NO783509L - DEVICE FOR EVAPORATION OF LIQUID NATURAL GAS - Google Patents

DEVICE FOR EVAPORATION OF LIQUID NATURAL GAS

Info

Publication number
NO783509L
NO783509L NO783509A NO783509A NO783509L NO 783509 L NO783509 L NO 783509L NO 783509 A NO783509 A NO 783509A NO 783509 A NO783509 A NO 783509A NO 783509 L NO783509 L NO 783509L
Authority
NO
Norway
Prior art keywords
combustion engine
turbine
accordance
heat
gas
Prior art date
Application number
NO783509A
Other languages
Norwegian (no)
Inventor
Werner Opitz
Hartmut Griepentrog
Dieter Weber
Original Assignee
Gutehoffnungshuette Sterkrade
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gutehoffnungshuette Sterkrade filed Critical Gutehoffnungshuette Sterkrade
Publication of NO783509L publication Critical patent/NO783509L/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/05Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/10Closed cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0311Air heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0323Heat exchange with the fluid by heating using another fluid in a closed loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/07Generating electrical power as side effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

Oppfinnelsen vedrører en anordning for fordamping av flytendegjort jordgass (Liquef>;ed Natural Gas=LNG) , nærmere bestem : en anordning av den art som' er angitt i innledningen til paten :-krav 1. The invention relates to a device for vaporizing liquefied natural gas (Liquefied Natural Gas=LNG), more specifically: a device of the type specified in the introduction to the patent: claim 1.

Ved flytendegjøringen og gjenavdampningen av slik gassDuring the liquefaction and re-evaporation of such gas

kreves det betydelig energi ved anleggene for flytendegjøring og for fordampning. For energiinnsparing er det derfor ved fordampningen i en tid blitt utnyttet et prinsipp, hvor strøm-dannelsen og fordampningen kombineres. considerable energy is required at the plants for liquefaction and for evaporation. In order to save energy, a principle has therefore been used for some time in the evaporation, where the generation of current and the evaporation are combined.

Det har vist seg at det ved en kombinasjon av LNG-fordampning og strømdannelse med gassturbiner i lukket prosess er mulig med en langtgående optimering av gjenvinning av energien Et karakteristisk trekk er den lave innløpstemperatur i forteti-eren på -140°C, Da prosessens virkningsgrad er avhengig av forholdet mellom den øvre prosesstemperatur og den nedre prosesstemperatur, oppnås en meget gunstig virkningsgrad. Anleggets totale virkningsgrad, d.v.s. forholdet mellom avgitt nytteeffekt» elektrisk ytelse +varmeytelse for LNG-fordampning dividert med tilført brennstoff effekt, kan til og med økes over 80%. Av dette går det fram at bruken av en slik prosess gir en brennstoffut-nyttelse som bortsett fra lave friksjons- og utstrålingstap mu'. ig-gjør en langtgående omdannelse av primærenergien i nytteenergi It has been shown that with a combination of LNG evaporation and power generation with gas turbines in a closed process, a far-reaching optimization of energy recovery is possible. A characteristic feature is the low inlet temperature in the forteti of -140°C. is dependent on the ratio between the upper process temperature and the lower process temperature, a very favorable degree of efficiency is achieved. The plant's total efficiency, i.e. the ratio between delivered useful power» electrical output + heating output for LNG vaporization divided by added fuel output, can even be increased over 80%. From this, it appears that the use of such a process provides a fuel utilization that, apart from low friction and radiation losses, must. ig-makes a far-reaching transformation of the primary energy into useful energy

Som arbeidsmedium for det lukkete kretsløp blir det vanlig-vis brukt nitrogen, idet dette er tilsatt 0. 5% surstoff, for å forhindre inntrengningen av nitrogen i de oppvarmete overflater i delene i anlegget. For å realisere slike anordninger er det fordelaktig, at alle delene fra allerede bygde gassturbinanlegj; kan utnyttes. For bruken av kjente gassturbiner må bare forteti-eren tilpasses til den lave innløpstemperatur. As working medium for the closed circuit, nitrogen is usually used, with 0.5% oxygen added to this, to prevent the penetration of nitrogen into the heated surfaces in the parts of the plant. In order to realize such devices, it is advantageous that all the parts from already built gas turbine plants; can be utilized. For the use of known gas turbines, only the forteti must be adapted to the low inlet temperature.

Til tross for den meget høye virkningsgraden er det like-vel behov for å redusere innvesteringsomkostningene. forbedre energiøkonomien, forhindre tap og å gjøre anleggets effektavgivelse lettere å tilpasse til forskjellige brukssituasjoner. Despite the very high degree of efficiency, there is still a need to reduce investment costs. improve the energy economy, prevent losses and make the plant's output easier to adapt to different usage situations.

Denne oppgaven blir ved en anordning av den art som er nevnt i innledningen løst ved at varmeren er en varmeveksler som er koblet inn i avgasstrømmen til en forbrenningsmaskin med koblet generator. This task is solved by a device of the type mentioned in the introduction in that the heater is a heat exchanger which is connected to the exhaust gas flow of an internal combustion engine with a connected generator.

Bruken av en forbrenningsmaskin, fortrinnsvis en dieselmotor, gir vesentlige fordeler innenfor oppgavestillingen. Ved den forbrenningsmaskin som tjener til strømutvikling avgis det store mengder spillvarme, som særlig finnes i forbrenningsgass-ene. Det skal bemerkes at "forbrenningsmaskin" også kan omfatte forskjellige grupper av slike maskiner. The use of an internal combustion engine, preferably a diesel engine, provides significant advantages within the task position. The combustion engine that serves to generate electricity emits large amounts of waste heat, which is particularly found in the combustion gases. It should be noted that "combustion engine" can also include different groups of such machines.

Til forbrenningsmaskinens drivaksel er det koblet en genera-^ tor, hvis effektavgivelse er forholdsvis lett innstillbar og varierbar ved hjelp av maskinens styring. Ved utnyttelsen av avgassene fra forbrenningsmaskinen blir det mulig å drive en ytterligere generator i det lukkete system. Total-virkningsgraden for anlegget, beregnet på den angitte måte, kan økes til 90% og mer. Samtidig kan anordningen bygges opp og drives økonomisk. Turbinen kan benyttes uten forandring. Den krever ingen skovelkjøling. Rekuperatorer og varmevekslere er likeledes kjent. For LNG-fordamperen finnes det tilstrekkelige erfaringer fra lavtemperatur-teknikken. A generator is connected to the combustion engine's drive shaft, the output of which can be relatively easily adjusted and varied using the machine's controls. By utilizing the exhaust gases from the combustion engine, it becomes possible to operate an additional generator in the closed system. The total efficiency of the plant, calculated in the manner indicated, can be increased to 90% and more. At the same time, the device can be built up and operated economically. The turbine can be used without modification. It does not require blade cooling. Recuperators and heat exchangers are also known. For the LNG evaporator, there is sufficient experience from the low-temperature technique.

Blir forbrenningsmaskinen, som fortrinnsvis er en dieselmotor, drevet med en turbolader i avgassen, så er det mulig,a) If the combustion engine, which is preferably a diesel engine, is driven with a turbocharger in the exhaust gas, then it is possible,a)

å plassere varmeveksleren i den gasstrøm som kommer ut av turboladeren i turbinen eller b)å koble varmeveksleren i avgasstrømmen som går inn i turboladeren. Avhengig av de driftsbestingelser som hersker (temperatur, trykk på avgassene foran og etter turboladeren) kan opti-male driftsbetingelser fastlegges. En ytterligere forbedring ved energiøkonomien innfor oppgavestillingen oppnås, når fortetningen i den fortetter som hører til gassturbinanlegget og/eller avspenningen i turbinen skjer med flere varmeovergangstrinn (avgivelse henholdsvis opptak av tapsvarme). to place the heat exchanger in the gas stream that comes out of the turbocharger in the turbine or b) to connect the heat exchanger in the exhaust gas stream that goes into the turbocharger. Depending on the operating conditions that prevail (temperature, pressure on the exhaust gases before and after the turbocharger) optimal operating conditions can be determined. A further improvement in the energy economy in relation to the task position is achieved, when the densification in the densifier belonging to the gas turbine plant and/or the relaxation in the turbine takes place with several heat transfer stages (discharge or absorption of loss heat).

Ytterligere varmemengder kan overføres til gassen, når varmeveksleren blir gjennomstrømmet av forbrenningsluften eller når en smøreolje- og/eller kjølevannskjøler blir gjennomstrømmet av gassen. Disse varmemengdene kan også overføres til det lukkete gassturbin^kretsløp. Additional amounts of heat can be transferred to the gas, when the heat exchanger is flowed through by the combustion air or when a lubricating oil and/or cooling water cooler is flowed through by the gas. These amounts of heat can also be transferred to the closed gas turbine circuit.

Riktignok erkjent anordninger for fordampning av LNG, som arbeider under utnyttelse av tapsvarmen fra en dieselmotor med en såkalt "kuldeturbin". Gassen blir pumpet gjennom en varmeveksler, hvori den blir fullstendig fordampet. Varmeveksleren blir tilført en kullvannstoffholdig gass i motstrøm, hvilken kondenserer i varmeveksleren. Kondensatet blir pumpet gjennom flere ytterligere varmevekslere, som står i forbindelse med andre varmevekslere som fjerner tapsvarme på forskjellige steder på forbrenningsmaskinen. Ved dieselmotoren er det koblet en varmeveksler henholdsvis i avgasstrømmen og/eller i for-brennings luft strømmen . Admittedly recognized devices for vaporizing LNG, which work under the utilization of the waste heat from a diesel engine with a so-called "cold turbine". The gas is pumped through a heat exchanger, where it is completely vaporized. The heat exchanger is supplied with a coal-hydrogen-containing gas in countercurrent, which condenses in the heat exchanger. The condensate is pumped through several additional heat exchangers, which are connected to other heat exchangers that remove waste heat at various points on the combustion engine. With the diesel engine, a heat exchanger is connected respectively in the exhaust gas flow and/or in the combustion air flow.

Bruken av en dieselmotor på den kjente måte gir imidlertid ingen opplysning om, hvilken teknikk som bør velges ved et lukket gassturbin-kretsløp. Dessuten kan det føre til vanskelig-heter å beherske teknikken med en kuldeturbin. Turbinen skaper tallrike isolasjons- og forstopningsproblemer, særlig på grunn av kondensasjonsprodukter. Derimot blir det ved den foreliggende oppfinnelse valgt et gunstig prinsipp, som i stor utstrekning garanterer forstyrrelsesfri drift. However, the use of a diesel engine in the known manner does not provide any information about which technique should be chosen for a closed gas turbine circuit. Furthermore, mastering the technique with a cold turbine can lead to difficulties. The turbine creates numerous insulation and clogging problems, particularly due to condensation products. In contrast, with the present invention, a favorable principle is chosen, which to a large extent guarantees disturbance-free operation.

Eksempler på utførelsesformer av oppfinnelsen er vist i figurene, hvor Examples of embodiments of the invention are shown in the figures, where

fig. 1 viser en anordning for LNG-fordampning ifølge oppfinnelsen, hvor en varmeveksler overfører avgassenergien fra en dieselmotor til et lukket gassturbinkretsløp, fig. 1 shows a device for LNG evaporation according to the invention, where a heat exchanger transfers the exhaust gas energy from a diesel engine to a closed gas turbine circuit,

fig. 2 viser en anordning ifølge fig. 1, hvor ytterligere varmevekslere overfører energien fra forbrenningsluften, smøreoljen og kjølevannet til gassen, mens fig. 2 shows a device according to fig. 1, where further heat exchangers transfer the energy from the combustion air, the lubricating oil and the cooling water to the gas, while

fig. 3 viser en anordning ifølge fig. 2 med energioverføring til det lukkete gassturbin-kretsløp. fig. 3 shows a device according to fig. 2 with energy transfer to the closed gas turbine circuit.

I fig. 1 er det -vist et første utførelseseksempel på anordningen ifølge oppfinnelsen. Anordningen består hovedsakelig av tre deler: En dieselmotor 1 som drivapparat for en strømgenera-tor 2, en gassturbin 13 med en fortetter 15 og en generator 16, samt en fordamper 3 for flytendegjort jordgass (LNG). In fig. 1 shows a first embodiment of the device according to the invention. The device mainly consists of three parts: A diesel engine 1 as a drive device for a power generator 2, a gas turbine 13 with a condenser 15 and a generator 16, as well as an evaporator 3 for liquefied natural gas (LNG).

Avgassen fra dieselmotoren 2 strømmer med en temperatur T^=420°C inn i en varmeveksler 9, som den forlater med en temperatur T2=125°C. The exhaust gas from the diesel engine 2 flows with a temperature T^=420°C into a heat exchanger 9, which it leaves with a temperature T2=125°C.

Varmeveksleren 9 blir over en'ledning 10 tilført arbeidsmediet til et kretsløpssystem som arbeider i en lukket prosess. Denne har ved inngangen i varmeveksleren 9 temperaturen Tg= 100°C og forlater det med omtrent T.j=400oC. Arbeidsmediet som strømmer gjennom ledningén 11 og som altså består av nitrogen med en lav surstoffandel, når turbinen 13, som over en aksel 14 er koblet sammen med såvel en fortetter 15 som med en generator 16. The heat exchanger 9 is supplied via a line 10 with the working medium to a circuit system which works in a closed process. At the entrance to the heat exchanger 9, this has a temperature Tg= 100°C and leaves it at approximately T.j=400°C. The working medium which flows through the line 11 and which therefore consists of nitrogen with a low oxygen content, reaches the turbine 13, which is connected via a shaft 14 to both a condenser 15 and a generator 16.

Det avspente medium som strømmer ut av turbinen med en temperatur T^=160°G, når over en ledning 17 en rekuperator 18. Etter at det har strømmet gjennom denne, når det med en temperatur T^=30<o>C fordamperen 3. Her skjer en avkjøling til en temperatur Tg=-140°C. Med denne temperatur når mediet for-tetteren 15,hvor det blir komprimert og brakt på en temperatur på T^=-20°C. Denne temperaturn blir etter gjennomstrømmingen av rekuperatoren 18 økt til Tg=100°C.Over ledningen 10 når gassen deretter igjen varmeveksleren 9. Kretsløpet starter forfra. The destressed medium flowing out of the turbine with a temperature T^=160°G reaches a recuperator 18 via a line 17. After it has flowed through this, it reaches the evaporator 3 with a temperature T^=30<o>C Here a cooling takes place to a temperature Tg=-140°C. At this temperature, the medium reaches the densifier 15, where it is compressed and brought to a temperature of T^=-20°C. After passing through the recuperator 18, this temperature is increased to Tg=100°C. The gas then reaches the heat exchanger 9 again via line 10. The circuit starts over.

I fig. 2 er det vist et utførelseseksempel i modifisert form. Avgassen som dannes av en dieselmotor 1 strømmer først gjennom en varmeveksler 9 og deretter gjennom turbinen 5 til en turbolader 6 for avgassen, hvilken i tillegg er forsynt med en kompressor 7 for forbrenningsluften som strømmer inn. Fra kompressoren 7 strømmer forbrenningsluften inn i dieselmotoren 1- In fig. 2 shows an embodiment in modified form. The exhaust gas produced by a diesel engine 1 first flows through a heat exchanger 9 and then through the turbine 5 to a turbocharger 6 for the exhaust gas, which is additionally provided with a compressor 7 for the combustion air that flows in. From the compressor 7, the combustion air flows into the diesel engine 1-

I den utstrekning de ytterligere elementer til den utførelses-form, særlig det lukkete turbinkretsløp, tilsvarer eksempelet foran, er det valgt samme henvisningstall. To the extent that the further elements of the embodiment, in particular the closed turbine circuit, correspond to the previous example, the same reference number has been chosen.

I fig. 2 er det videre antydet med strekete symboler,In fig. 2, it is further indicated by dashed symbols,

at det kan anordnes ytterligere varmevekslere, som er forbundet med tilsvarende stasjoner for varmeavgivelse i gassledningen. Det finnes med henvisningstall 20 en varmeveksler i kretsløpet til den komprimerte forbrenningsluften med tilsvarende stasjon 20' for varmeavgivelse, med henvisningstall 21 en oljekjøler med tilsvarende stasjon 21' for avgivelse, og med henvisningstall 22 en vannkjøler med stasjon 22' for avgivelse. that additional heat exchangers can be arranged, which are connected to corresponding stations for heat release in the gas line. There is a heat exchanger in the circuit of the compressed combustion air with reference number 20 with corresponding station 20' for heat release, with reference number 21 an oil cooler with corresponding station 21' for release, and with reference number 22 a water cooler with station 22' for release.

I fig. 3 er det vist en utførelsesform hvor stasjonene 20", 21" og 22" for varmeavgivelse er plassert i et lukket system med gassturbinen. In fig. 3 shows an embodiment where the stations 20", 21" and 22" for heat release are placed in a closed system with the gas turbine.

Avspenningen av turbinen i den lukkete prosess med gassturbinen 13 kan med fordel skje i flere mellomtrinn med mellom- varming mellom hvert, slik det er kjent fra prosessteknologien. Tilsvarende gjelder for muligheten til å foreta kompressjonen The relaxation of the turbine in the closed process with the gas turbine 13 can advantageously take place in several intermediate stages with intermediate heating between each, as is known from process technology. The same applies to the ability to carry out the compression

i kompressoren med flere mellomkjølinger. Denne muligheten er ikke vist i figurene, da den er kjent for fagfolk. in the compressor with several intercoolers. This possibility is not shown in the figures as it is known to those skilled in the art.

Claims (7)

1. Anordning for fordamping av flytendegjort jordgass (LNG) med en fordamper som er koblet inn i LNG-strømmen og som er koblet inn i kretsløpet til et gassturbinanlegg i lukket prosess, for elektrisitetsgenerering, idet kretsløpet blir tilført varmeenergi over en varmer, karakterisert ved at varmeren er en varmeveksler (9) som er plassert i avgasstrømmen til en forbrenningsmaskin (1)» fortrinnsvis med tilkoblet generator (2).1. Device for vaporizing liquefied natural gas (LNG) with an evaporator that is connected to the LNG flow and that is connected to the circuit of a gas turbine plant in a closed process, for electricity generation, the circuit being supplied with heat energy via a heater, characterized by that the heater is a heat exchanger (9) which is placed in the exhaust gas stream of an internal combustion engine (1)" preferably with a connected generator (2). 2. Anordning i samsvar med krav 1, karakterisert ved at forbrenningsmaskinen er en dieselmotor.2. Device in accordance with claim 1, characterized in that the combustion engine is a diesel engine. 3. Anordning i samsvar med krav 1 eller 2, med en fbr-brenningsmaskin som har en avgassdrevet turbolader, karakterisert ved at varmeveksleren (9) er koblet inn i den gasstrøm som kommer ut av turboladerens (6) turbin.3. Device in accordance with claim 1 or 2, with an fbr combustion engine that has an exhaust gas-driven turbocharger, characterized in that the heat exchanger (9) is connected to the gas flow coming out of the turbocharger's (6) turbine. 4. Anordning i samsvar med krav 1 eller 2, med en forbrenningsmaskin med en avgassdrevet turbolader, karakterisert ved at varmeveksleren (9) er koblet inn i den avgasstrøm som går inn i turboladerens (9) turbin (5).4. Device in accordance with claim 1 or 2, with an internal combustion engine with an exhaust gas-driven turbocharger, characterized in that the heat exchanger (9) is connected to the exhaust gas flow that enters the turbocharger's (9) turbine (5). 5. Anordning i samsvar med krav 1, karakterisert ved at kompressjonen i den kompressor (15) som til-hører gassturbinanlegget og/eller avspenningen i turbinen (13) skjer med flere varmeovergangstrinn.5. Device in accordance with claim 1, characterized in that the compression in the compressor (15) which belongs to the gas turbine plant and/or the relaxation in the turbine (13) occurs with several heat transfer stages. 6. Anordning i samsvar med krav 1, karakterisert ved at tapsvarmeenergien fra forbrenningsluft, smøre-olje og/eller kjølevann fra forbrenningsmaskinen (1) blir utnyttet ved hjelp av varmevekslere (20, 21, 22 henholdsvis 20', 21', 22') til LNG-fordampning.6. Device in accordance with claim 1, characterized in that the heat loss energy from combustion air, lubricating oil and/or cooling water from the combustion engine (1) is utilized by means of heat exchangers (20, 21, 22 respectively 20', 21', 22') for LNG evaporation. 7. Anordning i samsvar med krav 1, karakterisert ved at tapsvarmeenergien fra forbrenningsluft, smøre-olje og/eller kjølevann fra forbrenningsmaskin (1) blir over-ført i det lukkete gassturbin-kretsløp ved hjelp av varmevekslere (20, 21, 22, henholdsvis 20", 21", 22").7. Device in accordance with claim 1, characterized in that the heat loss energy from combustion air, lubricating oil and/or cooling water from the combustion engine (1) is transferred into the closed gas turbine circuit by means of heat exchangers (20, 21, 22, respectively 20", 21", 22").
NO783509A 1977-11-08 1978-10-17 DEVICE FOR EVAPORATION OF LIQUID NATURAL GAS NO783509L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19772749903 DE2749903A1 (en) 1977-11-08 1977-11-08 DEVICE FOR EVAPORATION OF LIQUID NATURAL GAS WITH IMPROVED ENERGY BALANCE

Publications (1)

Publication Number Publication Date
NO783509L true NO783509L (en) 1979-05-09

Family

ID=6023275

Family Applications (1)

Application Number Title Priority Date Filing Date
NO783509A NO783509L (en) 1977-11-08 1978-10-17 DEVICE FOR EVAPORATION OF LIQUID NATURAL GAS

Country Status (13)

Country Link
JP (1) JPS5499214A (en)
AT (1) AT365301B (en)
BE (1) BE871118A (en)
BR (1) BR7807313A (en)
DE (1) DE2749903A1 (en)
DK (1) DK496078A (en)
ES (1) ES474902A1 (en)
FR (1) FR2408090A1 (en)
GB (1) GB2007823A (en)
IT (1) IT1100454B (en)
NL (1) NL7810358A (en)
NO (1) NO783509L (en)
SE (1) SE7811425L (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO810967L (en) * 1980-03-31 1981-10-01 Halliburton Co NITROGEN HEATING DEVICE.
CH682761A5 (en) * 1990-12-03 1993-11-15 Asea Brown Boveri A process for reducing the pressure of a gas from a primary network.
EP1667898A4 (en) * 2003-08-12 2010-01-20 Excelerate Energy Ltd Partners Shipboard regasification for lng carriers with alternate propulsion plants
JP5616459B2 (en) * 2010-10-14 2014-10-29 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Hybrid pumper and cryogenic fluid superheating method
RU2570952C1 (en) * 2014-09-09 2015-12-20 Александр Николаевич Лазарев Method of evaporation and use of liquefied natural gas for systems of autonomous power supply in arctic zone

Also Published As

Publication number Publication date
ATA736278A (en) 1981-05-15
IT1100454B (en) 1985-09-28
ES474902A1 (en) 1979-04-01
GB2007823A (en) 1979-05-23
SE7811425L (en) 1979-05-09
NL7810358A (en) 1979-05-10
FR2408090A1 (en) 1979-06-01
FR2408090B3 (en) 1980-08-08
BE871118A (en) 1979-02-01
DK496078A (en) 1979-05-09
JPS5499214A (en) 1979-08-04
DE2749903A1 (en) 1979-05-10
IT7829541A0 (en) 1978-11-08
BR7807313A (en) 1979-06-12
AT365301B (en) 1982-01-11

Similar Documents

Publication Publication Date Title
US3757517A (en) Power-generating plant using a combined gas- and steam-turbine cycle
US4037413A (en) Power plant with a closed cycle comprising a gas turbine and a work gas cooling heat exchanger
US5632143A (en) Gas turbine system and method using temperature control of the exhaust gas entering the heat recovery cycle by mixing with ambient air
EP1016775B1 (en) Waste heat recovery in an organic energy converter using an intermediate liquid cycle
Liu et al. A novel inlet air cooling system based on liquefied natural gas cold energy utilization for improving power plant performance
CA1218240A (en) Regenerative gas turbine cycle
US5609029A (en) Thermal power engine and its operating method
NO800484L (en) PROCEDURE AND APPARATUS FOR RECOVERY OF HEAT ENERGY IN A CHARGED COMBUSTION ENGINE
US20020053196A1 (en) Gas pipeline compressor stations with kalina cycles
EA014465B1 (en) A heat engine system
WO2011082949A2 (en) Combined cycle power plant and method of operating such power plant
US20140250905A1 (en) Method and apparatus for achieving a high efficiency in an open gas-turbine (combi) process
Legmann Recovery of industrial heat in the cement industry by means of the ORC process
Angelino et al. The potential role of organic bottoming Rankine cycles in steam power stations
JPH11350920A (en) Exhaust heat recovery system
NO783509L (en) DEVICE FOR EVAPORATION OF LIQUID NATURAL GAS
US7033420B2 (en) Process and apparatus for the thermal degassing of the working medium of a two-phase process
JP3696931B2 (en) Power generation facility using liquid air
JP3697476B2 (en) Combined power generation system using gas pressure energy
CN215633192U (en) LNG cold energy utilization device
CN214660401U (en) Flexible power station based on combination of supercritical carbon dioxide power cycle and seawater desalination
JPS61201831A (en) Power generation method
NO810933L (en) PROCEDURE AND PLANT FOR RECOVERY OF HEAT FROM SMOKE GAS.
CN212563345U (en) Polyester esterification steam waste heat comprehensive utilization system
CN212563346U (en) Polyester esterification steam waste heat power generation system