NZ331491A - Process to eliminate haemoglobin errors when analysing medical samples using a main and a secondary measuring wavelength - Google Patents

Process to eliminate haemoglobin errors when analysing medical samples using a main and a secondary measuring wavelength

Info

Publication number
NZ331491A
NZ331491A NZ331491A NZ33149197A NZ331491A NZ 331491 A NZ331491 A NZ 331491A NZ 331491 A NZ331491 A NZ 331491A NZ 33149197 A NZ33149197 A NZ 33149197A NZ 331491 A NZ331491 A NZ 331491A
Authority
NZ
New Zealand
Prior art keywords
content
recovery
haemoglobin
sample
determination
Prior art date
Application number
NZ331491A
Inventor
Ralph Weisheit
Elke Pfitschler
Original Assignee
Boehringer Mannheim Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Mannheim Gmbh filed Critical Boehringer Mannheim Gmbh
Publication of NZ331491A publication Critical patent/NZ331491A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/70Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving creatine or creatinine

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

The present invention relates to a process for determining an analyte in a sample containing free haemoglobin by optical bichromatic measurement for a main and a secondary measuring wave length. A secondary measuring wave length of above 475 nm is used containing absorption bands of haemoglobin.

Description

<div class="application article clearfix" id="description"> <p class="printTableText" lang="en">New Zealand Paient Spedficaiion for Paient Number 331491 <br><br> New Zealand No. 331491 International No. PCT/EP97/02835 <br><br> TO BE ENTERED AFTER ACCEPTANCE AND PUBLICATION <br><br> Priority dates: 31.05.1996; <br><br> Complete Specification Filed: 30.05.1997 <br><br> Classification.(6) G01N33/52,70,72; C12Q1/00.12 <br><br> Publication date: 29 April 1999 <br><br> Journal No.: 1439 <br><br> Title of Invention: <br><br> Process to eliminate haemoglobin errors when analysing medical samples <br><br> Name, address and nationality of applicant(s) as in international application form: <br><br> BOEHRINGER MANNHEIM GMBH, Sandhofer Strasse 112-132, D-68305, Mannheim, Germany <br><br> NEW ZEALAND PATENTS ACT 1953 <br><br> COMPLETE SPECIFICATION <br><br> 33149 1 <br><br> I - <br><br> Method for the elimination of haemoglobin interferences in the analysis of medical samples <br><br> Description <br><br> The invention concerns a method for the determination of an analyte in a sample containing free haemoglobin in which the determination is carried out by an optical bichromatic measurement at a main and a secondary wavelength. In particular this method is suitable for the determination of the parameters ammonia, creatine kinase and isoenzymes thereof and lactate dehydrogenase and isoenzymes thereof in a medical sample e.g. a serum or plasma sample. <br><br> It is generally known that haemolysis interferes with the determination of many analytes in some cases to a considerable extent. In order to nevertheless obtain measured values which are unfalsified various methods have been published in the past for eliminating haemolysis interference. <br><br> One of these methods is that when measuring in automated analyzers a second wavelength (secondary wavelength) is used in addition to the first wavelength (primary wavelength) by means of which the interfering influence of interfering substances such as haemoglobin, bilirubin and lipaemia can be eliminated or at least minimized. <br><br> One requirement for this is that the substance to be measured absorbs as little as possible at the secondary wavelength but that the interfering substance absorbs at the same level as possible as at the main wavelength <br><br> 3314: <br><br> - 2 - <br><br> ("Praxistechnik: Photometer fiir die Arztliche Praxis, Deutscher Xrzteverlag" 1977, pages 41-42). <br><br> In the DIA letter (Boehringer Mannheim) No. 70 (1985) it is mentioned that the secondary wavelength should be as close as possible to the main wavelength since as a rule the interfering substance then has similar absorbances at the main and secondary wavelengths. <br><br> In Clin. Chem. 25/6, 951-959 (1979) it is pointed out that the secondary wavelength should be selected so that it is near to the absorption minimum of the chromogen and near to the absorption maximum of the interfering substance. In this connection a secondary wavelength of 380 nm is recommended for the determination of glucose (main wavelength 34 0 nm) since here the absorbance of the interfering substances is similar to that at 340 nm. <br><br> In contrast in the Eur. J. Clin. Chem. Clin. Biochem. 31/9, 595-601 (1993) it is regarded as critical to measure UV tests at a secondary wavelength of 380 nm since in this case the conversion of Hb-02 into Meth-Hb leads to spectral changes at 380 nm and thus to errors in the measurements. Therefore a secondary wavelength is recommended for tests which are based on the measurement of a decrease or increase in NAD(P)H which lies behind the so-called Soret region such as e.g. 475 nm. <br><br> All previously described methods relate to the elimination of interference in erroneous measurements caused by haemolysis. The availability of blood substitutes based on haemoglobin makes the issue of removing interferences by native or synthetic haemoglobin or compounds analogous to Hb much more acute <br><br> - 3 - <br><br> 3314 <br><br> than hitherto. Such interferences then on the one hand also occur in non-haemolytic sample material and on the other hand also to a much greater extent than in native haemolysis since the haemoglobin content of blood serum or plasma can be up to 2000 mg/dl in blood substitute therapy. <br><br> In addition it was found that when measuring certain analytes such as ammonia, creatine kinase and isoenzymes thereof as well as lactate dehydrogenase and isoenzymes thereof it is not easily possible to achieve an adequate elimination of haemoglobin interference by using a secondary wavelength of 475 nm or higher e.g. at 480, 505, 600, 660 or 700 nm. Since these parameters are of essential importance in the context of cardiovascular and emergency diagnostics as well as for the diagnosis of patients treated with blood substitutes, the object of the present invention was to provide a simple method for eliminating interferences which are caused by native haemoglobin or by blood substitutes based on synthetic haemoglobin or compounds similar to haemoglobin, in particular when measuring the above-mentioned analytes. <br><br> The object of the invention is achieved by a method for the determination of an analyte in a sample containing free haemoglobin by optical bichromatic measurement at a main and a secondary wavelength wherein a secondary wavelength above 475 nm is used in which the absorption bands of haemoglobin are located. <br><br> Preferred secondary wavelengths for the method according to the invention are in the range of 546 ± 10 nm, in particular 546 ± 5 nm as well as in the range of 570 ± 10 nm and in particular 570 ± 5 nm. The wavelengths 546 <br><br> - 4 - <br><br> 3314 <br><br> and 570 nm are most preferred. <br><br> The selection of the wavelengths according to the invention as secondary wavelengths was surprising since the greatest interferences by haemoglobin are obtained at the secondary wavelength of 405 nm known from the state of the art (for example instrument settings for the Boehringer Mannheim/Hitachi 717-analyser according to the instructions of the kit insert for the reagent to determine creatine kinase, order No. 1 273 248, Boehringer Mannheim Diagnostica Catalogue 1997) at which haemoglobin also absorbs. Furthermore in the aforementioned publication Eur. J. Clin. Chem. Clin. Biochem. it is pointed out that a secondary wavelength should be used to eliminate interference by haemoglobin which lies beyond the Soret region (the main absorption band of haemoglobin) so that it would at most have been obvious to use those wavelengths as a secondary wavelength where there are no absorption bands at all of haemoglobin. <br><br> The method for eliminating interference according to the invention is suitable for methods in which the analyte is determined by optical measurement in particular by optical measurement at a main wavelength in the UV range. The method is particularly preferably carried out for tests which are based on a measurement of the increase or decrease of the concentration of NADH or NADPH in the sample. In this case one preferably uses a main wavelength in the range of 34 0 ± 10 nm. <br><br> amended page <br><br> 33 14 <br><br> 4a <br><br> The method according to the invention is suitable for the determination of any samples in which free haemoglobin is present. Examples of such samples are haemolytic serum or plasma samples or samples which contain a blood substitute. Examples of blood substitutes which fall under the term "free haemoglobin" within the sense of the present invention are amended page <br><br> - 5 - <br><br> 33 14 <br><br> derivatized, polymerized, modified or cross-linked derivatives of haemoglobins in particular of human haemoglobin or bovine haemoglobin such as DCL haemoglobin (diaspirin cross-linked haemoglobin) and recombinantly produced haemoglobin. <br><br> In a preferred embodiment of the method according to the invention the content of an analyte selected from the group comprising ammonia, creatine kinase and isoenzymes thereof and lactate dehydrogenase and isoenzymes thereof is determined. <br><br> The determination of ammonia by the method according to the invention is preferably carried out according to the enzymatic UV method (Da Fonseca-Wollheim F., Z. Klin. Chem. Klin. Biochem. 11 (1973) 421). <br><br> Creatine kinase (CK) is preferably determined according to the "optimized standard method" of the German Society for Clinical Chemistry (J. Clin. Chem. Clin. Biochem. 15 (1577) , 249). The creatine kinase isoenzyme CK-MB is preferably determined by the immunological UV method (Wiirzburg U. et al., Klin. Wschr. 54 (1976), 357). <br><br> The determination of lactate dehydrogenase (LDH) or of the lactate dehydrogenase isoenzyme (HBDH) (1-hydroxy-butyrate dehydrogenase) is preferably carried out according to the "optimized standard method" of the German Society for Clinical Chemistry (Z. Klin. Chem. Klin. Biochem. 8 (1970), 658 and 10 (1972), 182). <br><br> A serum or plasma sample is preferably used as the sample in the method according to the invention in particular a human serum or plasma sample. <br><br> - 6 - <br><br> 33 1491 <br><br> A particular advantage of the method according to the invention is that it can be carried out in an automated analyzer such as a Boehringer Kannheim/Hitachi 704 or 717 analyzer. In such analyzers it is easily possible to set the particularly preferred secondary wavelengths of 546 or 570 nm. <br><br> The invention is further elucidated by the following examples. <br><br> General methods <br><br> A solution containing haemoglobin was added to one portion of a serum pool such that a haemoglobin content of 2000 mg/dl was reached. Another equal portion of the serum pool was admixed with an equivalent amount of a NaCl solution (154 mmol/1)„ Both portions were subsequently mixed together in different ratios in such a way that a Kb concentration series of 11 samples was formed, whereby one sample contained no Hb and the highest sample contained 2000 mg/dl Hb. <br><br> - 7 - <br><br> Example 1 <br><br> Determination of ammonia <br><br> The determination was carried out on a Boehringer Mannheim/Hitachi 717 analyzer. The following reagents were used: <br><br> Reagent 1: 150 iamol/1 triethanolamine buffer, pH 8.6; <br><br> 15 mmol/1 a-ketoglutarate; 1.5 mmol/1 ADP <br><br> Reagent 2: 150 mmol/1 triethanolamine buffer; pH 8.5; <br><br> 15 mmol/1 a-ketoglutarate; 1.5 mmol/1 ADP; 0.31 mmol/1 NADFH; &gt; 24 U/ml glutamate dehydrogenase (GLDH) <br><br> The test procedure was as follows: 200 /u 1 reagent l and after 5 min 50 jul reagent 2 were added to 2 0 ;ul sample. The analyte was determined after a period of a further 40 sec. A main wavelength of 340 nm and secondary wavelengths of 405 nm, 480 nm, 505 nm, 600 nut, 660 nm and 700 nm (comparison) as well as of 546 nm and 570 nm (invention) were used for the measurement. <br><br> The result of this determination is shown in table 1. It can be seen that when using the measurement wavelengths of 546 and 570 nm according to the invention a considerably improved recovery was achieved than with the other wavelengths. <br><br> 33 149 <br><br> Example 2 <br><br> Determination of creatinine kinase <br><br> The determination was carried out on a Boehringer Mannheim/Hitachi 717 analyzer. The following reagents were used: <br><br> Reagent 1: 110 mmol/1 imidazole buffer; pH 6.7; <br><br> 20.5 mmol/1 glucose; 2.05 mmol/1 EDTA; 2.5 mmol/1 ADP; 6.1 mmol/1 AMP; 12 /Limol/1 diadenosine pentaphosphate; 2.5 mmol/1 NADP; 25 mmol/1 N-acetylcysteine; &gt; 3.1 U/ml hexokinase (HK); &gt; 1.8 U/ml glucose-6-phosphate dehydrogenase (G6P-DH) <br><br> Reagent 2: 25 mmol/1 imidazole buffer; pH 7.5; <br><br> 20.5 mmol/1 glucose; 2.05 mmol/1 EDTA; 61 mmol/1 Mg2+; 184 mmol/1 creatine phosphate <br><br> The test procedure was as follows: 250 /xl reagent 1 and after 5 min 50 jxl reagent 2 were added to 7 /xl sample. The analyte was determined after a period of a further 2 min. A main wavelength of 340 nm and secondary wavelengths of 405 nm, 480 nm, 505 nm, 600 nm, 660 nm and 700 nm (comparison) as well as of 546 nm and 570 nm (invention) were used for the measurement. <br><br> The result of this determination is shown in table 2. It can be seen that when using the measurement wavelengths of 546 and 570 nm according to the invention a considerably improved recovery was achieved than with <br><br> 33 14 <br><br> - 9 - <br><br> the other wavelengths. <br><br> Example 3 <br><br> Determination of the creatine kinase isoenzyme CK-MB <br><br> The determination was carried out on a Boehringer Mannheim/Hitachi 717 analyzer. The following reagents were used: <br><br> Reagent l: 110 mtiol/l imidazole buffer; pH 6.7; <br><br> 21 mmol/1 glucose; 11 mmol/1 Mg2+; ZJ mmol/1 EDTA; 2.4 mmol/1 ADP; 6.0 mmol/1 AMP; 12 /imol/1 diadenosine pentaphosphate; 2.4 mmol/1 NADP; 24 mmol/1 N-acetyl cysteine; &gt;3.0 U/ml HK; &gt; 1.8 U/ml G6P-DH; antibody, inhibitory capacity towards CK-M up to 2000 U/l. <br><br> Reagent 2: 110 mmol/1 imidazole buffer; pH 6.7; <br><br> 21 mmol/1 glucose; 2.1 mmol/1 EDTA; 11 mmol/1 Mg2+; 186 mmol/1 creatine phosphate <br><br> The test procedure was as follows: 250 /z 1 reagent 1 and after 5 min 50 fil reagent 2 were added to 12 fxl sample. The analyte was determined after a period of a further 3 min. A main wavelength of 340 nm and secondary wavelengths of 4 05 nm, 480 nm, 505 nm, 600 nm, 660 nm and 700 nm (comparison) as well as of 546 nm and 570 nn (invention) were used for the measurement. <br><br> The result of this determination is shown in table 3. It <br><br> - 10 - <br><br> 3314 <br><br> can be seen that when using the measurement wavelengths of 546 and 570 nm according to the invention a considerably improved recovery was achieved than with the other wavelengths. <br><br> Example 4 <br><br> Determination of lactate dehydrogenase <br><br> The determination was carried out on a Boehringer Mannheim/Hitachi 717 analyzer. The following reagents were used: <br><br> Reagent 1: 68 mmol/1 phosphate buffer; pH 7.5; &gt; 0.73 mmol/1 pyruvate <br><br> Reagent 2: &gt;1.1 mmol/1 NADH <br><br> The test procedure was as follows: 250 /liI reagent 1 and after 5 min 50 /xl reagent 2 were added to 5 nl sample. The analyte was determined after a period of a further 60 sec. A main wavelength of 34 0 nm and secondary wavelengths of 4 05 nm, 480 nm, 505 nm, 600 nm, 660 nm and 700 nm (comparison) as well as of 546 nm and 570 nm (invention) were used for the measurement. <br><br> The result of this determination is shown in table 4. It can be seen that when using the measurement wavelengths of 546 and 570 nm according to the invention a considerably improved recovery was achieved than with the other wavelengths. <br><br> - 11 - <br><br> Example 5 <br><br> Determination of the LDH isoenzyme HBDH <br><br> The determination was carried out on a Boehringer Mannheim/Hitachi 717 analyzer. The following reagents were used: • <br><br> Reagent 1: 68 mmol/1 phosphate buffer; pH 7.5; 3.7 mmol/1 a-oxobutyrate <br><br> Reagent 2: &gt;1-1 mmol/1 NADH <br><br> The test procedure was as follows: 250 fil reagent 1 and after 5 min 50 ^1 reagent 2 were added to 5 /xl sample. The analyte was determined after a period of a further 60 sec. A main wavelength of 340 nm and secondary wavelengths of 405 nm, 480 nm, 505 nm, 600 nm, 660 nm and 700 nm (comparison) as well as of 546 nm and 570 nm (invention) were used for the measurement. <br><br> The result of this determination is shown in table 5. It can be seen that when using the measurement wavelengths of 546 and 570 nm according to the invention a considerably improved recovery was achieved than with the other wavelengths. <br><br> Table 1 <br><br> Sample <br><br> Hb content <br><br> Content at <br><br> Content at <br><br> Content at <br><br> Content at <br><br> Content at <br><br> Content at <br><br> Content at <br><br> Content at <br><br> [mg/dl] <br><br> 405 nm <br><br> 480 nm <br><br> 505 nm <br><br> 546 nm <br><br> 570 nm <br><br> 600 nm <br><br> 660 nm <br><br> 700 nm <br><br> fcg/dU <br><br> [ng/dl] <br><br> Cng/di] <br><br> kg/di] <br><br> [nam fug/dl] <br><br> tug/di] <br><br> fug/di] <br><br> 1 <br><br> 0 <br><br> 157 <br><br> 163 <br><br> 160 <br><br> 159 <br><br> 158 <br><br> 154 <br><br> 158 <br><br> 154 <br><br> 2 <br><br> 200 <br><br> 145 <br><br> 162 <br><br> 162 <br><br> 157 <br><br> 156 <br><br> 158 ' <br><br> 157 <br><br> 155 <br><br> 3 <br><br> 400 <br><br> 140 <br><br> 165 <br><br> 163 <br><br> 162 <br><br> 158 <br><br> 162 <br><br> 158 <br><br> 160 <br><br> 4 <br><br> 600 <br><br> 133 <br><br> 166 <br><br> 162 <br><br> 161 <br><br> 153 <br><br> 163 <br><br> 162 <br><br> 161 <br><br> 5 <br><br> 800 <br><br> 145 <br><br> 172 <br><br> 171 <br><br> 164 <br><br> 158 <br><br> 168 <br><br> 166 <br><br> 158 <br><br> 6 <br><br> 1000 <br><br> 144 <br><br> 173 <br><br> 172 <br><br> 162 <br><br> 155 <br><br> 168 <br><br> 171 <br><br> 167 <br><br> 7 <br><br> 1200 <br><br> 160 <br><br> 171 <br><br> 175 <br><br> 167 <br><br> 156 <br><br> 175 <br><br> 166 <br><br> 164 <br><br> 8 <br><br> 14G0 ' <br><br> 159 <br><br> 177 <br><br> 177 <br><br> 166 <br><br> 155 <br><br> 177 <br><br> 171 <br><br> 170 <br><br> 9 <br><br> 1600 <br><br> 176 <br><br> 180 <br><br> 178 <br><br> 162 <br><br> 152 <br><br> 178 <br><br> 178 <br><br> 180 <br><br> 10 <br><br> 1800 <br><br> 175 <br><br> 183 <br><br> 177 <br><br> 163 <br><br> 157 <br><br> 188 <br><br> 180 <br><br> 183 <br><br> 11 <br><br> 2000 <br><br> 178 <br><br> 189 <br><br> 192 <br><br> 172 <br><br> 159 <br><br> 199 <br><br> 190 <br><br> 187 <br><br> Sample <br><br> Hb content J [mg/dl] j <br><br> Recovery <br><br> 405 nm <br><br> [%] <br><br> Recovery <br><br> 480 nm <br><br> [%] <br><br> Recovery <br><br> 505 nm <br><br> [%] <br><br> Recovery <br><br> 546 nm <br><br> [%] <br><br> Recovery 570 nm P/o] <br><br> Recovery <br><br> 600 nm <br><br> [%] <br><br> Recovery <br><br> 660 nm [%] <br><br> Recovery <br><br> 700 nm <br><br> [%] <br><br> 1 <br><br> 0 <br><br> 100 <br><br> 100 <br><br> 100 <br><br> 100 <br><br> 100 <br><br> 100 <br><br> 100 <br><br> 100 <br><br> 2 <br><br> 200 <br><br> 92 <br><br> 99 <br><br> 101 <br><br> 99 <br><br> 99 <br><br> 103 <br><br> 99 <br><br> 101 <br><br> 3 <br><br> 400 <br><br> 89 <br><br> 101 <br><br> 102 <br><br> 102 <br><br> 100 <br><br> 105 <br><br> 100 <br><br> 104 <br><br> 4 <br><br> 600 <br><br> 85 <br><br> 102 <br><br> 101 <br><br> 101 <br><br> 97 <br><br> 106 <br><br> 103 <br><br> 105 <br><br> 5 <br><br> 800 <br><br> 92 <br><br> 106 <br><br> 107 <br><br> 103 <br><br> 100 <br><br> 109 <br><br> 105 <br><br> 103 <br><br> 6 <br><br> 1000 <br><br> 92 <br><br> 106 <br><br> 108 <br><br> 102 <br><br> 98 <br><br> 109 <br><br> 108 <br><br> 108 <br><br> 7 <br><br> 1200 <br><br> 102 <br><br> 105 <br><br> 109 <br><br> 105 <br><br> 99 <br><br> 114 <br><br> 105 <br><br> 10S <br><br> 8 <br><br> 1400 <br><br> 101 <br><br> 109 <br><br> 111 <br><br> 104 <br><br> 98 <br><br> 115 <br><br> 108 <br><br> 110 <br><br> 9 <br><br> 1600 <br><br> 112 <br><br> 110 <br><br> 111 <br><br> 102 <br><br> 96 <br><br> 116 <br><br> 113 <br><br> 117 <br><br> 10 <br><br> 1800 <br><br> 111 <br><br> 112 <br><br> 111 <br><br> 103 <br><br> 100 <br><br> 122 <br><br> 114 <br><br> 119 <br><br> 11 <br><br> 2000 | <br><br> 113 <br><br> 116 <br><br> 120 <br><br> 108 <br><br> 101 <br><br> 129 <br><br> 120 <br><br> 121 <br><br> CM <br><br> C*l <br><br> - 13 -Table 2 <br><br> Sample <br><br> Hb content <br><br> I Content at <br><br> Content at <br><br> Content at <br><br> Content at <br><br> Content at <br><br> Content at <br><br> Content at <br><br> Content at <br><br> [mg/dl] <br><br> 405 nm <br><br> 480 nm <br><br> 505 nm <br><br> 546 nm <br><br> 570 nm <br><br> 600 nm <br><br> 660 nm <br><br> 700 nm <br><br> I [U/l] <br><br> [U/l] <br><br> [U/l] <br><br> [U/l] <br><br> [U/l] <br><br> [U/l] <br><br> [U/l] <br><br> [U/I] <br><br> 0 <br><br> 175 <br><br> 175 <br><br> 177 <br><br> 175 <br><br> 177 <br><br> 176 <br><br> 179 <br><br> 174 <br><br> 2 <br><br> 200 <br><br> 181 <br><br> 176 <br><br> 177 <br><br> 175 <br><br> 180 <br><br> 176 <br><br> 180 <br><br> 178 <br><br> 3 <br><br> 400 <br><br> 189 <br><br> 177 <br><br> 179 <br><br> 178 <br><br> 180 <br><br> 176 ■ <br><br> 179 <br><br> 178 <br><br> 4 <br><br> 600 <br><br> 182 <br><br> 165 <br><br> 165 <br><br> 168 <br><br> 171 <br><br> 165 <br><br> 170 <br><br> 166 <br><br> 5 <br><br> 800 <br><br> 191 <br><br> 164 <br><br> 166 <br><br> 168 <br><br> 170 <br><br> 162 <br><br> 166 <br><br> 166 <br><br> 6 <br><br> 1000 <br><br> 185 <br><br> 164 <br><br> 164 <br><br> 170 <br><br> 172 <br><br> 163 <br><br> 166 <br><br> 163 <br><br> 7 <br><br> 1200 <br><br> 196 <br><br> 163 <br><br> 164 <br><br> 170 <br><br> 174 <br><br> 163 <br><br> 166 <br><br> 165 <br><br> 8 <br><br> 1400 <br><br> 205 <br><br> 163 <br><br> 163 <br><br> 170 <br><br> 174 <br><br> 160 <br><br> 165 <br><br> 164 <br><br> 9 <br><br> 1600 <br><br> 212 <br><br> 163 <br><br> 163 <br><br> 173 <br><br> 174 <br><br> 161 <br><br> 164 <br><br> 162 <br><br> 10 <br><br> 1800 <br><br> 214 <br><br> 160 <br><br> 163 <br><br> 172 <br><br> 177 <br><br> 161 <br><br> 165 <br><br> 163 <br><br> 11 <br><br> 2000 <br><br> 224 <br><br> 160 <br><br> 161 <br><br> 173 <br><br> 178 <br><br> 160 <br><br> 164 <br><br> 164 | <br><br> Sample <br><br> Hb content <br><br> Recovery <br><br> Recovery <br><br> Recovery <br><br> Recovery <br><br> Recovery <br><br> Recovery <br><br> Recovery <br><br> Recovery <br><br> [mg/dl] <br><br> 405 nm <br><br> 480 nm <br><br> 505 nm <br><br> 546 nm <br><br> 570 nm <br><br> 600 nm <br><br> 660 nm <br><br> 700 nm <br><br> [%] <br><br> [%] <br><br> [%] <br><br> [%] <br><br> [%] <br><br> [%] <br><br> [%] <br><br> [%] <br><br> 1 <br><br> 0 <br><br> 100 <br><br> 100 <br><br> 100 <br><br> 100 <br><br> 100 <br><br> 100 <br><br> 100 <br><br> 100 <br><br> 2 <br><br> 200 <br><br> 103 <br><br> 101 <br><br> 100 <br><br> 100 <br><br> 102 <br><br> 100 <br><br> 101 <br><br> 102 <br><br> 3 <br><br> 400 <br><br> 108 <br><br> 101 <br><br> 101 <br><br> 102 <br><br> 102 <br><br> 100 <br><br> 100 <br><br> 102 <br><br> 4 <br><br> 600 <br><br> 104 <br><br> 94 <br><br> 93 <br><br> 96 <br><br> 97 <br><br> 94 <br><br> 95 <br><br> 95 <br><br> 5 <br><br> 800 <br><br> 109 <br><br> 94 <br><br> 94 <br><br> 96 <br><br> 96 <br><br> 92 <br><br> 93 <br><br> 95 <br><br> 6 <br><br> 1000 <br><br> 111 <br><br> 94 <br><br> 93 <br><br> 97 <br><br> 97 <br><br> 93 <br><br> 93 <br><br> 94 <br><br> 7 <br><br> 1200 <br><br> 112 <br><br> 93 <br><br> 93 <br><br> 97 <br><br> 98 <br><br> 93 <br><br> 93 <br><br> 95 <br><br> 8 <br><br> 1400 <br><br> 117 <br><br> 93 <br><br> 92 <br><br> 97 <br><br> 98 <br><br> 91 <br><br> 92 <br><br> 94 <br><br> 9 <br><br> 1600 <br><br> 121 <br><br> 93 <br><br> 92 <br><br> 99 <br><br> 98 <br><br> 91 <br><br> 92 <br><br> 93 <br><br> 10 <br><br> 1800 <br><br> 122 <br><br> 91 <br><br> 92 <br><br> 98 <br><br> 100 <br><br> 91 <br><br> 92 <br><br> 94 <br><br> 11 <br><br> 2000 <br><br> 128 <br><br> 91 <br><br> 91 <br><br> 99 <br><br> 101 <br><br> 91 <br><br> 92 <br><br> 94 <br><br> c*i <br><br> • e • • <br><br> • • <br><br> - 14 -Table 3 <br><br> Sample <br><br> Hb content <br><br> Content at <br><br> Content at <br><br> Content at <br><br> Content at <br><br> Content at <br><br> Content at <br><br> Content at <br><br> Content at <br><br> [mg/dl] <br><br> 405 nm <br><br> 480 nm <br><br> 505 nm <br><br> 546 nm <br><br> 570 nm <br><br> 600 nm <br><br> 660 nm <br><br> 700 nm <br><br> [U/l] <br><br> [U/l] <br><br> [U/l] <br><br> [U/l] <br><br> [U/l] <br><br> [U/l] <br><br> [U/l] <br><br> [U/l] <br><br> 1 <br><br> 0 <br><br> 40.6 <br><br> 40.2 <br><br> 40.7 <br><br> 41.5 <br><br> 40.1 <br><br> 40.7 <br><br> 40.8 <br><br> 38.1 <br><br> 2 <br><br> 200 <br><br> 49.7 <br><br> 41.2 <br><br> 39.4 <br><br> 40.7 <br><br> 42.6 <br><br> 39.1 <br><br> 39.7 <br><br> 37.9 <br><br> 3 <br><br> 400 <br><br> 58.9 <br><br> 37.3 <br><br> 38.2 <br><br> 41.8 <br><br> 41.6 <br><br> 38.8 • <br><br> 36.0 <br><br> 37.2 <br><br> 4 <br><br> 600 <br><br> 68.1 <br><br> 38.5 <br><br> 36.8 <br><br> 43.1 <br><br> 40.8 <br><br> 36.1 <br><br> 37.7 <br><br> 36.5 <br><br> 5 <br><br> 800 <br><br> 75.3 <br><br> 36.6 <br><br> 35.7 <br><br> 42.6 <br><br> 42.4 <br><br> 32.7 <br><br> 36.3 <br><br> 32.5 <br><br> 6 <br><br> 1000 <br><br> 82.4 <br><br> 34.9 <br><br> 35.4 <br><br> 44.1 <br><br> 43.4 <br><br> 30.8 <br><br> 32.6 <br><br> 36.5 <br><br> 7 <br><br> 1200 <br><br> 82.5 <br><br> 39.6 <br><br> 33.9 <br><br> 44.4 <br><br> 44.5 <br><br> 27.5 <br><br> 36.7 <br><br> 32.8 <br><br> 8 <br><br> 1400 <br><br> 95.0 <br><br> 35.5 <br><br> 34.5 <br><br> 44.8 <br><br> 43.0 <br><br> 2C.1 <br><br> 33.4 <br><br> 33.9 <br><br> 9 <br><br> 1600 <br><br> 99.2 <br><br> 37.3 <br><br> 35.0 <br><br> 44.1 <br><br> 44.3 <br><br> 25.9 <br><br> 31.7 <br><br> 29.4 <br><br> 10 <br><br> 1800 <br><br> 98.9 <br><br> 33.9 <br><br> 29.8 <br><br> 46.7 <br><br> 42.9 <br><br> 24.8 <br><br> 27.1 <br><br> 29.4 <br><br> 11 <br><br> 2000 <br><br> 97.1 <br><br> 33.2 <br><br> 29.1 <br><br> 48.1 <br><br> 44.1 <br><br> 22.4 <br><br> 27.9 <br><br> 29.9 <br><br> ! Sample <br><br> Hb content [mg/dl] <br><br> Recovery <br><br> 405 nm <br><br> [%] <br><br> Recovery <br><br> 480 nm [%] <br><br> Recovery <br><br> 505 nm [%] <br><br> Recovery 546 nm r%] <br><br> Recovery <br><br> 570 nm [%] <br><br> Recovery <br><br> 600 nm <br><br> [%] <br><br> Recovery <br><br> 660 nm [%] <br><br> Recovery | <br><br> 700 nm [%] <br><br> 1 <br><br> 0 <br><br> 100 <br><br> 100 <br><br> 100 <br><br> 100 <br><br> 100 <br><br> 100 <br><br> 100 <br><br> 100 <br><br> 2 <br><br> 200 <br><br> 122 <br><br> 102 <br><br> 97 <br><br> 98 <br><br> 106 <br><br> 96 <br><br> 97 <br><br> 99 <br><br> 3 <br><br> 400 <br><br> 145 <br><br> 93 <br><br> 94 <br><br> 101 <br><br> 104 <br><br> 95 <br><br> 88 <br><br> 98 <br><br> 4 <br><br> 600 <br><br> 168 <br><br> 96 <br><br> 90 <br><br> 104 <br><br> 102 <br><br> 89 <br><br> 92 <br><br> 96 <br><br> 5 <br><br> 800 <br><br> 185 <br><br> 91 <br><br> 88 <br><br> 103 <br><br> 106 <br><br> 80 <br><br> 89 <br><br> 85 <br><br> 6 <br><br> 1000 <br><br> 203 <br><br> 87 <br><br> 87 <br><br> 106 <br><br> 108 <br><br> 76 <br><br> 80 <br><br> 96 <br><br> 7 <br><br> 1200 <br><br> 203 <br><br> 98 <br><br> 83 <br><br> 107 <br><br> 111 <br><br> 68 <br><br> 90 <br><br> 86 <br><br> 8 <br><br> 1400 <br><br> 234 <br><br> 88 <br><br> 85 <br><br> 108 <br><br> 107 <br><br> 64 <br><br> 82 <br><br> 89 <br><br> 9 <br><br> 1600 <br><br> 244 <br><br> 93 <br><br> 86 <br><br> 106 <br><br> 110 <br><br> 64 <br><br> 78 <br><br> 77 <br><br> 10 <br><br> 1800 <br><br> 244 <br><br> 84 <br><br> 73 <br><br> 113 <br><br> 107 <br><br> 61 <br><br> 66 <br><br> 11 <br><br> 11 <br><br> 2000 <br><br> I 239 <br><br> 83 <br><br> 71 <br><br> 116 <br><br> 110 <br><br> 55 <br><br> 68 <br><br> 78 | <br><br> • • • • • « <br><br> - 15 -Table 4 <br><br> Sample <br><br> Hbcontent <br><br> Content at <br><br> Content at <br><br> Content at <br><br> Content at <br><br> Content at <br><br> Content at <br><br> Content at <br><br> Content at <br><br> [mg/dl] <br><br> • 405 nm <br><br> 480 nm <br><br> 505 nm <br><br> 546 nm <br><br> 570 nm <br><br> 600 nm <br><br> 660 nm <br><br> 700 nm <br><br> I [U/l] <br><br> [U/l] <br><br> [U/l] <br><br> [U/l] <br><br> [U/l] <br><br> [U/l] <br><br> [U/l] <br><br> [U/l] <br><br> 1 <br><br> 0 <br><br> 196 <br><br> 197 <br><br> 199 <br><br> 197 <br><br> 199 <br><br> 199 <br><br> 199 <br><br> * 11 " { <br><br> 205 <br><br> 2 <br><br> 200 <br><br> 162 <br><br> 202 <br><br> 206 <br><br> 203 <br><br> 198 <br><br> 208 <br><br> 200 <br><br> 206 <br><br> 3 <br><br> 400 <br><br> 127 <br><br> 210 <br><br> 215 <br><br> 199 <br><br> 195 <br><br> 219 <br><br> 207 <br><br> 215 <br><br> 4 <br><br> 600 <br><br> 95 <br><br> 218 <br><br> 223 <br><br> 202 <br><br> 196 <br><br> 229 <br><br> 217 <br><br> 224 <br><br> 5 <br><br> 800 <br><br> 72 <br><br> 220 <br><br> 228 <br><br> 200 <br><br> 192 <br><br> 225 <br><br> 222 <br><br> 222 <br><br> 6 <br><br> 1000 <br><br> 45 <br><br> 224 <br><br> 226 <br><br> 199 <br><br> 193 <br><br> 230 <br><br> 226 <br><br> 222 <br><br> 7 <br><br> 1200 <br><br> 27 <br><br> 223 <br><br> 232 <br><br> 201 <br><br> 190 <br><br> 236 <br><br> 228 <br><br> 233 <br><br> 8 <br><br> 1400 <br><br> 11 <br><br> 237 <br><br> 240 <br><br> 203 <br><br> 192 <br><br> 243 <br><br> 234 <br><br> 236 <br><br> q <br><br> 1600 <br><br> -13 <br><br> 230 <br><br> 238 <br><br> 199 <br><br> 190 <br><br> 242 <br><br> 233 <br><br> 236 <br><br> 10 <br><br> 1800 <br><br> -1 <br><br> 234 <br><br> 244 <br><br> 198 <br><br> 192 <br><br> 245 <br><br> 237 <br><br> 238 <br><br> 11 <br><br> 2000 <br><br> -15 <br><br> 233 <br><br> 246 <br><br> 197 <br><br> 191 <br><br> 247 <br><br> 238 <br><br> 241 I <br><br> mple <br><br> Hb content [mg/dl] <br><br> Recovery 405 nm <br><br> I [%] <br><br> Recovery <br><br> 480 nm <br><br> [%] <br><br> Recovery <br><br> 505 nm [%] <br><br> Recovery <br><br> 546 nm [%] <br><br> Recovery <br><br> 570 nm [%] <br><br> Recovery <br><br> 600 nm <br><br> [%] <br><br> Recovery <br><br> 660 nm [%] <br><br> Recovery I <br><br> 700 nm [%] <br><br> 1 <br><br> 0 <br><br> 100 <br><br> 100 <br><br> 100 <br><br> 100 <br><br> 100 <br><br> 100 <br><br> 100 <br><br> 100 <br><br> 2 <br><br> 200 <br><br> 83 <br><br> 103 <br><br> 104 <br><br> 103 <br><br> 99 <br><br> 104 <br><br> 101 <br><br> 100 <br><br> 3 <br><br> 400 <br><br> 65 <br><br> 107 <br><br> 108 <br><br> 101 <br><br> 98 <br><br> 110 <br><br> 104 <br><br> 105 <br><br> 4 <br><br> 600 <br><br> 48 <br><br> 111 <br><br> 112 <br><br> 103 <br><br> 98 <br><br> 115 <br><br> 109 <br><br> 109 <br><br> 5 <br><br> 800 <br><br> 37 <br><br> 112 <br><br> 115 <br><br> 102 <br><br> 96 <br><br> 113 <br><br> 112 <br><br> 108 <br><br> 6 <br><br> 1000 <br><br> 23 <br><br> 114 <br><br> 114 <br><br> 101 <br><br> 97 <br><br> 116 <br><br> 114 <br><br> 108 <br><br> 7 <br><br> 1200 <br><br> 14 <br><br> 113 <br><br> 117 <br><br> 102 <br><br> 95 <br><br> 119 <br><br> 115 <br><br> 114 <br><br> 8 <br><br> 1400 <br><br> 6 <br><br> 120 <br><br> 121 <br><br> 103 <br><br> 96 <br><br> 122 <br><br> 118 <br><br> 115 <br><br> 9 <br><br> 1600 <br><br> -7 <br><br> 117 <br><br> 120 <br><br> 101 <br><br> 95 <br><br> 122 <br><br> 117 <br><br> 115 <br><br> 10 <br><br> 1800 <br><br> I ' <br><br> - 1 <br><br> 119 <br><br> 123 <br><br> 101 <br><br> 96 <br><br> 123 <br><br> 119 <br><br> 116 <br><br> 11 <br><br> 2000 <br><br> -8 <br><br> 118 <br><br> 124 <br><br> 100 <br><br> 96 <br><br> 124 <br><br> 120 <br><br> 118 | <br><br></p> </div>

Claims (1)

<div class="application article clearfix printTableText" id="claims"> <p lang="en"> - 16 -<br><br> Table 5<br><br> mple<br><br> Hbcontent<br><br> Content at<br><br> Content at<br><br> Content at<br><br> Content at<br><br> Content at<br><br> Content at<br><br> Content at<br><br> Content at<br><br> [mg/dl]<br><br> 405 nm<br><br> 480 nm<br><br> 505 nm<br><br> 546 nm<br><br> 570 nm<br><br> 600 nm<br><br> 660 nm<br><br> 700 nm<br><br> [U/l]<br><br> [U/l]<br><br> [U/l]<br><br> [U/l]<br><br> [U/l]<br><br> [U/l]<br><br> [U/l]<br><br> [U/l]<br><br> 1<br><br> 0<br><br> 88.0<br><br> 93.4<br><br> 93.8<br><br> 92.6<br><br> 90.8<br><br> 92.1<br><br> 93.0<br><br> 91.0<br><br> 2<br><br> 200<br><br> 83.5<br><br> 91.1<br><br> 99.4<br><br> 97.4<br><br> 90.3<br><br> 94.3<br><br> 91.9<br><br> 93.1<br><br> 3<br><br> 400<br><br> 68.5<br><br> 95.0<br><br> 97.5<br><br> 90.6<br><br> 92.5<br><br> 95.6 •<br><br> 87.1<br><br> 99.3<br><br> 4<br><br> 600<br><br> 58.0<br><br> 97.0<br><br> 98.7<br><br> 94.4<br><br> 90.2<br><br> 97.6<br><br> 103.6<br><br> 99.4<br><br> 5<br><br> 800<br><br> 45.0<br><br> 100.2<br><br> 99.1<br><br> 91.3<br><br> 85.6<br><br> 94.2<br><br> 100.7<br><br> 103.0<br><br> 6<br><br> 1000<br><br> 38.6<br><br> 101.8<br><br> 101.5<br><br> 91.4<br><br> 92.3<br><br> 105.3<br><br> 100.9<br><br> 99.4<br><br> 7<br><br> 1200<br><br> 38.1<br><br> 101.4<br><br> 101.1<br><br> 90.3<br><br> 87.8<br><br> 104.7<br><br> 98.0<br><br> 100.8<br><br> 8<br><br> 1400<br><br> 18.0<br><br> 101.4<br><br> 104.8<br><br> 92.0<br><br> 91.6<br><br> 104.9<br><br> 109.3<br><br> 104.6<br><br> q<br><br> 1600<br><br> 22.6<br><br> 104.0<br><br> 104.4<br><br> 94.9<br><br> 90.3<br><br> 103.0<br><br> 99.4<br><br> 104.7<br><br> 10<br><br> 1800<br><br> 20.2<br><br> 102.9<br><br> 102.2<br><br> 91.9<br><br> 94.3<br><br> 102.8<br><br> 106.8<br><br> 94.0<br><br> 11<br><br> 2000 j<br><br> 18.7<br><br> 103.4<br><br> 102.7<br><br> 91.8<br><br> 89.2<br><br> 100.3<br><br> 106.2<br><br> 102.0 I<br><br> ample<br><br> Hb content!<br><br> Recovery<br><br> Recovery<br><br> Recovery<br><br> Recovery<br><br> Recovery<br><br> Recovery<br><br> Recovery<br><br> Recovery<br><br> [mg/dl] I<br><br> 405 nm<br><br> 480 nm<br><br> 505 nm<br><br> 546 nm<br><br> 570 nm<br><br> 600 nm<br><br> 660 nm<br><br> 700 nm<br><br> m<br><br> [%]<br><br> P/o]<br><br> [%]<br><br> [%]<br><br> [%]<br><br> [%]<br><br> [%]<br><br> 1<br><br> o<br><br> 100<br><br> 100<br><br> 100<br><br> 100<br><br> 100<br><br> 100<br><br> 100<br><br> 100<br><br> 2<br><br> 200<br><br> 95<br><br> 98<br><br> 106<br><br> 105<br><br> 99<br><br> 102<br><br> 99<br><br> 102<br><br> 3<br><br> 400<br><br> 78<br><br> 102<br><br> 104<br><br> 98<br><br> 102<br><br> 104<br><br> 94<br><br> 109<br><br> 4<br><br> 600<br><br> 66<br><br> 104<br><br> 105<br><br> 102<br><br> 99<br><br> 106<br><br> 111<br><br> 109<br><br> 5<br><br> 800<br><br> 51<br><br> 107<br><br> 106<br><br> 99<br><br> 94<br><br> 102<br><br> 108<br><br> 113<br><br> 6<br><br> 1000<br><br> 44<br><br> 109<br><br> 108<br><br> 99<br><br> 102<br><br> 114<br><br> 109<br><br> 109<br><br> 7<br><br> 1200<br><br> 43<br><br> 109<br><br> 108<br><br> 98<br><br> 97<br><br> 114<br><br> 105<br><br> 111<br><br> 8<br><br> 1400<br><br> 20<br><br> 109<br><br> 112<br><br> 99<br><br> 101<br><br> 114<br><br> 118<br><br> 115<br><br> 9<br><br> 1600<br><br> 26<br><br> 111<br><br> 111<br><br> 102<br><br> 99<br><br> 112<br><br> 107<br><br> 115<br><br> 10<br><br> 1800<br><br> 23<br><br> 110<br><br> 109<br><br> 99<br><br> 104<br><br> 112<br><br> 115<br><br> 103<br><br> 11<br><br> 2000 |<br><br> 21<br><br> 111<br><br> 110<br><br> 99<br><br> 98<br><br> 109<br><br> 114<br><br> 112 |<br><br> 04 CM<br><br> 4&gt;-CO<br><br> 33 149<br><br> - 17 -<br><br> 8U1" 33 1 49 1<br><br> 1. Method for the determination of an analyte in a sample containing free haemoglobin by optical toichromatic measurement at a main and secondary wavelength,<br><br> wherein a secondary wavelength above 475 nm is used in which absorption bands of haemoglobin are located.<br><br> 2. Method as claimed in claim 1,<br><br> wherein a secondary wavelength in the range of 546 ± 10 nm is used.<br><br> 3. Method as claimed in claim 1,<br><br> wherein a secondary wavelength in the range of 570 ± 10 nm is used.<br><br> 4. Method as claimed in one of the claims 1-3, wherein a test is carried out which is based on a measurement of the increase or decrease of the concentration of NADH or NADPH in the sample.<br><br> 5. Method as claimed in claim 4,<br><br> wherein a main wavelength in the range of 340 ± 10 nm is used.<br><br> IN I LLLfcl I UAL PROPERTY OFFICE<br><br> OF N.Z.<br><br> 18 FEB 1999 ..Received<br><br> 33149<br><br> - 18 -<br><br> 6. Method as claimed in one of the claims 1-5,<br><br> wherein the content of an analyte is determined selected from the group comprising ammonia, creatine kinase and isoenzymes thereof and lactate, dehydrogenase and isoenzymes thereof.<br><br> 7. Method as claimed in claim 6,<br><br> wherein ammonia is determined.<br><br> 8. Method as claimed in claim 6,<br><br> wherein creatine kinase or/and the creatine kinase isoenzyme CK-MB is determined.<br><br> 9. Method as claimed in claim 6,<br><br> wherein lactate dehydrogenase or/and the lactate dehydrogenase isoenzyme HBDH is determined.<br><br> 10. Method as claimed in one of the claims
1-9,<br><br> wherein a sample is determined which contains a blood substitute.<br><br> 11. Method as claimed in one of the claims l-l0, wherein the determination is carried out on a serum or plasma sample.<br><br> 33149 1<br><br> 12. Method as claimed in one of che claims l-ll, wherein the determination is carried out in an automated analyzer<br><br> 13. Method for the determination of an analyte in a sample as defined in claim 1 substantially as herein described with reference to any example thereof.<br><br> By fcifcVthalr autbortofd Agents<br><br> A.J. PAftK &amp; SON.<br><br> end of claims<br><br> INTELLECTUAL PROPERTY OFFICE OF N.Z.<br><br> 18 FEB 1999<br><br> RECEIVED<br><br> </p> </div>
NZ331491A 1996-05-31 1997-05-30 Process to eliminate haemoglobin errors when analysing medical samples using a main and a secondary measuring wavelength NZ331491A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19622090A DE19622090A1 (en) 1996-05-31 1996-05-31 Methods for eliminating hemoglobin disorders when analyzing medical samples
PCT/EP1997/002835 WO1997045733A1 (en) 1996-05-31 1997-05-30 Process to eliminate haemoglobin errors when analysing medical samples

Publications (1)

Publication Number Publication Date
NZ331491A true NZ331491A (en) 1999-04-29

Family

ID=7795917

Family Applications (1)

Application Number Title Priority Date Filing Date
NZ331491A NZ331491A (en) 1996-05-31 1997-05-30 Process to eliminate haemoglobin errors when analysing medical samples using a main and a secondary measuring wavelength

Country Status (17)

Country Link
EP (1) EP0906570B1 (en)
JP (1) JPH11510902A (en)
KR (1) KR20000010767A (en)
CN (1) CN1216614A (en)
AT (1) ATE198670T1 (en)
AU (1) AU3093597A (en)
CA (1) CA2255851A1 (en)
CZ (1) CZ389598A3 (en)
DE (2) DE19622090A1 (en)
DK (1) DK0906570T3 (en)
ES (1) ES2154463T3 (en)
HU (1) HUP9903344A2 (en)
IL (1) IL127275A0 (en)
NZ (1) NZ331491A (en)
PL (1) PL330220A1 (en)
TW (1) TW407202B (en)
WO (1) WO1997045733A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19846300A1 (en) 1998-10-08 2000-04-13 Roche Diagnostics Gmbh Optical assay for determining alkaline phosphatase in samples uses a specified primary measurement wavelength in combination with a rate blank correction
DE19846301A1 (en) 1998-10-08 2000-04-13 Roche Diagnostics Gmbh Optical assay for determining alkaline phosphatase in samples uses specified primary and secondary measurement wavelengths
CN113502318A (en) * 2021-08-19 2021-10-15 东软威特曼生物科技(南京)有限公司 Creatine kinase isoenzyme CK-MB detection kit and detection method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4627014A (en) * 1984-04-09 1986-12-02 Eastman Kodak Company Method and apparatus for determination of an analyte and method of calibrating such apparatus

Also Published As

Publication number Publication date
KR20000010767A (en) 2000-02-25
EP0906570B1 (en) 2001-01-10
CN1216614A (en) 1999-05-12
TW407202B (en) 2000-10-01
ATE198670T1 (en) 2001-01-15
ES2154463T3 (en) 2001-04-01
PL330220A1 (en) 1999-05-10
HUP9903344A2 (en) 2001-03-28
DE59702900D1 (en) 2001-02-15
CA2255851A1 (en) 1997-12-04
JPH11510902A (en) 1999-09-21
CZ389598A3 (en) 1999-07-14
AU3093597A (en) 1998-01-05
IL127275A0 (en) 1999-09-22
DK0906570T3 (en) 2001-03-05
EP0906570A1 (en) 1999-04-07
DE19622090A1 (en) 1997-12-04
WO1997045733A1 (en) 1997-12-04

Similar Documents

Publication Publication Date Title
US5310679A (en) Composition for reducing turbidity in samples of biological fluids
Liu et al. Direct enzymatic assay for% HbA1c in human whole blood samples
WO1996034977A1 (en) Determination of glycated proteins
Mashiba et al. Measurement of glycated albumin by the nitroblue tetrazolium colorimetric method
CN111944872A (en) Reagent combination, reagent or kit for measuring creatinine content
EP0632133B1 (en) Highly sensitive determination of d-3-hydroxybutyric acid or acetoacetic acid and composition therefor
Jiao et al. An enzymatic assay for erythrocyte creatine as an index of the erythrocyte life time
Akai et al. Salivary urea nitrogen as an index to renal function: a test-strip method.
NZ331491A (en) Process to eliminate haemoglobin errors when analysing medical samples using a main and a secondary measuring wavelength
Buttery et al. A simple enzymatic method for the measurement of abnormal levels of formate in plasma
JPH02104298A (en) Quantification of 1,5-anhydroglucitol
Baydanoff et al. Non-enzymatic glycation of elastin
Purcell et al. Evaluation of the BMC glucose oxidase/peroxidase-4-aminophenazone-phenol procedure for glucose as adapted to the Technicon SMAC.
JP2005261383A (en) Calibration method
US5888828A (en) Kit for measuring urea nitrogen
MXPA98008532A (en) Procedure for the elimination of hemoglobin interferences in the analysis of medium samples
Rindfrey et al. Kinetic determination of glucose concentrations with glucose dehydrogenase
JP3598273B2 (en) Method for measuring alkaline phosphatase while eliminating hemoglobin interference
Sampson et al. Effects of specimen turbidity and glycerol concentration on nine enzymatic methods for triglyceride determination
US4348208A (en) Uric acid assay and reagent system therefor
JP4602595B2 (en) Total protein quantification method and quantification reagent
CN111321199B (en) Glutamic acid concentration determination reagent
JPH0731498A (en) Determination kit for 1,5-anhydroglucitol and determination method using the kit
JP4731733B2 (en) Determination of homocysteine in cysteine coexisting samples
Gottschling et al. Evaluation of metabolic control in type 1 (insulin-dependent) diabetic patients by estimation of serum fructosamine