NZ204032A - Process for producing tert butyl alkyl ethers - Google Patents

Process for producing tert butyl alkyl ethers

Info

Publication number
NZ204032A
NZ204032A NZ204032A NZ20403283A NZ204032A NZ 204032 A NZ204032 A NZ 204032A NZ 204032 A NZ204032 A NZ 204032A NZ 20403283 A NZ20403283 A NZ 20403283A NZ 204032 A NZ204032 A NZ 204032A
Authority
NZ
New Zealand
Prior art keywords
butene
isobutene
tert
butyl alkyl
hydrocarbon
Prior art date
Application number
NZ204032A
Inventor
Maglie B De
Original Assignee
Snam Progetti
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snam Progetti filed Critical Snam Progetti
Publication of NZ204032A publication Critical patent/NZ204032A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/05Preparation of ethers by addition of compounds to unsaturated compounds
    • C07C41/06Preparation of ethers by addition of compounds to unsaturated compounds by addition of organic compounds only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

A process for synthesising t-butyl alkyl ethers is combined with a process for isomerising butene-1 and/or butene-2 in order to increase the ether yield. A C4 hydrocarbon feedstock (1) containing isobutene but free of butadiene is reacted (4) with an alkanol (6) and the ether product (5) is separated from residual hydrocarbons (7), (8); the latter are fractionated to separate saturated hydrocarbons (10), (14), from the butene-1 (12) and the butene-2 (15); the butene-1 and/or butene-2 are isomerised (16) to a product (2) containing isobutene which is recycled to reactor (4).

Description

<div class="application article clearfix" id="description"> <p class="printTableText" lang="en">2 040 <br><br> Priority Dste{s): ... .4?. ..... <br><br> Ccitv£v?s'»« Specification Filed: <br><br> Class: ... .. tPPftt I <br><br> Publication Date: ... .^ P. ^Pft1385 .. ■ P.O. Journal, No: ... . \^P?. <br><br> No.: Date: <br><br> NEW ZEALAND <br><br> PATENTS ACT, 1953 <br><br> Jin <br><br> r&gt;v*o_ <br><br> COMPLETE SPECIFICATION PROCESS FOR PRODUCING TERT.BUTYL £LKYL ETHERS <br><br> *7 We, SNAMPPQGETTI S.p.A., a carrpany organized under the law of the Italian republic of Corso Venezia IS, Milan, Italy hereby declare the invention for which J*3/ we pray that a patent may be granted to m^/us, and the method by which it is to be performed, to be particularly described in and by the following statement: ~ <br><br> - 1 - <br><br> (followed by page la) <br><br> 204032 <br><br> esSE-ihtifS <br><br> - le*- <br><br> This invention relates to a process for producing tert.butyl alkyl ethers. <br><br> More particularly, the present invention relates to a process for 5 producing tert.butyl methyl ether. <br><br> Many processes are known in the art for producing tert.butyl alkyl ethers, consisting of reacting isobutene, contained in hydrocarbon streams of various origin and in particular in the scream originating from steam cracking, catalytic cracking or dehydrogenation of -isobutane, 10 with an alcohol, preferably methanol or ethanol, in the presence of an acid ion exchange resin. <br><br> In this respect, reference can be made to SB patents 1,506,596, 1,506,461, 1,506,312 and 1,505,404. <br><br> The known processes allow an almost total isobutene conversion, but 15 the other components remain practically unchanged, and cannot therefore be used as such directly as petrol components. <br><br> The process according to the present invention allows the conversion of part of the components of the hydrocarbon feedstock with 4 carbon atoms, other than isobutene, into tert.butyl alkyl ethers, together 20 with the isobutene originally contained in said feedstock. <br><br> The process according to the present invention consists of the following stages: <br><br> 1) Feeding the hydrocarbon feedstock, either free or substantially free of butadiene, to a tert.butyl alkyl ether synthesis 25 section, said section containing a catalyst constituted by an acid ion exchange resin, preferably of the sulphonated divinylbenzene-styrene type. <br><br> . 2) Reacting the isobutene contained in the hydrocarbon feedstock <br><br> O V " - r - ■ <br><br> ':.Cr <br><br> 2 ^4 0 3 2 <br><br> _ 2 _ <br><br> of point 1) with an aliphatic alcohol fed to said synthesis section, the molar ratio of the alcohol to. the isobutene being between 0.9 and 1.3, the reaction product being a tert.butyl alkyl ether. <br><br> 3) Separating the tert.butyl alkyl ether from the hydrocarbons <br><br> 5 by distillation either in the same reaction zone or in a separate zone. <br><br> 4) Fractionation of the residual hydrocarbon feed in two or three stages at a temperature of between 40°C and 130°C and a pressure of between 4 ata and 26 ata, using between 100 and 220 plates to separate the saturated hydrocarbons (butane and isobutane) from the <br><br> 10 butene-1 and butene-2. <br><br> 5) Feeding the butene-1 and/or butene-2. and the unseparated saturated components of stage 4) to an isomerisation stage in which the butene-1 and/or butene-2 are partl3r converted into isobutene, to obtain, <br><br> whatever the starting olefin or the starting mixture, a hydrocarbon <br><br> 15 fraction containing essentially butene-1, butene-2 and isobutene in which the butene-1/butene-2 molar ratio corresponds practically to thermodynamic equilibrium, whereas the isobutene/linear butene molar ratio lies between 0.6 and 0.3. <br><br> 6) Separating the hydrocarbon fraction containing butene-1, butene-2 20 ana isobutene from the heavy products. <br><br> 7) Feeding the hydrocarbon fraction containing butene-1, butene-2 and isobutene, and possibly also part of the heavy and saturated components, <br><br> to the tert.butyl alkyl ether synthesis section, either directly or after mixing with the hydrocarbon stream which is free or substant- <br><br> 25 ially free of butadiene. The C hydrocarbon feedstock pobbibly also contains C_ and C components.^ <br><br> The feedstock normally comprises C3 hydrocarbons, isobutane, <br><br> isobutene, butene-1, n-butane, trans butene-2, cis butene-2, and C5 hydrocarbons. The C-3 and C5 hydrocarbons are in small quantities, <br><br> 204032 <br><br> and the others can be in relative quantities which vary greatly According to its origin. <br><br> In order to obtain a constant molar ratio between butene-1, butene-2 and isobutene, isomerisation of the butene-1 and/or butene-2 is 5 carried out using a process such as that described in GB patent 1,505,404, with a catalyst based on silicised alumina such as that described in USA patents 4,013,589 and 4,013,590. <br><br> It is interesting to note that the process according to the present invention enables not only the tert.butyl alkyl ether to be obtained, 10 but possibly also pure butene-1 or alternatively butene-2, which car-be used for purposes other than those mentioned herein. <br><br> The process according to the present invention is therefore vary versatile, and it has been found that even significant variations in the isobutene content of the stream fed to the synthesis section do not 15 change the operating conditions of said synthesis. <br><br> The process according to the present invention is illustrated hereinafter in a flon-limiting manner with reference to the scheme of the accompanying figure. <br><br> In it, (1) indicates the hydrocarbon feedstock free or substantially 20 free of butadiene, (2) the stream from the isomerisation reactor (13) comprising butene-1, butene-2 and isobutene, and a certain quantity of saturated hydrocarbons, (3) the total stream of (1) and (2), (4) the synthesis unit for the tert.butyl methyl ether (MTBE), (5) the MT3E stream, (6) the methanol stream fed to the synthesis section, (7) the 25 fraction substantially free of isobutene, (15) a possible selective hydrogenation stage for the residual butadiene ar.d any acetylenic compounds, (8) the feed stream to the fractionation scction for the saturated hydrocarbons and olefins, (9) the column for separating the <br><br> 2 04 0 3 2' <br><br> - 4 - <br><br> isobutane (10), (11) the column for separating the butene-1 (12), and (13) the column for separating the n-butane (14) from the cis and trans butene-2 (15). <br><br> The butene-1 stream (12) can be fed to the isomerisation reactor (16) 5 through the line (17), or can be discharged at the required purity through the line (18). (20) represents the hydrogen stream. <br><br> Table 1 illustrates by way of non-limiting example some experimental operating conditions together with the relative results obtained by the process according to the invention, with reference to Figure 10 using the selective hydrogenation unit (19) and the hydrogen stream (20), but without recycling the butene-1 to the isomerisation zone. <br><br> TABLE 1. <br><br> Position <br><br> I <br><br> 1 <br><br> 2 <br><br> 3 <br><br> 8 <br><br> 10 <br><br> 12 <br><br> 14 <br><br> 15 <br><br> 20 <br><br> | <br><br> j1kg/hr <br><br> 1% p. | <br><br> kg/hr <br><br> \% p. <br><br> Kg/hr <br><br> !/o p.. <br><br> kg/hr <br><br> % p. <br><br> kg/hr <br><br> % p. <br><br> kg/hr <br><br> 1 % p. | <br><br> kg/hr1 | <br><br> % p. <br><br> 1 kg/hr1 % p.1 <br><br> kg/hr <br><br> % p. <br><br> H2 <br><br> 1 <br><br> 1 <br><br> - <br><br> 1 - <br><br> - <br><br> 1 - <br><br> 14 <br><br> 0.1 <br><br> 14 <br><br> 0.3 <br><br> - <br><br> | <br><br> | <br><br> - <br><br> 1 1 1 <br><br> t I 1 <br><br> 22 <br><br> 100 <br><br> C3 hydrocarbons <br><br> 1 <br><br> 1 192 <br><br> 1 <br><br> I 0.5 <br><br> 176 <br><br> J 1.9 <br><br> 368 <br><br> I 0.8 <br><br> 368 <br><br> 1.2 <br><br> 368 <br><br> . 8.0 <br><br> - <br><br> 1 <br><br> I <br><br> - <br><br> ( i 1 <br><br> - <br><br> - <br><br> isobutane j 504 <br><br> 1 <br><br> 1.3 <br><br> 40 <br><br> | 0.4 <br><br> 544 <br><br> I,1*2 <br><br> 544 <br><br> 1.8: <br><br> 516 <br><br> 11.2 <br><br> 28 <br><br> 1 <br><br> 0.2 <br><br> - i <br><br> - <br><br> 1 1 1 <br><br> - <br><br> - <br><br> isobutene <br><br> .15520 <br><br> i40.8 <br><br> 2304 <br><br> | 25.4 <br><br> 17824 <br><br> '1 <br><br> 37.9 <br><br> 146 <br><br> 0.5 <br><br> 30 <br><br> 0.7 <br><br> 114 <br><br> | 0.9 <br><br> 1 <br><br> 2 j <br><br> 0.1 <br><br> 1 1 _ 1 <br><br> - <br><br> - <br><br> butene-1 <br><br> [15374 <br><br> 1 <br><br> 140.5 <br><br> 1786 <br><br> | 19.7 <br><br> 17160 <br><br> 1 <br><br> 36.4 <br><br> 16988 <br><br> 57.8 <br><br> 3500 <br><br> 76.1' <br><br> 12877 <br><br> 1 <br><br> 98.6 <br><br> 1 <br><br> 603 j <br><br> 24.2 <br><br> 1 I 1 1 ® 1 O'-M <br><br> - <br><br> - <br><br> 1,3-butadiene <br><br> | 114 <br><br> I <br><br> 0.3 <br><br> - <br><br> | - <br><br> 114 <br><br> 1 <br><br> 0.2 <br><br> - <br><br> - <br><br> - <br><br> - <br><br> - <br><br> j - <br><br> i <br><br> 1 . 1 . 1 <br><br> - <br><br> - <br><br> n-butane ji 1005 <br><br> 1 <br><br> 2.7 <br><br> 288 <br><br> j 3.2 <br><br> 1293 <br><br> 1 2,7 <br><br> 1460 <br><br> 5.0 <br><br> 38 <br><br> 0.8 <br><br> ■ ' 33 <br><br> I 0*3 <br><br> 1181 | <br><br> 47.3 <br><br> j 208 | 2.2i <br><br> - <br><br> - <br><br> trans butene-2 <br><br> !i 327 7 <br><br> 1 <br><br> 8.6 <br><br> 2285 <br><br> | 25.2 <br><br> 5562. <br><br> 1 <br><br> 11.8 <br><br> 5734 <br><br> 13.5 <br><br> 85 <br><br> 1.9 <br><br> - <br><br> 1 <br><br> 1 <br><br> 542 j <br><br> ' 21.7 <br><br> r 5107 j 55.2| <br><br> - <br><br> - <br><br> cis butene-2 <br><br> ! | 2016 <br><br> | 5.3 <br><br> 2128 <br><br> | 23.4 <br><br> 4144 <br><br> j 8.8 <br><br> 4144 <br><br> 14.1 <br><br> 47 <br><br> 1.0 <br><br> - <br><br> I <br><br> 1 <br><br> 168' i <br><br> 6.7 <br><br> i3929 i 42.5i <br><br> - <br><br> - <br><br> Cj hydrocarbons <br><br> - <br><br> 1 _ <br><br> 74 <br><br> 0.8 <br><br> .74 <br><br> 0.2 <br><br> - <br><br> - , <br><br> - <br><br> - <br><br> ! ~ ' i <br><br> ! <br><br> - <br><br> 1 _ 1 - 1 <br><br> TOTAL <br><br> 38002 <br><br> 1 <br><br> i t <br><br> '100. c <br><br> 9081 <br><br> 'lOO.O <br><br> 47083 <br><br> 'lOO.O <br><br> 29398 <br><br> 100.0 <br><br> 4598 <br><br> 100.0 <br><br> 13052 <br><br> 'lOO.O <br><br> 1 <br><br> 2496 1 <br><br> 100. Q <br><br> '9252 'lOO.O' <br><br> 22 <br><br> ^ 100 <br><br> • i <br><br> -6 - <br><br> &amp;0)+0~b3L <br><br> Table 2 illustrates by way of non-limiting example some experimental operating conditions and the results obtained by the process according to the invention, again with reference to Figure , without using the selective hydrogenation zone (19) but recycling the butene-1 to the isomerisation zone. <br><br> • • <br><br> TABLE 2 <br><br> Position <br><br> 1 <br><br> , <br><br> ' • <br><br> 2 <br><br> 3 <br><br> 8- <br><br> 1 <br><br> 10 <br><br> 12 ' <br><br> 14 <br><br> 1 <br><br> 5 <br><br> ■ 1 1 '1— <br><br> 21 <br><br> kg/hr <br><br> % p. <br><br> kg/hr <br><br> % p. <br><br> kg/hr <br><br> % p. <br><br> kg/h <br><br> % p. <br><br> kg/hr <br><br> % p. <br><br> kg/hr <br><br> % p. <br><br> kg/hr <br><br> % p. <br><br> kg/hr <br><br> % p. <br><br> kg/hr <br><br> % p • <br><br> Cg hytirocarbons <br><br> 161 <br><br> 0.5 <br><br> ' 689 <br><br> • 2.0 <br><br> 850 <br><br> 1.3 <br><br> 850 <br><br> 1.9 <br><br> 850 <br><br> 16.7 <br><br> - <br><br> - <br><br> - <br><br> - <br><br> - <br><br> - <br><br> ~ ' <br><br> isobutane <br><br> 422 <br><br> 1.3 <br><br> 279 <br><br> 0.8 <br><br> 701 <br><br> 1.1 <br><br> 701 <br><br> 1.6 <br><br> 588 <br><br> 11.6 <br><br> 113 <br><br> 0.7 <br><br> - <br><br> - <br><br> • - <br><br> •• <br><br> 113 <br><br> 0.3 <br><br> isobutene <br><br> 12990 <br><br> 41.0 <br><br> 9023 <br><br> 25.5 <br><br> 22021 <br><br> 32.8 <br><br> 227 <br><br> 0.5 <br><br> 38 <br><br> 0.7 <br><br> 185 <br><br> - 1.2 <br><br> 4 <br><br> o.i <br><br> 185 <br><br> ■0.5 <br><br> butene-1 <br><br> 12876 <br><br> 40.6 <br><br> 6994 <br><br> 19.8 <br><br> 19870 <br><br> 29.6 <br><br> 19671 <br><br> 43.7 <br><br> 3262 <br><br> 64.1 <br><br> 15666 <br><br> 97.8 <br><br> 728 <br><br> 19.8 <br><br> 15 <br><br> 0.1 <br><br> 15681 <br><br> 43.3 <br><br> n-butane <br><br> 842 <br><br> 2.7 <br><br> 785 <br><br> 2.2 <br><br> 1627 <br><br> 2.4 <br><br> 1627 <br><br> 3.6 <br><br> 63 <br><br> 1.2 <br><br> 53 <br><br> 0.3 <br><br> 1111 <br><br> 30.3 • <br><br> 400 <br><br> 2.0 <br><br> 453 <br><br> 1.3 <br><br> trans butene-2 <br><br> 2744 <br><br> 8.6 <br><br> 8951 <br><br> 25.3 <br><br> 11695 <br><br> 17.4 <br><br> 11894 <br><br> 26.4 <br><br> 177 <br><br> 3.5 <br><br> - <br><br> 1717 <br><br> ' 46.7 <br><br> 10000 <br><br> 49.5 <br><br> 10000 <br><br> 27.6 <br><br> cis butene-2 <br><br> 1688 <br><br> 5.3 <br><br> 8335 <br><br> 23.6 <br><br> 10023 <br><br> 15.0 <br><br> 10023 <br><br> 22.3 <br><br> 113 <br><br> 2,2 <br><br> - <br><br> - <br><br> 115 <br><br> 3.1 <br><br> 9795 <br><br> 43.4 <br><br> 9795 <br><br> 27.0 <br><br> Cg hydrocarbons <br><br> - <br><br> - <br><br> 290 <br><br> C.8 <br><br> 290 <br><br> 0.4 <br><br> - <br><br> - <br><br> t } <br><br> - <br><br> J ^ <br><br> - <br><br> - <br><br> - <br><br> - <br><br> - <br><br> - <br><br> TOTAT. <br><br> 31731 (lOO.O <br><br> 35346 <br><br> 100.0 <br><br> 67077 <br><br> 100.0 <br><br> 44993 <br><br> 100.0 <br><br> 5091 <br><br> 100.0 <br><br> 16017 <br><br> 100.0 <br><br> 3675 <br><br> 100.0 <br><br> 20210 <br><br> 100.0 <br><br> 36227 <br><br> 100.0 <br><br></p> </div>

Claims (6)

<div class="application article clearfix printTableText" id="claims"> <p lang="en"> CAGE iSjM 0 j 2<br><br> what;^WE CLaim ^ 8_<br><br> CLAiiiS;<br><br> i, —<br><br>
1. A process for producing tert.butyl alkyl ethers from a hydrocarbon feedstock optionally also containing and components from which the butadiene has previously been separated, consisting of<br><br> 5 feeding the hydrocarbon feedstock free or substantially free of butadiene to a tert.butyl alkyl ether synthesis section containing a catalyst constituted by an acid ion exchange resin,- —<br><br> reacting the isobutene contained in the hydrocarbon feedstock with an aliphatic alcohol 10 in order to produce a tert.butyl alkyl ether, and separating the tert.but.yl alkyl ether from the residual hydrocarbons, characterised in that the residual hydrocarbons are subjected to fractionation in two or three stages in order to separate the saturated hydrocarbons from the butene-1 and butene-2, and the butene-1 and/or butene-2 are 15 fed to an isomerisation stage where they are partly converted into isobutene to obtain a hydrocarbon fraction containing essentially butene-1, butene-2 and isobutene together with heavy products, the hydrocarbon fraction containing essentially butene-1, butene-2 and isobutene and cptianaHy part of the heavy and saturated components 20 being fed to the tert.butyl alkyl ether synthesis reaction.<br><br>
2. A process as claimed in claim 1 or 6, wherein the butene-1, butene -2 and isobutene are present in the hydrocarbon fraction obtained from the isomerisation stage in such proportions that the butene-1/<br><br> butene-2 molar ratio corresponds to thermodynamic equilibrium, whereas<br><br> 25 the isobutene/linear butene molar ratio lies betueen 0.6 and 0.
3.<br><br> 3 • A process as claxmed in claim 1, 2 or 6, viierein the hydrocarbon1<br><br> fraction obtained from the butene-1 and/or butene-2 isomerisation stage is fed to the synthesis section after mixing with the C,<br><br> 4<br><br> or •' "" L. U n uO<br><br> - 9 -<br><br> hydrocarbon stream free or substantially free of butadiene.<br><br>
4. A process as claimed in any one of claims 1 to 3 and 6 wherein the iscmerisaticn stage is effected by feeding only the cis and trans butene-2.<br><br>
5. A process for producing tert.butyl alkyl ethers substantially as herein described with reference to the acccsroanying drawing.<br><br>
6. A process as claimed in claim 1 wherein the acid ion exchange resin is a sulphonated divinylbenzene styrene resin.<br><br> &lt;o<br><br> By h£&amp;/thetr authorised Agents.^ \ J. PARK &amp; SON'.<br><br> </p> </div>
NZ204032A 1982-05-20 1983-04-28 Process for producing tert butyl alkyl ethers NZ204032A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT21384/82A IT1151183B (en) 1982-05-20 1982-05-20 PROCEDURE FOR THE PRODUCTION OF TER-BUTYL ALCHYL ETHERS

Publications (1)

Publication Number Publication Date
NZ204032A true NZ204032A (en) 1985-04-30

Family

ID=11180967

Family Applications (1)

Application Number Title Priority Date Filing Date
NZ204032A NZ204032A (en) 1982-05-20 1983-04-28 Process for producing tert butyl alkyl ethers

Country Status (30)

Country Link
JP (1) JPS58210039A (en)
KR (1) KR860001854B1 (en)
AU (1) AU1401783A (en)
BE (1) BE896787A (en)
BG (1) BG37678A3 (en)
BR (1) BR8302433A (en)
CA (1) CA1220230A (en)
CH (1) CH653664A5 (en)
DD (1) DD209803A5 (en)
DE (1) DE3318301A1 (en)
DK (1) DK221683A (en)
ES (1) ES523006A0 (en)
FR (1) FR2527202B1 (en)
GB (1) GB2121407B (en)
GR (1) GR78857B (en)
IN (1) IN159788B (en)
IT (1) IT1151183B (en)
LU (1) LU84805A1 (en)
MW (1) MW1883A1 (en)
NL (1) NL8301819A (en)
NO (1) NO831759L (en)
NZ (1) NZ204032A (en)
PH (1) PH19481A (en)
PL (1) PL242093A1 (en)
PT (1) PT76730B (en)
SE (1) SE8302577L (en)
TR (1) TR21617A (en)
YU (1) YU110083A (en)
ZA (1) ZA833068B (en)
ZW (1) ZW9783A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4731490A (en) * 1986-07-23 1988-03-15 Arco Chemical Company Process for methyl, tertiary butyl ether production
FR2614297B1 (en) * 1987-04-24 1989-07-21 Inst Francais Du Petrole PROCESS FOR PRODUCING METHYL-TERTIOBUTYL-ETHER FROM N-BUTENES.
CA2111018A1 (en) * 1993-01-06 1994-07-07 Jacob N. Rubin Integrated mtbe process
FR2710907B1 (en) * 1993-10-08 1996-01-05 Inst Francais Du Petrole Process for the production of tertiary ethers from a catalytic cracking charge comprising two stages of extractive distillation.
IT1270675B (en) 1994-10-19 1997-05-07 Enichem Spa PROCEDURE FOR THE SEPARATION OF PARAFFINS IN MIXTURE WITH OLEFINS
CN103755512B (en) * 2013-12-24 2016-01-06 山东滨州裕华化工厂有限公司 The technique of liquefied gas separation of C 4 cut after ether

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1224294B (en) * 1961-01-09 1966-09-08 Bayer Ag Process for the production of tertiary butyl alkyl ethers
FR2455019A1 (en) * 1979-04-24 1980-11-21 Inst Francais Du Petrole PROCESS FOR PRODUCING METHYLTERTIOBUTYL ETHER FROM METHANOL AND ISOBUTENE
DE2921576A1 (en) * 1979-05-28 1980-12-04 Davy International Ag METHOD FOR THE PRODUCTION OF METHYL-TERT.-BUTYLAETHER

Also Published As

Publication number Publication date
GB2121407A (en) 1983-12-21
DD209803A5 (en) 1984-05-23
DE3318301A1 (en) 1983-11-24
TR21617A (en) 1984-12-14
NL8301819A (en) 1983-12-16
MW1883A1 (en) 1985-02-13
IT1151183B (en) 1986-12-17
DK221683A (en) 1983-11-21
SE8302577D0 (en) 1983-05-05
YU110083A (en) 1986-02-28
CA1220230A (en) 1987-04-07
KR860001854B1 (en) 1986-10-24
PH19481A (en) 1986-05-14
BG37678A3 (en) 1985-07-16
DK221683D0 (en) 1983-05-18
IN159788B (en) 1987-06-06
FR2527202B1 (en) 1985-07-05
SE8302577L (en) 1983-11-21
BE896787A (en) 1983-11-21
FR2527202A1 (en) 1983-11-25
CH653664A5 (en) 1986-01-15
PL242093A1 (en) 1984-07-02
GB2121407B (en) 1986-02-12
ZW9783A1 (en) 1983-08-10
ES8500206A1 (en) 1984-10-01
ES523006A0 (en) 1984-10-01
IT8221384A0 (en) 1982-05-20
JPS58210039A (en) 1983-12-07
KR840004711A (en) 1984-10-24
GB8313098D0 (en) 1983-06-15
ZA833068B (en) 1984-04-25
LU84805A1 (en) 1984-03-07
PT76730B (en) 1986-04-09
AU1401783A (en) 1983-12-01
NO831759L (en) 1983-11-21
BR8302433A (en) 1984-01-17
GR78857B (en) 1984-10-02
PT76730A (en) 1983-06-01

Similar Documents

Publication Publication Date Title
KR102371934B1 (en) Dehydrogenation of lpg or ngl and flexible utilization of the olefins thus obtained
US4513153A (en) Integrated process for producing tert.butyl alkyl ethers and butene-1
TWI586642B (en) Propylene via metathesis with low or no ethylene
CN101573313B (en) Oxygenate conversion to olefins with metathesis
US4423251A (en) Process employing sequential isobutylene hydration and etherification
US20050043571A1 (en) Obtaining tert-butanol
US5382707A (en) Integrated MTBE process
US5563299A (en) Integrated process for the simultaneous production of alkyl tert-butyl ethers and 1-butene
TW201012790A (en) Integrated propylene production
WO2010081705A1 (en) Process for obtaining high-purity 1-butene from c4 hydrocarbon mixtures
CA1066724A (en) Process for the synthesis of alkyl-ter-butyl ethers starting from a primary alcohol and isobutylene in presence of butadiene
CZ302356B6 (en) Process for preparing methyl-tert-butyl ether and Ci4-hydrocarbon mixture
NZ203293A (en) Production of tert-butyl alkyl ethers in the presence of butadiene
JP3854650B2 (en) Olefin metathesis
US6005150A (en) Process for the production of butene-1 from a mixture of C4 olefins
US6156947A (en) Process for the production of butene-1 from a mixture of C4 olefins
IE43301B1 (en) Process for producing tertiary alkyl ethers
JP2691223B2 (en) Increasing 2-methyl-2-butene concentration in isoamylene
US5994594A (en) Process for producing an alpha olefin, a tertiary olefin and/or an ether from an unsaturated hydrocarbon cut
NZ204032A (en) Process for producing tert butyl alkyl ethers
US6049020A (en) Process for producing an ether and an olefin from a hydrocarbon cut containing at least one tertiary olefin by synthesising then decomposing an ether, comprising a first step for purifying the olefin by fractionation
US11124470B2 (en) Systems and methods of producing methyl tertiary butyl ether and propylene
US6949671B2 (en) Process for the production of acetic acid C4-esters
US5750800A (en) Process for producing diisopropyl ether from propane
WO2014077997A1 (en) Process to produce linear pentenes and metathesis thereof