągłodennej kolby trójszyjnej w atmosferze ksenonu wprowadza się 50 mL mieszaniny bezwodnego etanolu i kwasu octowego w proporcjach 6 ^ 0,002 i dodaje się 0,7 g 4-(difenyloamino)benzaldehydu oraz 0,01 g 1,3-indandionu. Całość miesza się 3 minuty i przemywa ksenonem przez 30 minut. Następnie podgrzewa się doprowadzając do wrzenia pod chłodnicą zwrotną w atmosferze ksenonu i miesza intensywnie przy 100 obr./min w czasie 30 godzin. Po uzyskaniu homogennej mieszaniny, układ chłodzi się do temperatury 25°C i poddaje chromatografii kolumnowej w złożu SiO2 i w fazie ruchomej mieszaniny heksanu i chlorku metylenu, w ilości heksanu wynoszącej 1-krotność objętości mieszaniny reakcyjnej a chlorku metylenu wynoszącej 1-krotność objętości mieszaniny reakcyjnej. Następnie produkt suszy się próżniowo w czasie 24 godziny do stałej masy, po czym rekrystalizuje się z chloroformu, rekrystalizat umieszcza się w homogenizatorze i dodaje się 45 g granulatu PP. Układ miesza się do uzyskania jednorodnej mieszaniny i suszy przez 20 godzin w temperaturze 100°C. Materiał wytłacza się na głowicy liniowej w postaci struny o średnicy 8 mm, a po ochłodzeniu w łaźni zawierającej przesycony wodny roztwór heparyny do temperatury 10°C
PL 240 234 B1 poniżej temperatury przejścia plastycznego, dokonuje się jego rozciągnięcia poprzez cykliczne zwiększanie i zmniejszanie naprężenia rozciągającego w zakresie 60 ^ 90% na kalandrach aż do otrzymania 10-krotnego wydłużenia i wbudowania się heparyny do struktury sterycznej materiału. Proces rozciągania prowadzi się liniowo, zachowując formę struny. W tego typu procesie otrzymuje się stosunek heparyny do bazy na poziomie 1 : 350.
Tak otrzymany materiał na bazie polipropylenu może być stosowany jako filtr do skrzeplin w sprzęcie medycznym lub jako półprzepuszczalna powłoka na zabezpieczenie przeciwdeszczowe o wysokich parametrach odprowadzenia pojedynczych molekuł pary wodnej. Tak otrzymany materiał umożliwia wytworzenie porów rzędu 30 mikrometrów.
P r z y k ł a d 3
Do osuszonego ceramicznego reaktora w atmosferze argonu wprowadza się 50 mL mieszaniny bezwodnego etanolu i kwasu chlorowodorowego w proporcjach 5 ^ 0,002 i dodaje się 0,2 g 4-(difenyloamino)benzaldehydu oraz 0,08 g 1,3-indandionu. Całość miesza się 2 minuty i przemywa argonem przez 60 minut. Następnie podgrzewa się doprowadzając do wrzenia pod chłodnicą zwrotną w atmosferze argonu i miesza intensywnie przy 1000 obr./min w czasie 24 godzin. Po uzyskaniu homogennej mieszaniny, układ chłodzi się do temperatury 30°C i poddaje chromatografii kolumnowej w złożu SO2 i w fazie ruchomej mieszaniny heksanu i chlorku metylenu, w ilości heksanu wynoszącej 2-krotność objętości mieszaniny reakcyjnej a chlorku metylenu wynoszącej 2-krotność objętości mieszaniny reakcyjnej. Następnie produkt suszy się próżniowo w czasie 24 godzin do stałej masy, po czym rekrystalizuje się z chloroformu, rekrystalizat umieszcza się w homogenizatorze i dodaje się 28 g granulatu PU. Układ miesza się do uzyskania jednorodnej mieszaniny i suszy przez 24 godziny w temperaturze 110°C. Materiał wytłacza się na głowicy płaskiej w postaci folii o grubości 0,1 mm, a po ochłodzeniu w łaźni zawierającej przesycony wodny roztwór heparyny do temperatury 30°C poniżej temperatury przejścia plastycznego, dokonuje się jego rozciągnięcia poprzez cykliczne zwiększanie i zmniejszanie naprężenia rozciągającego w zakresie 60 ^ 90% na kalandrach aż do otrzymania 15-krotnego wydłużenia i wbudowania się heparyny do struktury sterycznej materiału. Proces rozciągania prowadzi się w dwóch kierunkach, otrzymując folię. W tego typu procesie otrzymuje się stosunek heparyny do bazy na poziomie 1 : 150.
Tak otrzymany materiał na bazie poliuretanu może być stosowany jako filtr do skrzeplin w sprzęcie medycznym ze względu na dużą biokompatybilność lub jako półprzepuszczalna powłoka na zabezpieczenie przeciwdeszczowe o wysokich parametrach odprowadzenia pojedynczych molekuł pary wodnej lub jako materiał oddychający mający kontakt ze skórą na przykład do wytwarzania: plastrów, plastrów do kinesiotapingu, ortopedycznych wkładek itp. Otrzymane w materiale pory charakteryzują się wielkością od 1 nanometra do 150 mikrometrów. Układy posiadające wielkość porów pomiędzy 75 a 150 mikrometrów idealnie nadają się do hodowli komórek skórnych. Układy posiadające pory rzędu nanometrów mogą być wykorzystywane do tworzenia membran gazo-przepuszczalnych, na przykład w procesie utlenowania krwi i oksygenacji.
P r z y k ł a d 4
Do szklanego reaktora w postaci osuszonej okrągłodennej kolby trójszyjnej w atmosferze argonu wprowadza się 50 mL mieszaniny bezwodnego etanolu i kwasu siarkowego (VI) w proporcjach 2 ^ 0,002 i dodaje się 0,2 g 4-(difenyloamino)benzaldehydu oraz 0,01 g 1,3-indandionu. Całość miesza się 3 minuty i przemywa argonem przez 10 minut. Następnie podgrzewa się doprowadzając do wrzenia pod chłodnicą zwrotną w atmosferze argonu i miesza intensywnie przy 500 obr./min w czasie 24 godzin. Po uzyskaniu homogennej mieszaniny, układ chłodzi się do temperatury 25°C i poddaje chromatografii kolumnowej w złożu SiO2 i w fazie ruchomej mieszaniny heksanu i chlorku metylenu, w ilości heksanu wynoszącej 1,5-krotność objętości mieszaniny reakcyjnej a chlorku metylenu wynoszącej 1,5-krotność objętości mieszaniny reakcyjnej. Następnie produkt suszy się próżniowo w czasie 24 godzin do stałej masy, po czym rekrystalizuje się z chloroformu, rekrystalizat umieszcza się w homogenizatorze i dodaje się 50 g kruszywa PET. Układ miesza się do uzyskania jednorodnej mieszaniny i suszy przez 20 godzin w temperaturze 80°C. Materiał wytłacza się na głowicy płaskiej w postaci folii o grubości 1 mm, a po ochłodzeniu w łaźni zawierającej przesycony wodny roztwór heparyny do temperatury 30°C poniżej temperatury przejścia plastycznego, dokonuje się jego rozciągnięcia poprzez cykliczne zwiększanie i zmniejszanie naprężenia rozciągającego w zakresie 60 ^ 90% na kalandrach aż do otrzymania 10-krotnego wydłużenia i wbudowania się heparyny do struktury sterycznej materiału. Proces rozciągania prowadzi się w dwóch kierunkach, otrzymując folię. W tego typu procesie otrzymuje się stosunek heparyny do bazy na poziomie 1 : 150.
PL 240 234 B1
Tak otrzymany materiał na bazie politereftalanu etylenu może być stosowany jako filtr do skrzeplin w sprzęcie medycznym lub jako półprzepuszczalna powłoka na zabezpieczenie przeciwdeszczowe o wysokich parametrach odprowadzenia pojedynczych molekuł pary wodnej. Tak otrzymany materiał umożliwia wytworzenie porów rzędu 150 mikrometrów.
P r z y k ł a d 5
Do osuszonego reaktora ze stali nierdzewnej w atmosferze ksenonu wprowadza się 50 mL mieszaniny bezwodnego etanolu i kwasu octowego w proporcjach 7 ^ 0,002 i dodaje się 0,7 g 4-(difenyloamino)benzaldehydu oraz 0,01 g 1,3-indandionu. Całość miesza się 4 minuty i przemywa ksenonem przez 30 minut. Następnie podgrzewa się doprowadzając do wrzenia pod chłodnicą zwrotną w atmosferze ksenonu i miesza intensywnie przy 750 obr./min w czasie 30 godzin. Po uzyskaniu homogennej mieszaniny, układ chłodzi się do temperatury 25°C i poddaje chromatografii kolumnowej w złożu SO2 i w fazie ruchomej mieszaniny heksanu i chlorku metylenu, w ilości heksanu wynoszącej 1-krotność objętości mieszaniny reakcyjnej a chlorku metylenu wynoszącej 1-krotność objętości mieszaniny reakcyjnej. Następnie produkt suszy się próżniowo w czasie 24 godzin do stałej masy, po czym rekrystalizuje się z chloroformu, rekrystalizat umieszcza się w homogenizatorze i dodaje się 40 g kruszywa PC. Układ miesza się do uzyskania jednorodnej mieszaniny i suszy przez 20 godzin w temperaturze 100°C. Materiał wytłacza się na głowicy liniowej w postaci struny o średnicy 8 mm, a po ochłodzeniu w łaźni zawierającej przesycony wodny roztwór heparyny do temperatury 20°C poniżej temperatury przejścia plastycznego, dokonuje się jego rozciągnięcia poprzez cykliczne zwiększanie i zmniejszanie naprężenia rozciągającego w zakresie 60 ^ 90% na kalandrach aż do otrzymania 10-krotnego wydłużenia i wbudowania się heparyny do struktury sterycznej materiału. Proces rozciągania prowadzi się liniowo, zachowując formę struny. W tego typu procesie otrzymuje się stosunek heparyny do bazy na poziomie 1 : 150.
Tak otrzymany materiał na bazie poliwęglanu może być stosowany jako filtr do wody lub jako półprzepuszczalna powłoka na zabezpieczenie przeciwdeszczowe o wysokich parametrach odprowadzenia pojedynczych molekuł pary wodnej. Otrzymane w materiale pory charakteryzują się wielkością od 1 do 300 mikrometrów.
P r z y k ł a d 6
Do szklanego reaktora w postaci osuszonej okrągłodennej kolby trójszyjnej w atmosferze argonu wprowadza się 50 mL mieszaniny bezwodnego etanolu i kwasu chlorowodorowego w proporcjach 5 ^ 0,002 i dodaje się 0,2 g 4-(difenyloamino)benzaldehydu oraz 0,08 g 1,3-indandionu. Całość miesza się 5 minut i przemywa argonem przez 60 minut. Następnie podgrzewa się doprowadzając do wrzenia pod chłodnicą zwrotną w atmosferze argonu i miesza intensywnie przy 450 obr./min w czasie 24 godzin. Po uzyskaniu homogennej mieszaniny, układ chłodzi się do temperatury 30°C i poddaje chromatografii kolumnowej w złożu SiO2 i w fazie ruchomej mieszaniny heksanu i chlorku metylenu, w ilości heksanu wynoszącej 2-krotność objętości mieszaniny reakcyjnej a chlorku metylenu wynoszącej 2-krotność objętości mieszaniny reakcyjnej. Następnie produkt suszy się próżniowo w czasie 24 godzin do stałej masy, po czym rekrystalizuje się z chloroformu, rekrystalizat umieszcza się w homogenizatorze i dodaje się 28 g granulatu POM. Układ miesza się do uzyskania jednorodnej mieszaniny i suszy przez 24 godziny w temperaturze 110°C. Materiał wytłacza się na głowicy liniowej w postaci struny o średnicy 2 mm, a po ochłodzeniu w łaźni zawierającej przesycony wodny roztwór heparyny do temperatury 30°C poniżej temperatury przejścia plastycznego, dokonuje się jego rozciągnięcia poprzez cykliczne zwiększanie i zmniejszanie naprężenia rozciągającego w zakresie 60 ^ 90% na kalandrach aż do otrzymania 15-krotnego wydłużenia i wbudowania się heparyny do struktury sterycznej materiału. Proces rozciągania prowadzi się liniowo, zachowując formę struny. W tego typu procesie otrzymuje się stosunek heparyny do bazy na poziomie 1 : 350.
Tak otrzymany materiał na bazie polioksymetylenu może być stosowany jako filtr do skrzeplin w sprzęcie medycznym ze względu na dużą biokompatybilność. Otrzymane pory charakteryzują się wielkością od 1 nanometra do 300 mikrometrów. Układy posiadające wielkość porów pomiędzy 75 a 150 mikrometrów idealnie nadają się do hodowli komórek. Układy posiadające pory rzędu nanometrów mogą być wykorzystywane do tworzenia membran gazo-przepuszczalnych na przykład w procesie utlenowania krwi i oksygenacji.
P r z y k ł a d 7
Do osuszonego reaktora ze stali nierdzewnej w atmosferze argonu wprowadza się 50 mL mieszaniny bezwodnego etanolu i kwasu siarkowego (VI) w proporcjach 5 ^ 0,002 i dodaje się 0,2 g 4-(difenyloamino)benzaldehydu oraz 0,01 g 1,3-indandionu. Całość miesza się 6 minut i przemywa argonem
PL 240 234 B1 przez 10 minut. Następnie podgrzewa się doprowadzając do wrzenia pod chłodnicą zwrotną w atmosferze argonu i miesza intensywnie przy 400 obr./min w czasie 24 godzin. Po uzyskaniu homogennej mieszaniny, układ chłodzi się do temperatury 30°C i poddaje chromatografii kolumnowej w złożu SO2 i w fazie ruchomej mieszaniny heksanu i chlorku metylenu, w ilości heksanu wynoszącej 0,5-krotność objętości mieszaniny reakcyjnej a chlorku metylenu wynoszącej 0,5-krotność objętości mieszaniny reakcyjnej. Następnie produkt suszy się próżniowo w czasie 24 godzin do stałej masy, po czym rekrystalizuje się z chloroformu, rekrystalizat umieszcza się w homogenizatorze i dodaje się 21 g przemiału PSU. Układ miesza się do uzyskania jednorodnej mieszaniny i suszy przez 20 godzin w temperaturze 80°C. Materiał wytłacza się na głowicy liniowej w postaci struny o średnicy 3 mm, a po ochłodzeniu w łaźni zawierającej przesycony wodny roztwór heparyny do temperatury 20°C poniżej temperatury przejścia plastycznego, dokonuje się jego rozciągnięcia poprzez cykliczne zwiększanie i zmniejszanie naprężenia rozciągającego w zakresie 60 ^ 90% na kalandrach aż do otrzymania 10-krotnego wydłużenia i wbudowania się heparyny do struktury sterycznej materiału. Proces rozciągania prowadzi się liniowo, zachowując formę struny. W tego typu procesie otrzymuje się stosunek heparyny do bazy na poziomie 1 : 250.
Tak otrzymany materiał na bazie polisulfonu może być stosowany jako filtr do skrzeplin w sprzęcie medycznym ze względu na dużą biokompatybilność. Otrzymane pory charakteryzują się wielkością od 1 nanometra do 300 mikrometrów. Układy posiadające wielkość porów pomiędzy 75 a 150 mikrometrów idealnie nadają się do hodowli komórek. Układy posiadające pory rzędu nanometrów mogą być wykorzystywane do tworzenia membran gazo-przepuszczalnych na przykład w procesie utlenowania krwi i oksygenacji
P r z y k ł a d 8
Do osuszonej okrągłodennej kolby trójszyjnej w atmosferze azotu wprowadza się 50 mL mieszaniny bezwodnego etanolu i kwasu octowego w proporcjach 5 ^ 0,002 i dodaje się 0,7 g 4-(difenyloamino)benzaldehydu oraz 0,01 g 1,3-indandionu. Całość miesza się 8 minut i przemywa azotem przez 30 minut. Następnie podgrzewa się doprowadzając do wrzenia pod chłodnicą zwrotną w atmosferze azotu i miesza intensywnie przy 350 obr./min w czasie 30 godzin. Po uzyskaniu homogennej mieszaniny, układ chłodzi się do temperatury 25°C i poddaje chromatografii kolumnowej w złożu SO2 i w fazie ruchomej mieszaniny heksanu i chlorku metylenu, w ilości heksanu wynoszącej 1-krotność objętości mieszaniny reakcyjnej a chlorku metylenu wynoszącej 1-krotność objętości mieszaniny reakcyjnej. Następnie produkt suszy się próżniowo w czasie 24 godzin do stałej masy, po czym rekrystalizuje się z chloroformu, rekrystalizat umieszcza się w homogenizatorze i dodaje się 35 g przemiału PVDF. Układ miesza się do uzyskania jednorodnej mieszaniny i suszy przez 20 godzin w temperaturze 100°C. Materiał wytłacza się na głowicy liniowej w postaci struny o średnicy 2 mm, a po ochłodzeniu w łaźni zawierającej przesycony wodny roztwór heparyny do temperatury 25°C poniżej temperatury przejścia plastycznego, dokonuje się jego rozciągnięcia poprzez cykliczne zwiększanie i zmniejszanie naprężenia rozciągającego w zakresie 60 ^ 90% na kalandrach aż do otrzymania 20-krotnego wydłużenia i wbudowania się heparyny do struktury sterycznej materiału. Proces rozciągania prowadzi się liniowo, zachowując formę struny. W tego typu procesie otrzymuje się stosunek heparyny do bazy na poziomie 1 : 80.
Tak otrzymany materiał na bazie PVDF może być stosowany jako filtr do skrzeplin w sprzęcie medycznym ze względu na dużą biokompatybilność lub jako półprzepuszczalna powłoka na zabezpieczenie przeciwdeszczowe o wysokich parametrach odprowadzenia pojedynczych molekuł pary wodnej lub jako materiał oddychający mający kontakt ze skórą na przykład do wytwarzania: plastrów, plastrów do kinesiotapingu, ortopedycznych wkładek itp. Otrzymane pory charakteryzują się wielkością od 1 nanometra do 150 mikrometrów. Układy posiadające wielkość porów pomiędzy 75 a 150 mikrometrów idealnie nadają się do hodowli komórek skórnych. Układy posiadające pory rzędu nanometrów mogą być wykorzystywane do tworzenia membran gazo-przepuszczalnych na przykład w procesie utlenowania krwi i oksygenacji.
P r z y k ł a d 9
Do osuszonej okrągłodennej kolby trójszyjnej w atmosferze azotu wprowadza się 50 mL mieszaniny bezwodnego etanolu i kwasu chlorowodorowego w proporcjach 4 ^ 0,002 i dodaje się 0,2 g 4-(difenyloamino)benzaldehydu oraz 0,08 g 1,3-indandionu. Całość miesza się 1 minutę i przemywa azotem przez 60 minut. Następnie podgrzewa się doprowadzając do wrzenia pod chłodnicą zwrotną w atmosferze azotu i miesza intensywnie przy 450 obr./min w czasie 24 godzin. Po uzyskaniu homogennej mieszaniny, układ chłodzi się do temperatury 30°C i poddaje chromatografii kolumnowej w złożu SO2 i w fazie ruchomej mieszaniny heksanu i chlorku metylenu, w ilości heksanu wynoszącej 2-krotność objętości

Claims (8)

  1. PL 240 234 B1 mieszaniny reakcyjnej a chlorku metylenu wynoszącej 2-krotność objętości mieszaniny reakcyjnej. Następnie produkt suszy się próżniowo w czasie 24 godzin do stałej masy, po czym rekrystalizuje się z chloroformu, rekrystalizat umieszcza się w homogenizatorze i dodaje się 28 g granulatu FEP. Układ miesza się do uzyskania jednorodnej mieszaniny i suszy przez 24 godziny w temperaturze 110°C. Materiał wytłacza się na głowicy krzyżowej w postaci rurki o średnicy zewnętrznej 10 mm, a po ochłodzeniu w łaźni zawierającej przesycony wodny roztwór heparyny do temperatury 30°C poniżej temperatury przejścia plastycznego, dokonuje się jego rozciągnięcia w kalandrach aż do otrzymania 5-krotnego wydłużenia i wbudowania się heparyny do struktury sterycznej materiału. W tego typu procesie otrzymuje się stosunek heparyny do bazy na poziomie 1 : 1200.
    Tak otrzymany materiał na bazie FEP może być stosowany jako filtr do skrzeplin w sprzęcie medycznym ze względu na dużą biokompatybilność lub jako półprzepuszczalna powłoka na zabezpieczenie przeciwdeszczowe o wysokich parametrach odprowadzenia pojedynczych molekuł pary wodnej lub jako materiał oddychający mający kontakt ze skórą na przykład do wytwarzania: plastrów, plastrów do kinesiotapingu, ortopedycznych wkładek itp. Otrzymane pory charakteryzują się wielkością od 1 nanometra do 150 mikrometrów. Układy posiadające wielkość porów pomiędzy 75 a 150 mikrometrów idealnie nadają się do hodowli komórek skórnych. Układy posiadające pory rzędu nanometrów mogą być wykorzystywane do tworzenia membran gazo-przepuszczalnych na przykład w procesie utlenowania krwi i oksygenacji.
    Sposób według wynalazku pozwala otrzymać materiał o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych, przeznaczony zwłaszcza do budowy aparatury medycznej, w szczególności do budowy podzespołów mających bezpośredni styk z krwią. Rozwiązanie może między innymi znaleźć zastosowanie do otrzymywania membran do utlenowania krwi oraz innych membran gazoselektywnych.
    Zastrzeżenia patentowe
    1. Organiczny materiał o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych znamienny tym, że składa się z:
    - bazy w postaci polipropylenu (PP) lub poliuretanu (PU) lub poli(tereftalanu etylenu) (PET) lub poliwęglanu (PC) lub polioksymetylenu (POM) lub polisulfonu (PSU) lub silikonu lub polimeru fluorowego, korzystnie poli(tetrafluoroetylenu) (PTFE) lub polifluorku winylidenu (PVDF) lub kopolimeru tetrafluoroetylenu i heksafluoropropylenu (FEP),
    - domieszki 4-(difenyloamino)benzaldehydu, w proporcji baza-domieszka od 50 ^ 1 do 5000 ^ 1, korzystnie 100 ^ 1,
    - domieszki 1,3-indandionu w proporcji baza-domieszka od 50 ^ 1 do 5000 ^ 1, korzystnie 100 * 1, oraz
    - domieszki heparyny wbudowanej w mikrostrukturę materiału bazowego, w proporcji baza-domieszka od 80 * 1 do 1200 * 1, korzystnie 150 * 1.
  2. 2. Sposób otrzymywania organicznego materiału o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych znamienny tym, że do reaktora z materiału niereaktywnego, wprowadza się w atmosferze gazu inertnego (obojętnego) rozpuszczalnik polarny oraz kwas wybrany spośród: kwas siarkowy VI, kwas chlorowodorowy lub kwas octowy, w proporcjach od 2 ^ 0,002 do 7 ^ 0,002, korzystnie 5 ^ 0,002, a następnie na 50 mL tak powstałej mieszaniny dodaje się 4-(difenyloamino)benzaldehyd w ilości od 0,2 g do 0,7 g oraz 1,3-indandion w ilości od 0,01 g do 0,08 g i miesza do uzyskania jednorodnej mieszaniny nie krócej niż 1 minutę, po czym zawiesinę przemywa się gazem inertnym przez czas co najmniej 5 minut, korzystnie nie dłużej niż 60 minut, podgrzewa doprowadzając do wrzenia pod chłodnicą zwrotną w atmosferze gazu inertnego i miesza intensywnie przy 100-1000 obr./min, korzystnie 350-450 obr./min w czasie co najmniej 18 godzin, korzystnie nie dłużej niż 30 godzin, a po procesie mieszania powstałą mieszaninę chłodzi się do temperatury od 20 do 35°C i poddaje chromatografii kolumnowej w złożu SO2 i w fazie ruchomej mieszaniny heksanu i chlorku metylenu, w ilości heksanu od 0,5 do 2-krotności objętości mieszaniny, a chlorku metylenu od 0,5 do 2-krotności objętości mieszaniny reakcyjnej, następnie suszy się próżniowo w czasie co najmniej 20 godzin, korzystnie 24 godzin do stałej masy, po czym rekrystalizuje się z chloroformu, po czym produkt po rekrystalizacji z chloroformu (rekrystalizat) umieszcza się w homogenizatorze i wprowadza bazę w postaci: polipropylenu (PP) lub poliuretanu (PU),
    PL 240 234 B1 lub politereftalanu etylenu (PET), lub poliwęglanu (PC), lub polioksymetylenu (POM), lub polisulfonu (PSU), lub silikonu, lub polimeru fluorowego, korzystnie poli(tetrafluoroetylenu) (PTFE) lub polifluorku winylidenu (PVDF), lub kopolimeru tetrafluoroetylenu i heksafluoropropylenu (FEP), w proporcji baza-rekrystalizat od 50 ^ 2 do 5000 ^ 2, korzystnie 100 ^ 2, a następnie miesza aż do uzyskania jednorodnej mieszaniny i suszy przez czas co najmniej 20 godzin w temperaturze 80-110°C, po czym materiał wytłacza się na głowicy liniowej w postaci struny, korzystnie o średnicy zewnętrznej od 2 do 10 mm, lub na głowicy krzyżowej w postaci rurki, korzystnie o średnicy zewnętrznej od 2 do 10 mm, lub na głowicy płaskiej w postaci folii, korzystnie o grubości 0,1 do 3 mm, a w kolejnym etapie przeprowadza się proces immobilizacji heparyny do struktury sterycznej tak otrzymanego materiału w sposób zapewniający jej zawartość w materiale w proporcji baza-heparyna od 80 ^ 1 do 1200 ^ 1, korzystnie 150 ^ 1, w taki sposób, że po wstępnym ochłodzeniu w łaźni zawierającej przesycony wodny roztwór heparyny do temperatury ±30°C od temperatury przejścia plastycznego, korzystnie poniżej temperatury przejścia plastycznego, wytwarza się w materiale mikropory poprzez jego rozciągnięcie na kalandrach, tak aby otrzymać wydłużenie od 5 do 20-krotne, korzystnie 10-krotne, przy czym w wariancie z wytłoczoną struną proces jej rozciągania prowadzi się liniowo - zachowując formę struny lub w dwóch kierunkach - tworząc ze struny płaską folię.
  3. 3. Sposób według zastrz. 2 znamienny tym, że prowadzi się go w reaktorze ze szkła lub ceramiki, lub stali nierdzewnej.
  4. 4. Sposób według zastrz. 2 znamienny tym, że prowadzi się go w reaktorze w postaci okrągłodennej kolby trójszyjnej.
  5. 5. Sposób według zastrz. 2 znamienny tym, że jako gaz inertny stosuje się argon albo azot, albo ksenon.
  6. 6. Sposób według zastrz. 2 znamienny tym, że jako rozpuszczalnik polarny stosuje się bezwodny etanol.
  7. 7. Sposób według zastrz. 2 znamienny tym, że materiał stanowiący bazę dodaje się w postaci przemiału albo kruszywa, albo najkorzystniej granulatu.
  8. 8. Sposób według zastrz. 2 znamienny tym, że na etapie kalandrowania podczas immobilizacji czynnika aktywnego w postaci heparyny stosuje się cykliczne zmniejszanie i zwiększanie naprężenia, co zwiększa skuteczność immobilizacji heparyny w porach materiału.
PL436106A 2020-11-27 2020-11-27 Organiczny materiał o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych oraz sposób jego otrzymywania PL240234B1 (pl)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PL436106A PL240234B1 (pl) 2020-11-27 2020-11-27 Organiczny materiał o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych oraz sposób jego otrzymywania
PCT/IB2021/061010 WO2022113015A1 (en) 2020-11-27 2021-11-26 Organic material with pore-forming, anti-inflammatory and anticoagulant properties and the method of its preparation
EP21897295.8A EP4251695A1 (en) 2020-11-27 2021-11-26 Organic material with pore-forming, anti-inflammatory and anticoagulant properties and the method of its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PL436106A PL240234B1 (pl) 2020-11-27 2020-11-27 Organiczny materiał o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych oraz sposób jego otrzymywania

Publications (2)

Publication Number Publication Date
PL436106A1 PL436106A1 (pl) 2021-07-05
PL240234B1 true PL240234B1 (pl) 2022-03-07

Family

ID=76689697

Family Applications (1)

Application Number Title Priority Date Filing Date
PL436106A PL240234B1 (pl) 2020-11-27 2020-11-27 Organiczny materiał o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych oraz sposób jego otrzymywania

Country Status (1)

Country Link
PL (1) PL240234B1 (pl)

Also Published As

Publication number Publication date
PL436106A1 (pl) 2021-07-05

Similar Documents

Publication Publication Date Title
Gao et al. Preparation and evaluation of heparin-immobilized poly (lactic acid)(PLA) membrane for hemodialysis
US5202025A (en) Porous membrane and method for preparing the same
US5028332A (en) Hydrophilic material and method of manufacturing
US7151120B2 (en) Degradable porous materials with high surface areas
JP2017196613A (ja) 透析膜およびその製造方法
Liu et al. BSA-modified polyethersulfone membrane: preparation, characterization and biocompatibility
Zhao et al. Highly hemo-compatible, mechanically strong, and conductive dual cross-linked polymer hydrogels
Goushki et al. Free radical graft polymerization of 2-hydroxyethyl methacrylate and acrylic acid on the polysulfone membrane surface through circulation of reaction media to improve its performance and hemocompatibility properties
Lin et al. Immobilization of heparin on PVDF membranes with microporous structures
He et al. Membranes for extracorporeal membrane oxygenator (ECMO): History, preparation, modification and mass transfer
PL240234B1 (pl) Organiczny materiał o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych oraz sposób jego otrzymywania
PL240233B1 (pl) Organiczny materiał o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych oraz sposób jego otrzymywania
PL240231B1 (pl) Organiczny materiał o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych oraz sposób jego otrzymywania
PL240232B1 (pl) Organiczny materiał o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych oraz sposób jego otrzymywania
US6979700B2 (en) Non-degradable porous materials with high surface areas
PL243070B1 (pl) Organiczny materiał o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych oraz sposób jego otrzymywania
PL240909B1 (pl) Sposób otrzymywania organicznego materiału o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych
PL240908B1 (pl) Sposób otrzymywania organicznego materiału o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych
WO2022113015A1 (en) Organic material with pore-forming, anti-inflammatory and anticoagulant properties and the method of its preparation
PL240886B1 (pl) Sposób otrzymywania organicznego materiału o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych
PL242862B1 (pl) Sposób otrzymywania organicznego materiału o właściwościach porotwórczych
PL240942B1 (pl) Membrana z organicznego materiału o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych oraz sposób jej otrzymywania
PL240235B1 (pl) Membrana z organicznego materiału o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych oraz sposób jej otrzymywania
PL242956B1 (pl) Sposób otrzymywania membrany z organicznego materiału o właściwościach porotwórczych
PL240887B1 (pl) Sposób otrzymywania organicznego materiału o właściwościach porotwórczych, przeciwzapalnych i przeciwkrzepliwych