PL237328B1 - 6-O-β-D-(4’’-O-metyloglukopiranozylo)-flawon i sposób wytwarzania 6-O-β-D-(4’’-O-metyloglukopiranozylo)-flawonu - Google Patents

6-O-β-D-(4’’-O-metyloglukopiranozylo)-flawon i sposób wytwarzania 6-O-β-D-(4’’-O-metyloglukopiranozylo)-flawonu Download PDF

Info

Publication number
PL237328B1
PL237328B1 PL424950A PL42495018A PL237328B1 PL 237328 B1 PL237328 B1 PL 237328B1 PL 424950 A PL424950 A PL 424950A PL 42495018 A PL42495018 A PL 42495018A PL 237328 B1 PL237328 B1 PL 237328B1
Authority
PL
Poland
Prior art keywords
flavone
methylglucopyranosyl
hours
formula
water
Prior art date
Application number
PL424950A
Other languages
English (en)
Other versions
PL424950A1 (pl
Inventor
Monika Dymarska
Edyta Kostrzewa-Susłow
Tomasz Janeczko
Original Assignee
Wrocław University Of Environmental And Life Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wrocław University Of Environmental And Life Sciences filed Critical Wrocław University Of Environmental And Life Sciences
Priority to PL424950A priority Critical patent/PL237328B1/pl
Publication of PL424950A1 publication Critical patent/PL424950A1/pl
Publication of PL237328B1 publication Critical patent/PL237328B1/pl

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • C07D311/26Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3
    • C07D311/28Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only
    • C07D311/30Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only not hydrogenated in the hetero ring, e.g. flavones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • C07H17/06Benzopyran radicals
    • C07H17/065Benzo[b]pyrans
    • C07H17/07Benzo[b]pyran-4-ones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • C12P19/60Preparation of O-glycosides, e.g. glucosides having an oxygen of the saccharide radical directly bound to a non-saccharide heterocyclic ring or a condensed ring system containing a non-saccharide heterocyclic ring, e.g. coumermycin, novobiocin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Abstract

Przedmiotem zgłoszenia jest związek o nazwie: 6-O-ß-D-(4-O-metyloglukopiranozylo)-flawon o wzorze 2 oraz sposób otrzymywania tego związku. Sposób ten polega na tym, że do podłoża odpowiedniego dla grzybów strzępkowych wprowadza się szczep Isaria fumosorosea KCH J2. Po upływie co najmniej 72 godzin do hodowli wprowadza się substrat, którym jest 6-hydroksyflawon o wzorze 1, rozpuszczony w rozpuszczalniku organicznym mieszającym się z wodą. Transformację prowadzi się w temperaturze od 20 do 30 stopni Celsjusza, przy ciągłym wstrząsaniu co najmniej 96 godzin. Kolejno produkt ekstrahuje się rozpuszczalnikiem organicznym niemieszającym się z wodą i oczyszcza chromatograficznie."

Description

Przedmiotem wynalazku jest 6-O-^-D-(4”-O-metyloglukopiranozylo)-flawon i sposób wytwarzania 6-O-^-D-(4-O-metyloglukopiranozylo)-flawonu o wzorze 2, przedstawionym na rysunku.
Związek ten może znaleźć zastosowanie jako antyoksydant w przemyśle spożywczym oraz jako składnik środków farmaceutycznych i kosmetycznych, a także dodatek do pasz.
6-Hydroksyflawon jest związkiem występującym w naturze w roślinach z gatunku Barleria prionitis należącego do rodziny Acanthaceae. Rośliny te używane są w tradycyjnej medycynie indyjskiej w terapii chorób neurologicznych, takich jak paraplegia i rwa kulszowa. 6-Hydroksyflawon posiada zdolność do wiązania się z receptorami GABAa będąc dla nich selektywnym agonistą. Powyższa właściwość sprawia, że związek ten wykazuje działanie przeciwlękowe (Ren L, W ang F, Xu Z, Chan WM, Zhao C, Xue H. GABAA receptor subtype selectivity underlying anxiolytic effect of 6-hydroxyflavone. Biochem Pharmacol. 2010, 79(9), 1337-44). 6-Hydroksyflawon wykazywał silne działanie przeciwzapalne w badaniach in vitro na mezangiocytach i może znaleźć zastosowanie jako naturalny środek do zapobiegania i leczenia zapalenia nerek (Wang X, Wang Z, Sidhu PS, Desai UR, Zhou Q. 6-Hydroxyflavone and Derivatives Exhibit Potent Anti-Inflammatory Activity Among Mono-, Di- and Polyhydroxylated Flavones in Kidney Mesangial Cells. PLoS One. 2015, 10(3), 1-11).
Flawonoidy w roślinach występują wyłącznie w połączeniu z jednostkami cukrowymi. Glikozylacja skutkuje wzrostem rozpuszczalności cząsteczki flawonoidu w wodzie i wzrostem jego stabilności. Dzięki temu zwiększa się przyswajalność przyjmowanych z pokarmem związków (J. Xiao, T.S. Muzashvili, M.l. Georgiev, Biotechnology Advances, 2014, 32, 1145-1156, Plaza, M.; Pozzo, T; Liu, J.; Gulshan Ara, K. Z.; Turner, C.; Nordberg Karlsson, E. Substituent effects on in vitro antioxidizing properties, stability, and solubility in flavonoids. J. Agric. Food Chem. 2014, 62, 3321-3333).
Uważa się, że glikozydy flawonoidowe przed absorpcją w układzie pokarmowym muszą zostać poddane hydrolizie przez mikroflorę jelitową do odpowiednich aglikonów. Dowiedziono jednak, że częściowa absorpcja połączeń cukrowych flawonoidów również jest możliwa.
Cząsteczka glukozy przyłączona w pozycji 3 kwercetyny (3,5,7,3’,4’-pentahydroksyflawon) zwiększała absorpcję tego glukozydu w jelicie cienkim do 52%, w porównaniu z 24% absorpcją aglikonu kwercetyny i 17% rutynozydu kwercetyny (Heim, K. E.; Tagliaferro, A. R.; Bobilya, D. J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572584, Hollman, P. C.; Bijsman, M. N.; van Gameren, Y.; Cnossen, E. P.; de Vries, J. H.; Katan, M. B. The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radic. Res. 1999, 31, 569-573).
W dostępnej literaturze brak jest informacji na temat otrzymywania 6-O-^-D-(4- O-metyloglukopiranozylo)-flawonu na drodze syntezy chemicznej i biotransformacji.
W ostatnich latach w leczeniu i prewencji chorób coraz większe znaczenie zyskują związki pochodzenia naturalnego i ich odpowiedniki uzyskane na drodze biotransformacji. Dlatego istotne jest poszukiwanie nowych sposobów wytwarzania związków aktywnych biologicznie, które mogą być wykorzystane w przemyśle farmaceutycznym, ale też kosmetycznym i spożywczym.
Istotą wynalazku jest 6-O-^-D-(4”-O-metyloglukopiranozylo)-flawon.
Istota otrzymywania 6-O-^-D-(4”-O-metyloglukopiranozylo)-flawonu polega na tym, że do podłoża odpowiedniego dla grzybów strzępkowych wprowadza się szczep Isaria fumosorosea KCH J2. Po upływie co najmniej 72 godzin do hodowli wprowadza się substrat, którym jest 6-hydroksyflawon o wzorze 1, rozpuszczony w rozpuszczalniku organicznym mieszającym się z wodą. Transformację prowadzi się w temperaturze od 20 do 30 stopni Celsjusza, przy ciągłym wstrząsaniu co najmniej 96 godzin. Kolejno produkt ekstrahuje się rozpuszczalnikiem organicznym niemieszającym się z wodą i oczyszcza chromatograficznie.
Korzystnie jest, gdy stosunek masy dodawanego substratu do objętości hodowli wynosi 0,1 mg : 1 mL.
Korzystnie także jest, gdy proces prowadzi się w temperaturze 25 stopni Celsjusza.
Dodatkowo, korzystnie jest, gdy transformację prowadzi się przez 120 godzin.
Postępując zgodnie z wynalazkiem, w wyniku działania układu enzymatycznego zawartego w komórkach szczepu Isaria fumosorosea KCH J2, następuje przyłączenie 4-metoksy-^-D-glukozy przy C-6. Uzyskany w ten sposób produkt wydziela się z wodnej kultury mikroorganizmu, znanym sposobem, przez ekstrakcję rozpuszczalnikiem organicznym niemieszającym się z wodą (octan etylu).
PL 237 328 Β1
Zasadniczą zaletą wynalazku jest otrzymanie 6-O-/?-D-(4”-O-metyloglukopiranozylo)-flawonu w temperaturze pokojowej i przy pH naturalnym dla szczepu wykorzystując mikroorganizm niebędący patogenem ludzkim.
Wykorzystanie biotransformacji, zamiast syntezy chemicznej, umożliwia, w sposób przyjazny dla środowiska, uzyskanie związków o wyższej biodostępności i aktywności biologicznej, niż użyte substraty (E. Kostrzewa-Susłow, J. Dmochowska-Gładysz, J. Oszmiański, Journal of Molecular Catalysis B: Enzymatic, 2007, 49 (1-4), 113-117, W. A. Loughlin, Bioresource Technology, 2000, 74, 49-62).
Wynalazek jest bliżej objaśniony na przykładzie wykonania.
Przykład. Do kolby Erlenmajera o pojemności 2000 cm3, w której znajduje się 500 cm3 sterylnej pożywki zawierającej 10 g aminobaku i 30 g glukozy, wprowadza się szczep Isaria fumosorosea KCH J2 ujawniony w zgłoszeniu patentowym o numerze P.416996. Po 96 godzinach jego wzrostu dodaje się 50 mg 6-hydroksyflawonu o wzorze 1, rozpuszczonego w 1 cm3 tetrahydrofuranu. Transformację prowadzi się w 25 stopniach Celsjusza przy ciągłym wstrząsaniu przez 5 dni. Następnie mieszaninę poreakcyjną ekstrahuje się trzykrotnie octanem etylu, osusza bezwodnym siarczanem magnezu i odparowuje rozpuszczalnik. Otrzymany ekstrakt oczyszcza się chromatograficznie, używając jako eluentu mieszaniny chloroformu i metanolu w stosunku 9:1.
Na tej drodze otrzymuje się 11,6 mg 6-O-/?-D-(4”-O-metyloglukopiranozylo)-flawonu (wydajność 13%). Stopień konwersji substratu według HPLC >99%
Uzyskany produkt charakteryzuje się następującymi danymi spektralnymi.
Opis sygnałów pochodzących z widma 1H NMR (600 MHz, Aceton-de).
Sygnały pochodzące od szkieletu flawonoidowego Sygnały pochodzące od jednostki cukrowej
δ [ppm] J [Hz] H δ [ppm] J[HzJ H
6,88 (s) - H-3 5,11 (d) 7,8 1C
7,73 (d) 1.9 H-5 3,54 (m) - 2C
7,76 (d) 9,0 H-8 3,73 (m) - 3C
8,14 (d) 7,1 H-2’ 3,31 (t) 9,4 4C
7,64 (m) - H-3’ 3,60 (dd) 9,9, 2,5 5C
7,64 (m) - H-4’ 3,89 (t) 3,67 (m) 10,7 6C
7,64 (m) - H-5' 3,62 (s) - OCH3
8,14 (d) 7,1 H-6'
Zastrzeżenia patentowe

Claims (5)

  1. Zastrzeżenia patentowe
    1. 6-O-/?-D-(4”-O-metyloglukopiranozylo)-flawon o wzorze 2.
  2. 2. Sposób wytwarzania 6-O-/?-D-(4”-O-metyloglukopiranozylo)-flawonu, znamienny tym, że do podłoża odpowiedniego dla grzybów strzępkowych wprowadza się szczep Isaria fumosorosea KCH J2, następnie po upływie co najmniej 72 godzin do hodowli wprowadza się substrat, którym jest 6-hydroksyflawon o wzorze 1, rozpuszczony w rozpuszczalniku organicznym mieszającym się z wodą, transformację prowadzi się w temperaturze od 20 do 30 stopni Celsjusza, przy ciągłym wstrząsaniu, co najmniej 96 godzin, po czym produkt ekstrahuje się rozpuszczalnikiem organicznym niemieszającym się z wodą i oczyszcza chromatograficznie.
    PL 237 328 Β1
  3. 3. Sposób według zastrz. 2, znamienny tym, że stosunek masy dodawanego substratu do objętości hodowli wynosi 0,1 mg : 1 mL.
  4. 4. Sposób według zastrz. 2, znamienny tym, że proces prowadzi się w temperaturze 25 stopni Celsjusza.
  5. 5. Sposób według zastrz. 2, znamienny tym, że transformację prowadzi się przez 120 godzin.
PL424950A 2018-03-19 2018-03-19 6-O-β-D-(4’’-O-metyloglukopiranozylo)-flawon i sposób wytwarzania 6-O-β-D-(4’’-O-metyloglukopiranozylo)-flawonu PL237328B1 (pl)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL424950A PL237328B1 (pl) 2018-03-19 2018-03-19 6-O-β-D-(4’’-O-metyloglukopiranozylo)-flawon i sposób wytwarzania 6-O-β-D-(4’’-O-metyloglukopiranozylo)-flawonu

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PL424950A PL237328B1 (pl) 2018-03-19 2018-03-19 6-O-β-D-(4’’-O-metyloglukopiranozylo)-flawon i sposób wytwarzania 6-O-β-D-(4’’-O-metyloglukopiranozylo)-flawonu

Publications (2)

Publication Number Publication Date
PL424950A1 PL424950A1 (pl) 2019-09-23
PL237328B1 true PL237328B1 (pl) 2021-04-06

Family

ID=67979727

Family Applications (1)

Application Number Title Priority Date Filing Date
PL424950A PL237328B1 (pl) 2018-03-19 2018-03-19 6-O-β-D-(4’’-O-metyloglukopiranozylo)-flawon i sposób wytwarzania 6-O-β-D-(4’’-O-metyloglukopiranozylo)-flawonu

Country Status (1)

Country Link
PL (1) PL237328B1 (pl)

Also Published As

Publication number Publication date
PL424950A1 (pl) 2019-09-23

Similar Documents

Publication Publication Date Title
WO2007082475A1 (fr) Nouveau composé diterpène ent-kaurène et ses dérivés, leur préparation et leur utilisation
EP1980248A1 (en) Composition for treating cancer cells and synthetic method for the same
PL234609B1 (pl) 4'-O-β-D-4"-metoksyglukopiranozylo-6-metyloflawon i sposób wytwarzania 4'-O-β-D-4"-metoksyglukopiranozylo-6-metyloflawonu
PL237328B1 (pl) 6-O-β-D-(4’’-O-metyloglukopiranozylo)-flawon i sposób wytwarzania 6-O-β-D-(4’’-O-metyloglukopiranozylo)-flawonu
PL234610B1 (pl) Sposób wytwarzania 7-O-β-D-4"-metoksyglukopiranozyloflawanonu
PL237704B1 (pl) 6-Metoksy-4’-O-β-D-(4”-O-metyloglukopiranozylo)-flawon i sposób wytwarzania 6-metoksy-4’-O-β-D-(4”-O-metyloglukopiranozylo)- flawonu
PL237333B1 (pl) 8-hydroksy-7-O-β-D-(4’’-O-metyloglukopiranozylo)-flawon i sposób wytwarzania 8-hydroksy-7-O-β-D-(4’’-O-metyloglukopiranozylo)- flawonu
PL237327B1 (pl) 3’-hydroksy-4’-O-β-D-(4’’-O-metyloglukopiranozylo)-flawon i sposób wytwarzania 3’-hydroksy-4’-O-β-D-(4’’-O-metyloglukopiranozylo)- flawonu
PL237705B1 (pl) 3’-Hydroksy-6-metoksy-4’-O-β-D-(4”-O-metyloglukopiranozylo)- flawon i sposób wytwarzania 3’-hydroksy-6-metoksy- 4’-O-β-D-(4”-O-metyloglukopiranozylo)-flawonu
PL237706B1 (pl) 3’-Hydroksy-6-metoksy-4’-O-β-D-(4”-O-metyloglukopiranozylo)- flawanon i sposób wytwarzania 3’-hydroksy-6- metoksy-4’-O-β-D-(4”-O-metyloglukopiranozylo)-flawanonu
PL237701B1 (pl) 2’-Metoksy-5’-O-β-D-(4”-O-metyloglukopiranozylo)-flawanon i sposób wytwarzania 2’-metoksy-5’-O-β-D-(4”-O-metyloglukopiranozylo)- flawanonu
PL237326B1 (pl) 4’-O-β-D-(4’’-O-metyloglukopiranozylo)-flawon i sposób wytwarzania 4’-O-β-D-(4’’-O-metyloglukopiranozylo)-flawonu
PL237325B1 (pl) 2’-O-β-D-(4’’-O-metyloglukopiranozylo)-flawon i sposób wytwarzania 2’-O-β-D-(4’’-O-metyloglukopiranozylo)-flawonu
PL244019B1 (pl) Sposób wytwarzania 6-O-β-D-(4’’-O-metyloglukopiranozylo)- flawanonu
PL238969B1 (pl) 3’-O-β-D-(4”-O-metyloglukopiranozylo)-flawan-4-ol i sposób wytwarzania 3’-O-β-D-(4”-O-metyloglukopiranozylo)-flawan-4-olu
PL237329B1 (pl) 3-O-β-D-(4’’-O-metyloglukopiranozylo)-3’,4’,5,7-tetrahydroksyflawon i sposób wytwarzania 3-O-β-D-(4’’-O-metyloglukopiranozylo)- 3’,4’,5,7-tetrahydroksyflawonu
PL238968B1 (pl) 2’-O-β-D-(4’’-O-metyloglukopiranozylo)-flawan-4-ol i sposób wytwarzania 2’-O-β-D-(4”-O-metyloglukopiranozylo)-flawan-4-olu
PL237324B1 (pl) 5-hydroksy-4’-O-β-D-(4’’-O-metyloglukopiranozylo)-flawon i sposób wytwarzania 5-hydroksy-4’-O-β-D-(4’’-O-metyloglukopiranozylo)- flawonu
PL237707B1 (pl) 6-Metoksy-4’-O-β-D-(4”-O-metyloglukopiranozylo)-flawanon i sposób wytwarzania 6-metoksy-4’-O-β-D-(4”-O-metyloglukopiranozylo)- flawanonu
PL237708B1 (pl) 3’-Hydroksy-4’-O-β-D-(4”-O-metyloglukopiranozylo)-flawanon i sposób wytwarzania 3’-hydroksy-4’-O-β-D-(4”-O-metyloglukopiranozylo)- flawanonu
PL235025B1 (pl) 4’-O-β-D-(4’’-O-metyloglukopiranozylo)-3-metoksyflawon i sposób wytwarzania 4’-O-β-D-(4’’-O-metyloglukopiranozylo)-3- metoksyflawonu
PL237703B1 (pl) 6-Metoksy-3’-O-β-D-(4’’-O-metyloglukopiranozylo)-flawon i sposób wytwarzania 6-metoksy-3’-O-β-D-(4’’-O-metyloglukopiranozylo)- flawonu
PL238534B1 (pl) Sposób wytwarzania 4’-O-β-D-(4”-O-metyloglukopiranozylo)- flawanonu
PL238533B1 (pl) Sposób wytwarzania 3’,4’-dihydroksy-6-O-β-D-(4”-O-metyloglukopiranozylo)- flawanonu
PL237702B1 (pl) 3’-Hydroksy-6-O-β-D-(4”-O-metyloglukopiranozylo)-flawanon i sposób wytwarzania 3’-hydroksy-6-O-β-D-(4”-O-metyloglukopiranozylo)- flawanonu