NO790816L - FLAME DELAYING POLYMER MATERIALS - Google Patents

FLAME DELAYING POLYMER MATERIALS

Info

Publication number
NO790816L
NO790816L NO790816A NO790816A NO790816L NO 790816 L NO790816 L NO 790816L NO 790816 A NO790816 A NO 790816A NO 790816 A NO790816 A NO 790816A NO 790816 L NO790816 L NO 790816L
Authority
NO
Norway
Prior art keywords
approx
parts
weight
vinyl acetate
copolymer
Prior art date
Application number
NO790816A
Other languages
Norwegian (no)
Inventor
Melvin Frederick Maringer
Lawrence Alan Meeks
William Kenneth Hanna Jr
Original Assignee
Nat Distillers Chem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Distillers Chem Corp filed Critical Nat Distillers Chem Corp
Publication of NO790816L publication Critical patent/NO790816L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/28Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/02Homopolymers or copolymers of esters of monocarboxylic acids
    • C08L31/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/28Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
    • C08L23/286Chlorinated polyethylene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

Denne oppfinnelse angår polymere, brannhemmende materialer med forbedrede egenskaper, hvilke materialer egner seg spesielt godt for overtrekning av elektriske ledere. This invention relates to polymeric, fire-retardant materials with improved properties, which materials are particularly suitable for coating electrical conductors.

Industrien søker stadig å finne frem til nye brannherdi-ge polymere materialer til erstatning av de eksisterende produk-ter og/eller for å tilfredsstille fordringene fra nye anvendelsesområder. Et av de viktigste områder hvor ildfaste polymere materialer finner anvendelse, er de elektriske applikasjoner for hvilke det efterstrebes gode fysikalske egenskaper, isolasjons-egenskaper og ildfaste egenskaper. En særlig viktig anvendelse på dette område er anvendelsen som isolasjonsmateriale i elektriske ledningsnett for biler. For mange applikasjoner krever denne type ledningsnett også motstandsdyktighet mot olje. Typi-ske anvendelsesområder innbefatter primærledningsnett, tennplugg-kabler, tenningsledningsnett og batterikabler. Et annet viktig anvendelsesområde er isolert ledning egnet for anvendelse som en smeltbar forbindelse i kabelnett for biler. Gode fysikalske egenskaper er av overordentlig betydning ved denne applikasjon for å minimalisere forekomsten av isolasjonsbrudd som følge av kortslutning, idet slike isolasjonsbrudd kan forårsake eksplosjon. The industry is constantly seeking to find new fire-resistant polymeric materials to replace the existing products and/or to satisfy the demands of new areas of application. One of the most important areas where refractory polymeric materials are used are electrical applications for which good physical properties, insulation properties and refractory properties are sought. A particularly important application in this area is the use as insulation material in electrical wiring for cars. For many applications, this type of wiring also requires resistance to oil. Typical application areas include primary wiring, spark plug cables, ignition wiring and battery cables. Another important area of application is insulated wire suitable for use as a fusible link in automotive wiring harnesses. Good physical properties are of paramount importance in this application to minimize the occurrence of insulation breaks as a result of short circuits, as such insulation breaks can cause explosions.

Isolasjonsmaterialer som for tiden anvendes for slike formål i bilindustrien, innbefatter "Hypalon", ethylen-propylen-elastomere, klorert polyethylen, sil.iconelastomere og brannhemmende, tverrbundet polyolefin. Imidlertid er disse materialer desverre uegnede for anvendelse f.eks. som en smeltbar forbindelse i kabelnett, f.eks. for biler, fordi de ikke oppviser den ret-te kombinasjon av brannhemmende egenskaper, fysisk styrke, motstandsdyktighet overfor olje, fuktighet, varme, bensin og oppløs-ningsmidler og motstandsdyktighet overfor isolasjonsbrudd som følge av sterk elektrisk overbelastning. Dertil er det meget vesentlig at materialet lett lar seg bearbeide, f.eks. ved eks-.'trudering, til dets tiltenkte form. Egenskapen av disse materialer som elektriske isolasjonsmaterialer i bilindustrien beskrives i detalj i produktbrosjyrer og lignende, som distribueres av produsentene av disse -materialer. Insulating materials currently used for such purposes in the automotive industry include "Hypalon", ethylene-propylene elastomers, chlorinated polyethylene, silicone elastomers, and flame retardant crosslinked polyolefin. However, these materials are unfortunately unsuitable for use e.g. as a fusible connection in cable networks, e.g. for cars, because they do not exhibit the right combination of fire-retardant properties, physical strength, resistance to oil, moisture, heat, petrol and solvents and resistance to insulation breakdown as a result of strong electrical overload. In addition, it is very important that the material can be easily processed, e.g. by extruding, into its intended form. The properties of these materials as electrical insulating materials in the automotive industry are described in detail in product brochures and the like, which are distributed by the manufacturers of these materials.

Oppslagsbøkene er fulle av redegjørelser for mekanisme-ne bak brannhemning og for operative systemer. Eksempler på slike er "Flame Retardancy of Polymeric Materials", Vol. 1, av W.C. Kuryla og A.J. Papa, Marcel Dekker, Inc., N.Y., 1973, kap. 1 og sider 171 - 181, og Lyons, "The Chemistry & Uses of Fire Retardants", John Wiley and Sons, Inc., 1970, sider 330 - 332. The reference books are full of explanations of the mechanisms behind fire suppression and of operational systems. Examples of such are "Flame Retardancy of Polymeric Materials", Vol. 1, by W.C. Kuryla and A.J. Papa, Marcel Dekker, Inc., N.Y., 1973, Chapter 1 and pages 171-181, and Lyons, "The Chemistry & Uses of Fire Retardants", John Wiley and Sons, Inc., 1970, pages 330-332.

Et antall US patentskrifter illustrerer det store utvalg av brannhemmende additivkombinasjoner som er kjent i faget. US patentskrift nr. 3.832.326 beskriver tverrbindbare polymere materialer basert på en ethylen-vinylacetat-copolymer, som fortrinnsvis inneholder mindre enn ca. 28 vekt% vinylacetat. Materialene har forbedret resistens overfor fuktighet og varme, og forbedrede brannhemmende egenskaper og egner seg spesielt godt for overtrekning av elektriske ledninger. Materialene er spesielt beregnet for et system av ikke-halogenerte brannhemmende midler. Et annet ikke-halogenert system er beskrevet i US patentskrift nr. 3.741.929. US patentskrift nr. 3.362.928 beskriver et varmher-dende system basert på et støpbart diallylfthalat, en brannhemmende organisk klorholdig forbindelse, antimonoxyd og hydratisert aluminiumoxyd. Materialene anvendes for fremstilling av elektro-niske komponenter og brytere av hård type. US patentskrift nr. 3.694.305 utsier et adhesiv av emulsjonstype for laminering av forskjellige lag av en brannhemmende f lammebarriere.. US patentskrift nr. 3.720.643 beskriver et brannhemmende polymermateriale basert på tilsetning av talkum, klorert polyethylen og antimontrioxyd til polypropylen-, styren-acrylnitril-copolymer- eller acrylnitril-butadien-styren-harpikser. A number of US patent documents illustrate the large variety of fire retardant additive combinations known in the art. US Patent No. 3,832,326 describes crosslinkable polymeric materials based on an ethylene-vinyl acetate copolymer, which preferably contains less than approx. 28% by weight vinyl acetate. The materials have improved resistance to moisture and heat, and improved fire-retardant properties and are particularly suitable for covering electrical cables. The materials are specially designed for a system of non-halogenated fire retardants. Another non-halogenated system is described in US Patent No. 3,741,929. US Patent No. 3,362,928 describes a thermosetting system based on a castable diallyl phthalate, a fire-retardant organic chlorine-containing compound, antimony oxide and hydrated aluminum oxide. The materials are used for the manufacture of electronic components and hard-type switches. US Patent No. 3,694,305 discloses an emulsion type adhesive for laminating different layers of a fire retardant flame barrier. US Patent No. 3,720,643 describes a fire retardant polymer material based on the addition of talc, chlorinated polyethylene and antimony trioxide to polypropylene, styrene -acrylonitrile copolymer or acrylonitrile-butadiene-styrene resins.

US patentskrift nr. 3.936.403 angår syntetiske harpiks-materialer som er brannsikre og har en hård overflate, og som omfatter en olefinisk harpiks, vinylkloridharpikser og aluminium-trihydrat med en krystallstruktur som gibbsitt. Ethylen-vinylacetat-copolymere omtales ikke, og den foretrukne harpiks er polyethylen av høy tetthet, hvilket, som nedenfor vist, ikke lar seg ekstrudere for dannelse av et overtrekk på en elektrisk le der. Videre er den omtalte vinylkloridharpiks polyvinylklorid, hvilket heller ikke kan anvendes i materialene ifølge den foreliggende oppfinnelse, fordi den overtrukne ledning ikke består UL-FR-l-flammetesten. US Patent No. 3,936,403 relates to synthetic resin materials which are fireproof and have a hard surface, and which include an olefinic resin, vinyl chloride resins and aluminum trihydrate with a crystal structure such as gibbsite. Ethylene-vinyl acetate copolymers are not discussed, and the preferred resin is high density polyethylene, which, as shown below, cannot be extruded to form an overcoat on an electrical conductor. Furthermore, the mentioned vinyl chloride resin is polyvinyl chloride, which cannot be used in the materials according to the present invention either, because the coated wire does not pass the UL-FR-1 flame test.

Det har nu uventet vist seg at brannhemmende polymerma-terialer som har forbedrede egenskaper, og som egner seg som isolasjon for ledninger for anvendelse i biler, fåes ved å anvende en vinylacetat-ethylen-copolymer, klorert polyethylen og hydratisert aluminiumoxyd i passende mengdeforhold. It has now unexpectedly been found that fire-retardant polymer materials which have improved properties, and which are suitable as insulation for wires for use in cars, are obtained by using a vinyl acetate-ethylene copolymer, chlorinated polyethylene and hydrated aluminum oxide in appropriate proportions.

Vanligvis inneholder det polymere, brannhemmende materiale en vinylacetat-ethylen-copolymer inneholdende ca. 20 - 90 vekt% vinylacetat og, pr. 100 deler av copolymeren, ca. 10 - 50 deler klorert polyethylen og ca. 70 - 300 deler hydratisert aluminiumoxyd. Et foretrukket materiale inneholder ca. 10 - 35 deler klorert polyethylen og ca. 100 - 250 deler hydratisert aluminiumoxyd. Spesielt foretrekkes et materiale hvor copolymeren inneholder vinylacetat i en mengde av ca. 40 - 70 vekt%. Typically, the polymeric fire retardant material contains a vinyl acetate-ethylene copolymer containing approx. 20 - 90% by weight vinyl acetate and, per 100 parts of the copolymer, approx. 10 - 50 parts chlorinated polyethylene and approx. 70 - 300 parts hydrated aluminum oxide. A preferred material contains approx. 10 - 35 parts chlorinated polyethylene and approx. 100 - 250 parts hydrated aluminum oxide. Particularly preferred is a material where the copolymer contains vinyl acetate in an amount of approx. 40 - 70% by weight.

Skjønt dette ikke er nødvendig for å oppnå de ønskede egenskaper, er det fordelaktig å anvende antimontrioxyd og/eller siliciumoxyd for ytterligere å forbedre henholdsvis materialets brannhemhing og dets formbarhet. Vanligvis kan både antimonoxy-det og siliciumoxydet anvendes i en mengde av ca. 10 - 50 deler pr. 100 deler av copolymeren, fortrinnsvis i en mengde av ca. 10 - 35 deler. Et koblingsmiddel på silanbasis, som beskrevet nedenfor, er nødvendig for å få frem et materiale som kan benyttes som overtrekk for ledninger og kabler. Although this is not necessary to achieve the desired properties, it is advantageous to use antimony trioxide and/or silicon oxide to further improve the material's fire resistance and its formability respectively. Generally, both the antimony oxide and the silicon oxide can be used in an amount of approx. 10 - 50 parts per 100 parts of the copolymer, preferably in an amount of approx. 10 - 35 parts. A silane-based coupling agent, as described below, is necessary to produce a material that can be used as a covering for wires and cables.

Slike polymere brannhemmende materialer er særlig anvendelige som isolasjon i ledninger for biler, men de kan og-så anvendes for andre formål hvor det er nødvendig med en sær-egen kombinasjon av gode egenskaper, såsom god formbarhet, gode fysikalske egenskaper, gode elektriske egenskaper, god oljebe-standighet, god resistens overfor fuktighet, bensin og oppløs-ningsmidler, samt god brannherdighet. Such polymeric fire-retardant materials are particularly useful as insulation in cables for cars, but they can also be used for other purposes where a unique combination of good properties is necessary, such as good formability, good physical properties, good electrical properties, good oil resistance, good resistance to moisture, petrol and solvents, as well as good fire resistance.

Polymerkomponenten i det foreliggende materiale er basert på en vinylacetat-ethylen-copolymer. Copolymeren inneholder ca. 20 - 90 vekt% vinylacetat (VA), fortrinnsvis ca. 40 - 70 vekt%, f.eks. 50 - 65 vekt%. De foretrukne copolymere har en særpreget kombinasjon av egenskaper som hovedsakelig avhenger av innholdet av vinylacetat. Når f.eks. innholdet av vinylacetat økes, øker vanligvis bestandigheten overfor olje og oppløsnings-midler. En mer detaljert redegjørelse for den foretrukne copolymer er gitt i brosjyren "Vynathene R VAE Elastomers" utgitt av National Distillers and Chemical Corporation. Vanligvis har de foretrukne copolymere en tetthet på ca. 0,960 - 1,05 g pr. cm 3, en smeltestrømningshastighet ved 125°C på ca. 0,1 - 20 g pr. 10 minutters strømning, et vinylace tatinnhold på ca. 40 - 70 vekt% og egenviskositet på 0,70 - 1,10 for 0,15 g polymer pr. 100 ml tetrahydrofuran ved 40°C. Tre foretrukne copolymere, som fremstilles av National Distillers and Chemical Corporation er: (a) "VYNATHENE EY 904", en vinylacetat-ethylen-copolymer med et VA-innhold mellom ca. 50 vekt% og 54 vekt% og en smeltestrømningshastig-het (MER) fra ca. 0,5 til ca. 1,5 ved 125°C, (b) "VYNATHENE EY 905", en vinylacetat-ethylen-copolymer med et VA-innhold mellom ca. 50 vekt% og 54 vekt% og en smeltestrømningshastig-het fra ca. 1,5 til 7,0 ved 125°C, og (c) "VYNATHENE EY 907", en vinylacetat-ethylen-copolymer med et VA-innhold fra ca. 58 vekt% til ca. 62 vekt% og en smeltestrømningshastig-het fra ca. 1,0 til ca. 2,2 ved 125°C. The polymer component of the present material is based on a vinyl acetate-ethylene copolymer. The copolymer contains approx. 20 - 90% by weight vinyl acetate (VA), preferably approx. 40 - 70% by weight, e.g. 50 - 65% by weight. The preferred copolymers have a distinctive combination of properties that depend mainly on the vinyl acetate content. When e.g. increasing the vinyl acetate content usually increases resistance to oil and solvents. A more detailed account of the preferred copolymer is given in the brochure "Vynathene R VAE Elastomers" published by the National Distillers and Chemical Corporation. Generally, the preferred copolymers have a density of about 0.960 - 1.05 g per cm 3, a melt flow rate at 125°C of approx. 0.1 - 20 g per 10 minutes of flow, a vinylacetate content of approx. 40 - 70% by weight and intrinsic viscosity of 0.70 - 1.10 for 0.15 g of polymer per 100 ml of tetrahydrofuran at 40°C. Three preferred copolymers, which are manufactured by National Distillers and Chemical Corporation are: (a) "VYNATHENE EY 904", a vinyl acetate-ethylene copolymer having a VA content between about 50% by weight and 54% by weight and a melt flow rate (MER) from approx. 0.5 to approx. 1.5 at 125°C, (b) "VYNATHENE EY 905", a vinyl acetate-ethylene copolymer with a VA content between approx. 50% by weight and 54% by weight and a melt flow rate from approx. 1.5 to 7.0 at 125°C, and (c) "VYNATHENE EY 907", a vinyl acetate-ethylene copolymer with a VA content from ca. 58% by weight to approx. 62% by weight and a melt flow rate of approx. 1.0 to approx. 2.2 at 125°C.

Skjønt dette ikke er nødvendig, kan man, for å oppnå en spesiell kombinasjon av egenskaper, innlemme små mengder av andre polymere eller copolymere elle blandinger av slike i copoly-merene ifølge oppfinnelsen, såsom f.eks. polyethylen, polypropylen, etjylenpropylen-elastomer, polybutylen, ethylen-acrylat-co-. polymer, ethylen-vinylklorid-copolymer og lignende. Disse kan være tilstede i mengder av opptil ca. 25 deler eller mer, pr. 100 deler av vinylacetat-ethylen-copolymeren. Det foretrekkes å anvende mindre enn ca. 15 deler, f.eks. 10 deler. Although this is not necessary, in order to achieve a particular combination of properties, small amounts of other polymers or copolymers or mixtures thereof can be incorporated into the copolymers according to the invention, such as e.g. polyethylene, polypropylene, ethylene propylene elastomer, polybutylene, ethylene acrylate-co-. polymer, ethylene-vinyl chloride copolymer and the like. These can be present in quantities of up to approx. 25 parts or more, per 100 parts of the vinyl acetate-ethylene copolymer. It is preferable to use less than approx. 15 parts, e.g. 10 parts.

Klorert polyethylen (CPE) er et velkjent materiale, og foretrukne materialer er CPEX02242.46 og CPE 4814 fremstillet av Dow Chemical Co. Andre klorerte polymere er klorert polypropylen, polyvinylidenklorid, klorsulfonert polyethylen og lignende. Også andre halogenerte polymere er nyttige, spesielt brom-erte polymere. Slike polymere kan finnes i ovennevnte bok av W.C. Kuryla og A.J. Papa. Et materiale inneholdende polyvinylklorid viste seg ikke å være anvendbart, fordi det ikke tilfredsstiller UL-FR-l-testen for overtrukket ledning. CPE foretrekkes på grunn av dets effektivitet. Chlorinated polyethylene (CPE) is a well-known material, and preferred materials are CPEX02242.46 and CPE 4814 manufactured by Dow Chemical Co. Other chlorinated polymers are chlorinated polypropylene, polyvinylidene chloride, chlorosulfonated polyethylene and the like. Other halogenated polymers are also useful, especially brominated polymers. Such polymers can be found in the above-mentioned book by W.C. Kuryla and A.J. Papa. A material containing polyvinyl chloride was found not to be applicable, because it does not satisfy the UL-FR-1 test for coated wire. CPE is preferred because of its efficiency.

Det hydratiserte aluminiumoxyd, eller aluminiumtrihyd-rat, tilsettes fortrinnsvis i relativt liten partikkelstørrelse på ca. 0,3 - 2/Am, skjønt også større eller mindre partikkelstør-relser kan benyttes. Foretrukne materialer er "HYDRAL 710" og "P.G. Alumina" fremstillet av Aluminum Co of America. The hydrated aluminum oxide, or aluminum trihydrate, is preferably added in a relatively small particle size of approx. 0.3 - 2/Am, although larger or smaller particle sizes can also be used. Preferred materials are "HYDRAL 710" and "P.G. Alumina" manufactured by Aluminum Co of America.

Et viktig trekk ved oppfinnelsen består i å kombinere CPE og hydratisert aluminiumoxyd med vinylacetat-ethylen-copolymeren som ovenfor angitt, hvorved det fåes et sterkt foretrukket materiale med en utmerket kombinasjon av egenskaper, omfattende den egenskap at materialet tilfredsstiller de strenge fordringer ved flammtester såsom UL-FR-1. An important feature of the invention consists in combining CPE and hydrated aluminum oxide with the vinyl acetate-ethylene copolymer as indicated above, whereby a highly preferred material is obtained with an excellent combination of properties, including the property that the material satisfies the strict requirements of flame tests such as UL -FR-1.

Det har uventet vist seg at kombinasjonen av den halogenerte polymer og hydratisert aluminiumoxyd gir polymermaterialet ifølge oppfinnelsen en synergistisk brannhemmende virkning. Andre kjente halogenerte brannhemmende additiver gir ingen slik økning i brannherdigheten når de kombineres med hydratisert aluminiumoxyd, men avstedkommer tvertimot en nedsettelse av materialets brannherdighet. I det ovennevnte US patentskrift nr. 3.694.305 fremsettes den teori at kombinasjonen av et klorert paraffih, antimonoxyd og hydratisert aluminiumoxyd gir en raskere synergistisk brannhemmende virkning. Skjønt man ikke ønsker å binde seg til noen bestemt teori, antas det a kombinasjonen av den halogenerte polymer og hydratisert aluminiumoxyd frembringer en synergistisk brannhemmende virkning ved at begge materialer virker sammen for frembringelse av en meget effektiv og vedvarende brannhemmende virkning. Denne virkning er spesielt betydelig under de strenge krav til brannhemmende virkning som s tilles i tester såsom UL-FR-l-testen, og oppnåes ved hjelp av de ovenfor omtalte kombinasjoner av den halogenerte polymer og hydratisert aluminiumoxyd-. Skjønt mengden av halogenert polymer og hydratisert aluminiumoxyd kan variere innenfor vide grenser, som ovenfor angitt, foretrekkes det, med tanke på å oppnå en ytterligere forbedret kombinasjon av egenskaper, at store mengder av begge komponenter ikke blir benyttet. Som vist nedenfor i eksemplene vil således økende mengde av den halogenerte polymer nedsette materialets prosentvise forlengelse når innholdet av hydratisert aluminiumoxyd er høyt. Det er derfor viktig for enkelte applikasjoner å korrelere mengden av halogenert polymer og hydratisert aluminiumoxyd, og det foretrekkes bestemt, når andelen av hydratisert aluminiumoxyd er større enn ea. 150 deler pr. 100 deler harpiks, at mengden av halogenert polymer ikke er større enn ca. 15 deler. It has unexpectedly turned out that the combination of the halogenated polymer and hydrated aluminum oxide gives the polymer material according to the invention a synergistic fire-retardant effect. Other known halogenated fire-retardant additives do not provide such an increase in fire resistance when combined with hydrated aluminum oxide, but on the contrary result in a reduction in the material's fire resistance. In the above-mentioned US patent document no. 3,694,305, the theory is put forward that the combination of a chlorinated paraffin, antimony oxide and hydrated aluminum oxide gives a faster synergistic fire-retardant effect. Although one does not wish to be bound by any particular theory, it is believed that the combination of the halogenated polymer and hydrated aluminum oxide produces a synergistic fire-retardant effect in that both materials work together to produce a very effective and persistent fire-retardant effect. This effect is particularly significant under the strict requirements for fire-retardant effect that are added in tests such as the UL-FR-1 test, and is achieved by means of the above-mentioned combinations of the halogenated polymer and hydrated aluminum oxide. Although the amount of halogenated polymer and hydrated aluminum oxide may vary within wide limits, as indicated above, it is preferred, with a view to achieving a further improved combination of properties, that large amounts of both components are not used. As shown below in the examples, increasing amounts of the halogenated polymer will therefore reduce the material's percentage elongation when the content of hydrated aluminum oxide is high. It is therefore important for certain applications to correlate the amount of halogenated polymer and hydrated aluminum oxide, and it is definitely preferred when the proportion of hydrated aluminum oxide is greater than ea. 150 parts per 100 parts resin, that the amount of halogenated polymer is not greater than approx. 15 parts.

Antimontrioxyd er den foretrukne antimonforbindelse, skjønt også mange andre antimonforbindelser er egnede, slik det er velkjent i faget. Eksempler på slike antimonforbindelser er antimonsulfid og natriumantimonitt og de organiske antimonforbindelser såsom antimonbutyrat og antimoncaprylat. Antimony trioxide is the preferred antimony compound, although many other antimony compounds are also suitable, as is well known in the art. Examples of such antimony compounds are antimony sulphide and sodium antimonite and the organic antimony compounds such as antimony butyrate and antimony caprylate.

Siliciumoxydkomponenten kan være en hvilken som helstThe silicon oxide component can be any

av de velkjente materialer, og foretrukne siliciumoxyder innbefatter "Hi-Sil 233" og "Hi-Sil EP", hvilke begge fremstilles av PPG Industries, Inc. Siliciumoxydets partikkelstørrelse er fortrinnsvis fra ca. 0,01 til 0,05 ^m, skjønt også større eller mindre partikkelstørrelser kan anvendes. of the well-known materials, and preferred silicon oxides include "Hi-Sil 233" and "Hi-Sil EP", both of which are manufactured by PPG Industries, Inc. The silicon oxide particle size is preferably from about 0.01 to 0.05 µm, although larger or smaller particle sizes can also be used.

Polymermaterialene ifølge oppfinnelsen kan også innehol-de andre komponenter og additiver, alt efter de ferdige produk-ters påtenkte anvendelsesområde og de nødvendige ellerønskede egenskaper. Disse ytterligere komponenter kan f.eks. omfatte an-tioxydas jonsmidler., syreakseptorer, konserveringsmidler, smøre-midler og prosesshjelpemidler, formslippmidler, pigmenter eller farvestoffer, uorganiske fyllstoffer, vannfastgjørende midler, koblingsmidler, osv. The polymer materials according to the invention may also contain other components and additives, depending on the intended application area of the finished products and the necessary or desired properties. These additional components can e.g. include antioxidants, acid acceptors, preservatives, lubricants and processing aids, release agents, pigments or dyes, inorganic fillers, water fixing agents, coupling agents, etc.

De foretrukne antioxydasjonsmidler er polykinolinene såsom polytrimethyl-dihydrokinolin som føres i handelen under va-remerkene "Agerite Resin D" og "AgeriteMA" (høyere molekylvekt) av R.T. Vanderbilt Company, Inc. Andre konvensjonelle antioxydasjonsmidler, som i faget er kjent f.eks. for å være nyttige ved stabilisering av polyethylen og ethylencopolymere av lav tetthet, kan også benyttes. Mengden som benyttes av antioxydasjonsmidlet er ca. 0,25 - 4 vekt% beregnet på materialets totalvekt. The preferred antioxidants are the polyquinolines such as polytrimethyl-dihydroquinoline marketed under the trade names "Agerite Resin D" and "AgeriteMA" (higher molecular weight) by R.T. Vanderbilt Company, Inc. Other conventional antioxidants, which are known in the art e.g. to be useful in stabilizing low density polyethylene and ethylene copolymers, can also be used. The quantity used of the antioxidant is approx. 0.25 - 4% by weight calculated on the total weight of the material.

Den foretrukne syreakseptor er tetrabasisk blyfumarat, som føres i handelen av N.L. Industries, Inc. under varemerket "Lectro 78". Andre syreakseptorer som magnesiumoxyd, blymonoxyd og lignende, kan også anvendes. Konsentrasjonen er ca. 0,5 - 4 vekt% av materialets totalvekt eller ca. 1 - 3 % av det totale harpiksinnhold. The preferred acid acceptor is tetrabasic lead fumarate, which is marketed by N.L. Industries, Inc. under the trademark "Lectro 78". Other acid acceptors such as magnesium oxide, lead monoxide and the like can also be used. The concentration is approx. 0.5 - 4% by weight of the material's total weight or approx. 1 - 3% of the total resin content.

Smøremidler og prosesshjelpemidler såsom stearinsyre ("Hystrene 9718", som føres av Humko-Sheffield Chemicals Co.) og kalsiumstearat foretrekkes. Andre slike i faget velkjente midler kan likeledes anvendes. Vanligvis benyttes mengder av ca. 1 - 3 deler, fortrinnsvis 1,5 —-2,5 deler, pr. 100 deler harpiks. Lubricants and processing aids such as stearic acid ("Hystrene 9718", supplied by Humko-Sheffield Chemicals Co.) and calcium stearate are preferred. Other such means well known in the art can also be used. Usually amounts of approx. 1 - 3 parts, preferably 1.5 —-2.5 parts, per 100 parts resin.

Det foretrekkes å anvende et koblingsmiddel når der skal fremstilles et materiale egnet for overtrekning av ledninger eller kabler. Et hvilket som helst koblingsmiddel kan benyttes i materialene, men det er viktig at dette ikke interfererer med tverrbindingen av polymeren eller spaltes under polymerbearbei-delsen. Det foretrekkes å benytte silaner av den type som er beskrevet i ovennevnte US patentskrift nr. 3.832.326, som innlemmes heri ved henvisning. Eksempelvis gir "Silane A-172", som føres av Union Carbide Co., utmerkede resultater. Det benyttes vanligvis mengder av ca. 0,2 - 4 vekt%, fortrinnsvis 0,2 - 2 %, og al-lerhelst 0,5 - 1,2 vekt%, beregnet på materialets totalvekt. It is preferred to use a coupling agent when a material suitable for covering wires or cables is to be produced. Any coupling agent can be used in the materials, but it is important that this does not interfere with the cross-linking of the polymer or split during the polymer processing. It is preferred to use silanes of the type described in the above-mentioned US patent document No. 3,832,326, which is incorporated herein by reference. For example, "Silane A-172", manufactured by Union Carbide Co., gives excellent results. Quantities of approx. 0.2 - 4% by weight, preferably 0.2 - 2%, and most preferably 0.5 - 1.2% by weight, calculated on the total weight of the material.

Et viktig trekk ved oppfinnelsen består i å tverrbinde de ovenfor beskrevne materialer for frembringelse av deres ende-lige produktform. Tverrbindingen kan utføres ved hjelp av en hvilken som helst kjent tverrbindingsteknikk, såsom ved kjemisk tverrbinding, eller ved bestråling. An important feature of the invention consists in cross-linking the materials described above to produce their final product form. The cross-linking can be carried out by means of any known cross-linking technique, such as by chemical cross-linking, or by irradiation.

Herdemidler som kan anvendes, innbefatter peroxyder såsom t-butyl-perbenzoat, dicumyl-peroxyd, 2,5-dimethyl-2,5-di(t-butyl-peroxy)-hexan, 2,5-dimethyl-2,5-di(t-butyl-peroxy)-hexyn-3, l,3,5-tris-[a,a-dimethyl-a-(t-butylperoxy)]-methylbenzen, a,a'-bis(t-butyl-peroxy)-diisopropylbenzen og N,butyl-4,4-bis-(t-butyl-peroxy ) -valerat . Disse herdemidler kan anvendes alene eller sammen med ett eller flere polyfunksjonelle monomere, såsom triallyl-cyanurat, triallylisocyanurat, triallylfosfat, trimethylolpropan-triacrylat, diallylfumarat, pentaerythritol-tetraacrylat, trime-thylolpropan-trimethacrylat, 1, 3-bu.tylen-glycol-dimethacrylat, allyl-methacrylat, ethylenglycol-dimethacrylat og 1,3-butylengly-col-diacrylat. De foretrukne herdemidler for anvendelse i materialene ifølge oppfinnelsen innbefatter "Vul-Cup 40 KE" alene Curing agents which may be used include peroxides such as t-butyl perbenzoate, dicumyl peroxide, 2,5-dimethyl-2,5-di(t-butyl-peroxy)-hexane, 2,5-dimethyl-2,5-di (t-butyl-peroxy)-hexyn-3, 1,3,5-tris-[a,a-dimethyl-a-(t-butylperoxy)]-methylbenzene, a,a'-bis(t-butyl-peroxy )-diisopropylbenzene and N,butyl-4,4-bis-(t-butyl-peroxy)-valerate. These curing agents can be used alone or together with one or more polyfunctional monomers, such as triallyl cyanurate, triallyl isocyanurate, triallyl phosphate, trimethylolpropane triacrylate, diallyl fumarate, pentaerythritol tetraacrylate, trimethylolpropane trimethacrylate, 1, 3-bu.tylene glycol dimethacrylate , allyl methacrylate, ethylene glycol dimethacrylate and 1,3-butylene glycol diacrylate. The preferred curing agents for use in the materials of the invention include "Vul-Cup 40 KE" alone

[40 % a,a'-bis-(t-butylperoxy)-diisopropylbenzen på "Burgess KE", som leveres av Hercules Inc.] og "Vul-Cup 40 KE" kombinert med den polyfunksjonelle monomer triallyl-isocyanurat (TAIC)], som leveres av Allied Chemical Corporation. [40% a,a'-bis-(t-butylperoxy)-diisopropylbenzene on "Burgess KE", supplied by Hercules Inc.] and "Vul-Cup 40 KE" combined with the polyfunctional monomer triallyl isocyanurate (TAIC)] , which is supplied by Allied Chemical Corporation.

Mengden av peroxyd-herdemiddel kan være fra ca. 1,0 til ca. 10 deler, og er fortrinnsvis fra 3,0 deler til ca. 6,0 deler pr. 100 deler copolymer. The quantity of peroxide hardener can be from approx. 1.0 to approx. 10 parts, and is preferably from 3.0 parts to approx. 6.0 parts per 100 parts copolymer.

Den polyfunksjonelle monomer som anvendes som hjelpeherdemiddel sammen med det tverrbindende peroxyd, kan anvendes i mengder av fra ca. 0,1 til ca. 3,0 deler pr. 100 deler av copolymeren. Den foretrukne mengde hjelpeherdemiddel kan være fra ca. 0,5 til ca. 1,5 deler, og den mest foretrukne mengde ca. 1,0 del pr. 100 deler copolymer. The polyfunctional monomer used as an auxiliary curing agent together with the cross-linking peroxide can be used in amounts of from approx. 0.1 to approx. 3.0 parts per 100 parts of the copolymer. The preferred amount of auxiliary curing agent can be from approx. 0.5 to approx. 1.5 parts, and the most preferred amount approx. 1.0 part per 100 parts copolymer.

Materialene ifølge oppfinnelsen kan fremstilles ved hjelp av kjente metoder. Blandeoperasjoner utføres fortrinnsvis ved hjelp av en intensiv blander såsom en Banbury-blander eller en blander av typen Werner&Pfeliderer. En foretrukken metode går ut på først å fremstille en blanding av harpikskomponentene og det klorerte polyethylen. Eventuelle andre ingredienser, bortsett fra tverrbindingsmidlene, kan så tilsettes og blandes inn i materialet. Dersom siliciumoxyd anvendes, foretrekkes det The materials according to the invention can be produced using known methods. Mixing operations are preferably carried out using an intensive mixer such as a Banbury mixer or a Werner&Pfeliderer type mixer. A preferred method involves first preparing a mixture of the resin components and the chlorinated polyethylene. Any other ingredients, apart from the cross-linking agents, can then be added and mixed into the material. If silicon oxide is used, it is preferred

å tilsette det før det-hydratiserte aluminiumoxyd. Efter grundig blanding heves temperaturen til ca. 121°C, og blandingen fortset-, tes i ca. 1-2 minutter. Temperaturen nedsettes derefter til under ca. 112,7°C, og tverrbindingsmidlene tilsettes. Blandingen fortsettes inntil materialet er homogent, hvilket vanligvis tar ca. 4-5 minutter. Porsjonen kan derefter bearbeides ytterligere i en mølle med to valser eller i en ekstruder. to add the pre-hydrated alumina. After thorough mixing, the temperature is raised to approx. 121°C, and the mixture continues for approx. 1-2 minutes. The temperature is then reduced to below approx. 112.7°C, and the crosslinking agents are added. The mixing is continued until the material is homogeneous, which usually takes approx. 4-5 minutes. The portion can then be processed further in a two-roll mill or in an extruder.

Materialene ifølge oppfinnelsen skal nu beskrives nær-mere i de følgende utførelseseksempler, som imidlertid ikke er ment å skulle begrense oppfinnelsen. Alle deler og prosentvise mengder er på vektbasis. The materials according to the invention will now be described in more detail in the following examples, which, however, are not intended to limit the invention. All parts and percentages are by weight.

Eksempel IExample I

De i tabell 1 oppførte materialer ble fremstillet som beskrevet nedenfor i en blander av typen Banbury. The materials listed in Table 1 were prepared as described below in a Banbury type mixer.

Ved fremstillingen av materiale nr. 1 ble harpiksen og CPE blandet i ca. 3 minutter ved 230 omdringer pr. minutt. "Hi-Sil 233", "Agerite" og antimontrioxyd ble tilsatt til Banbury-blanderen, og blandingen ble fortsatt ca. 3 minutter. Temperatj-ren ble hevet til ca. 121°C, og blandingen ble fortsatt ved denne temperatur i ca. 1 - 2 minutter. Temperaturen ble så senket til under ca. 112,7°C, hvorefter stearinsyren og "Lectro 78" ble tilsatt, og det hele blandet i. ca. 3 minutter. Derefter ble den angitte mengde "Vul-Cup 40 KE tilsatt, og blandingen ble fortsatt 1 ca. 4-5 minutter. Porsjonen ble så malt i en 6" x 12" 2-yal-sérs gummimølle av fabrikat "Thropp<:>' ved'ca. 37,8°C og valset ut til en 10 - 15 mm tykk kreppet plate, som ble skåret opp i ternin-ger av størrelse ca. 3,2 mm. Prøver av overtrukket ledningstråd ble fremstillet ved ekstrudering av materialet på en 0,81 mm tykk flerstrenget ledningstråd i en veggtykkelse av 0,76 mm ved hjelp av en 3/4" Brabender ekstruder, type PL-V340. Herdingen ble ut-ført i et vulkaniseringsrør ved 204,5°C i 6 minutter. Den iso-lerte tråd ble kjølt ved neddykking i koldt vann i 2 minutter under trykk og derefter holdt neddykket i vannet under langsom av-lastning av trykket i løpet av 10 minutter. In the production of material no. 1, the resin and CPE were mixed for approx. 3 minutes at 230 rpm. minute. "Hi-Sil 233", "Agerite" and antimony trioxide were added to the Banbury mixer and the mixture was continued approx. 3 minutes. The temperature was raised to approx. 121°C, and the mixture was continued at this temperature for approx. 1 - 2 minutes. The temperature was then lowered to below approx. 112.7°C, after which the stearic acid and "Lectro 78" were added, and the whole mixed in approx. 3 minutes. Then the indicated amount of "Vul-Cup 40 KE was added and the mixture was continued 1 about 4-5 minutes. The portion was then ground in a 6" x 12" 2-yal-sér rubber mill of the make "Thropp<:>' at'approx. 37.8°C and rolled out into a 10 - 15 mm thick creped plate, which was cut into cubes of size approx. 3.2 mm. Samples of coated wire were produced by extruding the material onto a 0.81 mm thick multi-stranded wire in a wall thickness of 0.76 mm using a 3/4" Brabender extruder, type PL-V340. Curing was carried out in a vulcanizing tube at 204.5°C for 6 minutes.The insulated wire was cooled by immersion in cold water for 2 minutes under pressure and then kept immersed in the water while slowly relieving the pressure over 10 minutes.

Under fremstillingen av materialer nr. 2, 3 og 4 ble harpiksen, det hydratiserte aluminiumoxyd, silanet og "Agerite" blandet ca. 5 minutter. Temperaturen ble derefter hevet til ca. 121°C, hvorefter samme fremgangsmåte ble fulgt som for materiale nr. 1, bortsett fra at "Lectro 78" ble utelatt og i materialer nr. During the preparation of materials No. 2, 3 and 4, the resin, the hydrated aluminum oxide, the silane and "Agerite" were mixed approx. 5 minutes. The temperature was then raised to approx. 121°C, after which the same procedure was followed as for material no. 1, except that "Lectro 78" was omitted and in materials no.

2 og 3 ble erstattet med kalsiumstearat.2 and 3 were replaced with calcium stearate.

Under fremstillingen av materialene 5 og A ble harpiksen og CPE blandet i ca. 3 minutter ved 230 omdreininger prå minutt. "Hi-Sil 233" , "Agerite" og silanet ble tilsatt, og blandingen ble fortsatt ca. 3 minutter, hvorefter aluminiumoxydet og antimon-trioxydet ble tilsatt og blandingen ytterligere fortsatt i ca.. 3 minutter. Temperaturen ble så hevet til ca. 121°C, hvorefter den fremgangsmåte som ble benyttet for materiale nr. 1 ble fulgt. During the production of materials 5 and A, the resin and CPE were mixed for approx. 3 minutes at 230 revolutions per minute. "Hi-Sil 233", "Agerite" and the silane were added, and the mixture was continued approx. 3 minutes, after which the aluminum oxide and antimony trioxide were added and the mixture further continued for approx. 3 minutes. The temperature was then raised to approx. 121°C, after which the procedure used for material No. 1 was followed.

Ved fremstillingen av materialene B og C ble harpiksen og CPE blandet i ca. 3 minutter ved 230 omdreininger pr. minutt. Aluminiumoxydet, "Agerite" og silanet ble derefter tilsatt, og blandingen ble fortsatt i ytterligere 5 minutter. Temperaturen ble så hevet til ca. 121°C, og fremgangsmåten som ble benyttet for materiale nr. 1 ble fulgt, bortsett fra at der i stedet for "Lectro 78" ble benyttet kalsiumstearat. In the production of materials B and C, the resin and CPE were mixed for approx. 3 minutes at 230 rpm. minute. The aluminum oxide, "Agerite" and the silane were then added and mixing was continued for a further 5 minutes. The temperature was then raised to approx. 121°C, and the procedure used for material No. 1 was followed, except that instead of "Lectro 78" calcium stearate was used.

De herdede materialer ble testet under anvendelse av de følgende standardmetoder, og resultatene er oppført i den neden-stående tabell 2: The cured materials were tested using the following standard methods, and the results are listed in Table 2 below:

Materialene A, B og C ble testet i aldret tilstand (70 timer ved 125°C), og resultatene er oppført nedenfor i tabell 3. Den volumetriske svelling (%) ble bestemt med ASTM i=£ 3 olje som foreskrevet i spesifikasjonene ifølge SAE J 878a for isolasjon som danner en smeltbar forbindelse, og ASTM-metode D-471. Materials A, B and C were tested in the aged condition (70 hours at 125°C) and the results are listed below in Table 3. The volumetric swelling (%) was determined with ASTM i=£ 3 oil as prescribed in the specifications according to SAE J 878a for insulation forming a fusible joint, and ASTM Method D-471.

Den volumetriske svelling (%) ble bestemt for materialer nr. 1, 3 og 4. Resultatene var hhv. 166 %, 75,4 % og 96,8 %. The volumetric swelling (%) was determined for materials no. 1, 3 and 4. The results were respectively 166%, 75.4% and 96.8%.

Resultatene oppført i tabellene 2 og 3 viser den uven-tede og synergistiske virkning som oppnåes med materialene iføl-ge oppfinnelsen. En sammenligning mellom materialene 1, 2, 5 og A viser klart hvor viktig der et for brannherdigheten å anvende klorert polyethylen i kombinasjon med hydratisert aluminiumoxyd og å anvende det hydratiserte aluminiumoxyd i en mengde av mer enn ca. deler pr. 100 deler copolymer. Materialet A foretrekkes spesielt på grunn av dets generelt gode egenskaper og dets gode bearbeidbarhet. En sammenligning mellom materialene B og C viser betydningen av å anvende korrelerte mengder klorert polyethylen og hydratisert aluminiumoxyd for å oppnå en forbedret prosentvis forlengelse. The results listed in tables 2 and 3 show the unexpected and synergistic effect achieved with the materials according to the invention. A comparison between materials 1, 2, 5 and A clearly shows how important it is for fire resistance to use chlorinated polyethylene in combination with hydrated aluminum oxide and to use the hydrated aluminum oxide in an amount of more than approx. parts per 100 parts copolymer. The material A is particularly preferred because of its generally good properties and its good machinability. A comparison between materials B and C shows the importance of using correlated amounts of chlorinated polyethylene and hydrated aluminum oxide to achieve an improved percentage elongation.

Eksempel IIExample II

For ytterligere å illustrere oppfinnelsen ble de følgen-de sammenligningsmaterialer frems tillet og testet i henhold til de fremgangsmåter som er angitt i eksempel I. Materialet A ble fremstillet påny, og er her betegnet A'. Materialet A' ble så fremstillet påny, idet vinylacetat-ethylen-copolymeren (VAE) ble erstattet med polyethylen (HDPE) av høy tetthet ("Petrothene LB 830" fremstilt av NationalDistillers and Chemical Corp.). Dette materiale er betegnet som materiale 6. Materialet A' ble så fremstillet påny, idet man (1) erstattet CPE med polyvinylklorid (materiale 7) og (2) erstattet CPE med PVC myknet med 25 vekt% dioc-tylfthalat (materiale 8),-begge med like stort klorinnhold, regnet på vektbasis. Materiale A' ble så fremstillet enda en gang,, idet To further illustrate the invention, the following comparison materials were produced and tested according to the methods indicated in example I. The material A was produced again, and is here denoted A'. Material A' was then remanufactured, replacing the vinyl acetate-ethylene copolymer (VAE) with high density polyethylene (HDPE) ("Petrothene LB 830" manufactured by NationalDistillers and Chemical Corp.). This material is designated as material 6. The material A' was then manufactured again, (1) replacing CPE with polyvinyl chloride (material 7) and (2) replacing CPE with PVC softened with 25% by weight dioctylphthalate (material 8), - both with the same chlorine content, calculated on a weight basis. Material A' was then produced once more, in that

VAE ble erstattet med en ethylen-vinylacetat-copolymer ("Ultrathene UE 630" fremstilt av National Distillers and Chemical Corp.) inneholdende ca. 18 vekt% vinylacetat. Dette materiale er betegnet materiale 9. Resultatene av testene utført på materialene i ikke-aldret tilstand var som følger: VAE was replaced with an ethylene-vinyl acetate copolymer ("Ultrathene UE 630" manufactured by National Distillers and Chemical Corp.) containing approx. 18% by weight vinyl acetate. This material is designated material 9. The results of the tests carried out on the materials in the unaged state were as follows:

Som forsøksresultatene klart viser kunne materialet 6 inneholdende HDPE og materialet 7 inneholdende PVC ikke ekstruderes på ledningstråd. Materialet 8, som inneholdt myknet PVC, klarte ikke FR-l-flammetesten. Heller ikke materialet 9, som inneholdt en ethylen-vinylacetat-copolymer med bare 18 % VA, klarte FR-l-flammetesten. As the test results clearly show, the material 6 containing HDPE and the material 7 containing PVC could not be extruded onto wire. Material 8, which contained plasticized PVC, failed the FR-1 flame test. Material 9, which contained an ethylene-vinyl acetate copolymer with only 18% VA, also failed the FR-1 flame test.

Materialet A", som ikke inneholdt silankomponenten, kunne ikke ekstruderes på ledningstråd og hadde en oxygenindeks på 34,9. The material A", which did not contain the silane component, could not be extruded on wire and had an oxygen index of 34.9.

Skjønt oppfinnelsen refererer til copolymere av vinylacetat og ethylen inneholdende mer enn ca. 20 vekt% vinylacetat, vil fagmannen være innforstått med at den beskrevne kombinasjon av komponenter også er anvendelig for andre polymersystemer og/ eller copolymersystemer som gir de samme resultater som de foretrukne vinylacetat-ethylen-copolymere, og at slike utførelsesfor-mer derfor også innbefattes innenfor rammen av oppfinnelsen. Although the invention refers to copolymers of vinyl acetate and ethylene containing more than approx. 20% by weight of vinyl acetate, the person skilled in the art will understand that the described combination of components is also applicable to other polymer systems and/or copolymer systems which give the same results as the preferred vinyl acetate-ethylene copolymers, and that such embodiments are therefore also included within the scope of the invention.

Claims (16)

1. Polymert brannhemmende materiale omfattende en vinylacetat-ethylen-copolymer inneholdende ca. 20 - 90 vekt% vinylacetat, og, pr. 100 deler av copolymeren, ca. 10 - 50 deler klorert polyethylen og ca. 70 - 300 deler hydratisert aluminiumoxyd.1. Polymeric fire retardant material comprising a vinyl acetate-ethylene copolymer containing approx. 20 - 90% by weight vinyl acetate, and, per 100 parts of the copolymer, approx. 10 - 50 parts chlorinated polyethylene and approx. 70 - 300 parts hydrated aluminum oxide. 2. Materiale ifølge krav 1, karakterisert ved at copolymeren inneholder 40 - 70 vekt% vinylacetat.2. Material according to claim 1, characterized in that the copolymer contains 40 - 70% by weight of vinyl acetate. 3. Materiale ifølge krav 1 eller 2, karakterisert ved at det inneholder 10 - 35 deler av det klorerte polyethylen og 100 - 250 deler av det hydratiserte aluminiumoxyd.3. Material according to claim 1 or 2, characterized in that it contains 10 - 35 parts of the chlorinated polyethylene and 100 - 250 parts of the hydrated aluminum oxide. 4. Materiale ifølge et av kravene - 1 - 3, karakterisert ved at det ytterligere inneholder en silankomponent i en mengde av ca. 0,2 - 4 vekt%, beregnet på materialets totalvekt.4. Material according to one of the claims - 1 - 3, characterized in that it further contains a silane component in an amount of approx. 0.2 - 4% by weight, calculated on the total weight of the material. 5. Materiale ifølge krav 4, karakterisert ved at mengden av silan er 0,2 - 2 vekt%.5. Material according to claim 4, characterized in that the amount of silane is 0.2 - 2% by weight. 6. Materiale ifølge krav 4 eller 5, karakterisert ved at det ytterligere inneholder ca. 10 - 50 deler antimontrioxyd og/eller ca. 10 - 50 deler siliciumoxyd pr. 100 deler av copolymeren.6. Material according to claim 4 or 5, characterized in that it further contains approx. 10 - 50 parts antimony trioxide and/or approx. 10 - 50 parts silicon oxide per 100 parts of the copolymer. 7. Materiale ifølge et av kravene 4-6, karakterisert ved at det er tverrbundet.7. Material according to one of claims 4-6, characterized in that it is cross-linked. 8. Elektrisk leder overtrukket med materialet ifølge et av kravene 4 - 7.8. Electrical conductor coated with the material according to one of claims 4 - 7. 9. Fremgangsmåte ved fremstilling av et polymert, brannhemmende materiale, karakterisert ved at en vinylacetat-ethylen-copolymer inneholdende ca. 20 - 90 vekt% vinylacetat blandes med ca. 10 - 50 deler klorert polyethylen og ca. 70 - 300 deler hydratisert aluminiumoxyd pr. 100 deler av copolymeren.9. Method for the production of a polymeric, fire-retardant material, characterized in that a vinyl acetate-ethylene copolymer containing approx. 20 - 90% by weight vinyl acetate is mixed with approx. 10 - 50 parts chlorinated polyethylene and approx. 70 - 300 parts hydrated aluminum oxide per 100 parts of the copolymer. 10. Fremgangsmåte ifølge krav 9, karakterisert ved at det anvendes en copolymer inneholdende 40 - 70 vekt% vinylacetat.10. Method according to claim 9, characterized in that a copolymer containing 40 - 70% by weight of vinyl acetate is used. 11. Fremgangsmåte ifølge krav 9 eller 10, karakterisert ved at det anvendes 10 - 35 deler av det klorerte polyethylen og 100 - 250 deler av det hydratiserte aluminiumoxyd.11. Method according to claim 9 or 10, characterized in that 10 - 35 parts of the chlorinated polyethylene and 100 - 250 parts of the hydrated aluminum oxide are used. 12. Fremgangsmåte ifølge et av kravene 9-11, karakterisert ved at det ytterligere innblandes en silankomponent i. en mengde av ca. 0,2 - 4 vekt% av materialet.12. Method according to one of claims 9-11, characterized in that a silane component is further mixed in. an amount of approx. 0.2 - 4% by weight of the material. 13. Fremgangsmåte ifølge krav 12, karakterisert ved at silanet anvendes i-en mengde av 0,2 - 2 vekt%.13. Method according to claim 12, characterized in that the silane is used in an amount of 0.2 - 2% by weight. 14. Fremgangsmåte ifølge krav 12 eller 13, karakterisert ved at det ytterligere innblandes ca. 10 - 50 deler antimontrioxyd og/eller ca. 10 - 50 deler siliciumoxyd pr. 100 deler av copolymeren.14. Method according to claim 12 or 13, characterized in that approx. 10 - 50 parts antimony trioxide and/or approx. 10 - 50 parts silicon oxide per 100 parts of the copolymer. 15. Fremgangsmåte ifølge et av kravene 12-14, karakterisert ved at det anvendes et tverrbindingsmiddel.15. Method according to one of claims 12-14, characterized in that a cross-linking agent is used. 16. Fremgangsmåte ifklge et av kravene 12-15, karakterisert ved at materialet påføres som et overtrekk på en elektrisk leder.16. Method according to one of claims 12-15, characterized in that the material is applied as a coating on an electrical conductor.
NO790816A 1978-03-13 1979-03-12 FLAME DELAYING POLYMER MATERIALS NO790816L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US88583378A 1978-03-13 1978-03-13

Publications (1)

Publication Number Publication Date
NO790816L true NO790816L (en) 1979-09-14

Family

ID=25387791

Family Applications (1)

Application Number Title Priority Date Filing Date
NO790816A NO790816L (en) 1978-03-13 1979-03-12 FLAME DELAYING POLYMER MATERIALS

Country Status (12)

Country Link
JP (1) JPS54127453A (en)
BE (1) BE874806A (en)
BR (1) BR7901532A (en)
CA (1) CA1147088A (en)
DE (1) DE2909845A1 (en)
DK (1) DK101779A (en)
FR (1) FR2419957A1 (en)
GB (1) GB2016016B (en)
IT (1) IT1111530B (en)
LU (1) LU81033A1 (en)
NL (1) NL7901990A (en)
NO (1) NO790816L (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4322575A (en) 1978-12-13 1982-03-30 Raychem Limited Flame retardant compositions
JPS5618636A (en) * 1979-07-26 1981-02-21 Furukawa Electric Co Ltd:The Flame-retarding resin composition
JPS581741A (en) * 1981-06-19 1983-01-07 Furukawa Electric Co Ltd:The Flame-retardant resin composition
JPS5861139A (en) * 1981-10-08 1983-04-12 Nippon Yunikaa Kk Flame retardant polyethylene resin composition
CA1278128C (en) * 1984-02-09 1990-12-18 Nobuchika Tabata Fire retardant polyolefin composition
FR2644791B1 (en) * 1989-03-23 1992-12-31 Total France COMPOSITION OF POLYMERS WITH HIGH FIRE RESISTANCE, FREE OF HALOGEN
US6287692B1 (en) * 1999-06-11 2001-09-11 Judd Wire, Inc. Melt-processable, crosslinkable coating compositions
FR2810330B1 (en) * 2000-06-19 2002-08-30 Cit Alcatel OIL AND FIRE PROPAGATION INSULATING COMPOSITION AND METHOD OF IMPLEMENTING SAME
FR2840370B1 (en) * 2002-05-30 2004-07-23 Prospection & Inventions SPANISH BUSHING ANKLE WITH COMPRESSIBLE PORTION
CN112652420A (en) * 2020-09-23 2021-04-13 江苏华创线缆有限公司 Low-smoke halogen-free flame-retardant fire-resistant wire and cable and preparation process thereof

Also Published As

Publication number Publication date
GB2016016B (en) 1982-10-13
DE2909845A1 (en) 1980-01-24
BE874806A (en) 1979-09-13
CA1147088A (en) 1983-05-24
BR7901532A (en) 1979-10-16
JPS54127453A (en) 1979-10-03
LU81033A1 (en) 1979-10-30
IT7920948A0 (en) 1979-03-13
IT1111530B (en) 1986-01-13
FR2419957A1 (en) 1979-10-12
DK101779A (en) 1979-09-14
GB2016016A (en) 1979-09-19
NL7901990A (en) 1979-09-17

Similar Documents

Publication Publication Date Title
US5378539A (en) Cross-linked melt processible fire-retardant ethylene polymer compositions
JP6376464B2 (en) Insulated wire
JP5733352B2 (en) Insulated electric wire for vehicle and cable for vehicle using non-halogen crosslinkable resin composition
WO2006057120A1 (en) Nonhalogen electric wire, electric wire bundle, and automobile wire harness
EP2199335B1 (en) Flame retardant composition with improved mechanical properties
KR20110094697A (en) Highly flame-resistant polymer composition for electrical wire insulation and electrical wire produced therewith
JP5182580B2 (en) Halogen-free flame retardant insulated wire
WO2005123828A1 (en) Resin composition resistant to thermal deformation and cut-through and the insulation material and the cable using thereit
NO790816L (en) FLAME DELAYING POLYMER MATERIALS
JPH0159291B2 (en)
JPS58198552A (en) Flame retardant elastomer composition
EP2532707A1 (en) Flame retardant polymer composition
JP2007197619A (en) Non-halogen flame-retardant resin composition and electric wire/cable using the same
KR20210082317A (en) Halogen free flame-retardant polyolefin-based insulation resin composition, insulation cable amd manufactuting method for the same
JPS6356544A (en) Fire-retardant composition
US9396839B2 (en) Cable with improved flame retardancy
JP2003221479A (en) Insulating resin composition and insulated electric wire
JP3796123B2 (en) Flame retardant resin composition and flame retardant molded article using the same
JPH0564656B2 (en)
KR20100078823A (en) Inorganic and melamine-based polyolefin flame retardant composition containing nanoclay
JP2008280444A (en) Halogen-free flame-retardant resin composition and electric wire or cable using the same
KR100191657B1 (en) Nonhalogen thermoplastic flame retardant resin composition
WO1986004595A1 (en) Polyolefin composition
JPS60118724A (en) Crosslinkable polyolefin composition
JPH0627225B2 (en) Flame-retardant resin composition