NO783509L - DEVICE FOR EVAPORATION OF LIQUID NATURAL GAS - Google Patents
DEVICE FOR EVAPORATION OF LIQUID NATURAL GASInfo
- Publication number
- NO783509L NO783509L NO783509A NO783509A NO783509L NO 783509 L NO783509 L NO 783509L NO 783509 A NO783509 A NO 783509A NO 783509 A NO783509 A NO 783509A NO 783509 L NO783509 L NO 783509L
- Authority
- NO
- Norway
- Prior art keywords
- combustion engine
- turbine
- accordance
- heat
- gas
- Prior art date
Links
- 239000003949 liquefied natural gas Substances 0.000 title claims description 15
- 238000001704 evaporation Methods 0.000 title claims description 8
- 230000008020 evaporation Effects 0.000 title claims description 7
- 239000007789 gas Substances 0.000 claims description 38
- 238000002485 combustion reaction Methods 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 8
- 239000000498 cooling water Substances 0.000 claims description 4
- 239000010687 lubricating oil Substances 0.000 claims description 4
- 230000008016 vaporization Effects 0.000 claims description 4
- 230000006835 compression Effects 0.000 claims description 2
- 238000007906 compression Methods 0.000 claims description 2
- 230000005611 electricity Effects 0.000 claims description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000002918 waste heat Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G5/00—Profiting from waste heat of combustion engines, not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C1/00—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
- F02C1/04—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
- F02C1/05—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C1/00—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
- F02C1/04—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
- F02C1/10—Closed cycles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
- F02C6/18—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C9/00—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
- F17C9/02—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
- F17C9/04—Recovery of thermal energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/033—Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
- F17C2223/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/033—Small pressure, e.g. for liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/01—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
- F17C2225/0107—Single phase
- F17C2225/0123—Single phase gaseous, e.g. CNG, GNC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0302—Heat exchange with the fluid by heating
- F17C2227/0309—Heat exchange with the fluid by heating using another fluid
- F17C2227/0311—Air heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0302—Heat exchange with the fluid by heating
- F17C2227/0309—Heat exchange with the fluid by heating using another fluid
- F17C2227/0316—Water heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0302—Heat exchange with the fluid by heating
- F17C2227/0309—Heat exchange with the fluid by heating using another fluid
- F17C2227/0323—Heat exchange with the fluid by heating using another fluid in a closed loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0367—Localisation of heat exchange
- F17C2227/0388—Localisation of heat exchange separate
- F17C2227/0393—Localisation of heat exchange separate using a vaporiser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/07—Generating electrical power as side effect
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Description
Oppfinnelsen vedrører en anordning for fordamping av flytendegjort jordgass (Liquef>;ed Natural Gas=LNG) , nærmere bestem : en anordning av den art som' er angitt i innledningen til paten :-krav 1. The invention relates to a device for vaporizing liquefied natural gas (Liquefied Natural Gas=LNG), more specifically: a device of the type specified in the introduction to the patent: claim 1.
Ved flytendegjøringen og gjenavdampningen av slik gassDuring the liquefaction and re-evaporation of such gas
kreves det betydelig energi ved anleggene for flytendegjøring og for fordampning. For energiinnsparing er det derfor ved fordampningen i en tid blitt utnyttet et prinsipp, hvor strøm-dannelsen og fordampningen kombineres. considerable energy is required at the plants for liquefaction and for evaporation. In order to save energy, a principle has therefore been used for some time in the evaporation, where the generation of current and the evaporation are combined.
Det har vist seg at det ved en kombinasjon av LNG-fordampning og strømdannelse med gassturbiner i lukket prosess er mulig med en langtgående optimering av gjenvinning av energien Et karakteristisk trekk er den lave innløpstemperatur i forteti-eren på -140°C, Da prosessens virkningsgrad er avhengig av forholdet mellom den øvre prosesstemperatur og den nedre prosesstemperatur, oppnås en meget gunstig virkningsgrad. Anleggets totale virkningsgrad, d.v.s. forholdet mellom avgitt nytteeffekt» elektrisk ytelse +varmeytelse for LNG-fordampning dividert med tilført brennstoff effekt, kan til og med økes over 80%. Av dette går det fram at bruken av en slik prosess gir en brennstoffut-nyttelse som bortsett fra lave friksjons- og utstrålingstap mu'. ig-gjør en langtgående omdannelse av primærenergien i nytteenergi It has been shown that with a combination of LNG evaporation and power generation with gas turbines in a closed process, a far-reaching optimization of energy recovery is possible. A characteristic feature is the low inlet temperature in the forteti of -140°C. is dependent on the ratio between the upper process temperature and the lower process temperature, a very favorable degree of efficiency is achieved. The plant's total efficiency, i.e. the ratio between delivered useful power» electrical output + heating output for LNG vaporization divided by added fuel output, can even be increased over 80%. From this, it appears that the use of such a process provides a fuel utilization that, apart from low friction and radiation losses, must. ig-makes a far-reaching transformation of the primary energy into useful energy
Som arbeidsmedium for det lukkete kretsløp blir det vanlig-vis brukt nitrogen, idet dette er tilsatt 0. 5% surstoff, for å forhindre inntrengningen av nitrogen i de oppvarmete overflater i delene i anlegget. For å realisere slike anordninger er det fordelaktig, at alle delene fra allerede bygde gassturbinanlegj; kan utnyttes. For bruken av kjente gassturbiner må bare forteti-eren tilpasses til den lave innløpstemperatur. As working medium for the closed circuit, nitrogen is usually used, with 0.5% oxygen added to this, to prevent the penetration of nitrogen into the heated surfaces in the parts of the plant. In order to realize such devices, it is advantageous that all the parts from already built gas turbine plants; can be utilized. For the use of known gas turbines, only the forteti must be adapted to the low inlet temperature.
Til tross for den meget høye virkningsgraden er det like-vel behov for å redusere innvesteringsomkostningene. forbedre energiøkonomien, forhindre tap og å gjøre anleggets effektavgivelse lettere å tilpasse til forskjellige brukssituasjoner. Despite the very high degree of efficiency, there is still a need to reduce investment costs. improve the energy economy, prevent losses and make the plant's output easier to adapt to different usage situations.
Denne oppgaven blir ved en anordning av den art som er nevnt i innledningen løst ved at varmeren er en varmeveksler som er koblet inn i avgasstrømmen til en forbrenningsmaskin med koblet generator. This task is solved by a device of the type mentioned in the introduction in that the heater is a heat exchanger which is connected to the exhaust gas flow of an internal combustion engine with a connected generator.
Bruken av en forbrenningsmaskin, fortrinnsvis en dieselmotor, gir vesentlige fordeler innenfor oppgavestillingen. Ved den forbrenningsmaskin som tjener til strømutvikling avgis det store mengder spillvarme, som særlig finnes i forbrenningsgass-ene. Det skal bemerkes at "forbrenningsmaskin" også kan omfatte forskjellige grupper av slike maskiner. The use of an internal combustion engine, preferably a diesel engine, provides significant advantages within the task position. The combustion engine that serves to generate electricity emits large amounts of waste heat, which is particularly found in the combustion gases. It should be noted that "combustion engine" can also include different groups of such machines.
Til forbrenningsmaskinens drivaksel er det koblet en genera-^ tor, hvis effektavgivelse er forholdsvis lett innstillbar og varierbar ved hjelp av maskinens styring. Ved utnyttelsen av avgassene fra forbrenningsmaskinen blir det mulig å drive en ytterligere generator i det lukkete system. Total-virkningsgraden for anlegget, beregnet på den angitte måte, kan økes til 90% og mer. Samtidig kan anordningen bygges opp og drives økonomisk. Turbinen kan benyttes uten forandring. Den krever ingen skovelkjøling. Rekuperatorer og varmevekslere er likeledes kjent. For LNG-fordamperen finnes det tilstrekkelige erfaringer fra lavtemperatur-teknikken. A generator is connected to the combustion engine's drive shaft, the output of which can be relatively easily adjusted and varied using the machine's controls. By utilizing the exhaust gases from the combustion engine, it becomes possible to operate an additional generator in the closed system. The total efficiency of the plant, calculated in the manner indicated, can be increased to 90% and more. At the same time, the device can be built up and operated economically. The turbine can be used without modification. It does not require blade cooling. Recuperators and heat exchangers are also known. For the LNG evaporator, there is sufficient experience from the low-temperature technique.
Blir forbrenningsmaskinen, som fortrinnsvis er en dieselmotor, drevet med en turbolader i avgassen, så er det mulig,a) If the combustion engine, which is preferably a diesel engine, is driven with a turbocharger in the exhaust gas, then it is possible,a)
å plassere varmeveksleren i den gasstrøm som kommer ut av turboladeren i turbinen eller b)å koble varmeveksleren i avgasstrømmen som går inn i turboladeren. Avhengig av de driftsbestingelser som hersker (temperatur, trykk på avgassene foran og etter turboladeren) kan opti-male driftsbetingelser fastlegges. En ytterligere forbedring ved energiøkonomien innfor oppgavestillingen oppnås, når fortetningen i den fortetter som hører til gassturbinanlegget og/eller avspenningen i turbinen skjer med flere varmeovergangstrinn (avgivelse henholdsvis opptak av tapsvarme). to place the heat exchanger in the gas stream that comes out of the turbocharger in the turbine or b) to connect the heat exchanger in the exhaust gas stream that goes into the turbocharger. Depending on the operating conditions that prevail (temperature, pressure on the exhaust gases before and after the turbocharger) optimal operating conditions can be determined. A further improvement in the energy economy in relation to the task position is achieved, when the densification in the densifier belonging to the gas turbine plant and/or the relaxation in the turbine takes place with several heat transfer stages (discharge or absorption of loss heat).
Ytterligere varmemengder kan overføres til gassen, når varmeveksleren blir gjennomstrømmet av forbrenningsluften eller når en smøreolje- og/eller kjølevannskjøler blir gjennomstrømmet av gassen. Disse varmemengdene kan også overføres til det lukkete gassturbin^kretsløp. Additional amounts of heat can be transferred to the gas, when the heat exchanger is flowed through by the combustion air or when a lubricating oil and/or cooling water cooler is flowed through by the gas. These amounts of heat can also be transferred to the closed gas turbine circuit.
Riktignok erkjent anordninger for fordampning av LNG, som arbeider under utnyttelse av tapsvarmen fra en dieselmotor med en såkalt "kuldeturbin". Gassen blir pumpet gjennom en varmeveksler, hvori den blir fullstendig fordampet. Varmeveksleren blir tilført en kullvannstoffholdig gass i motstrøm, hvilken kondenserer i varmeveksleren. Kondensatet blir pumpet gjennom flere ytterligere varmevekslere, som står i forbindelse med andre varmevekslere som fjerner tapsvarme på forskjellige steder på forbrenningsmaskinen. Ved dieselmotoren er det koblet en varmeveksler henholdsvis i avgasstrømmen og/eller i for-brennings luft strømmen . Admittedly recognized devices for vaporizing LNG, which work under the utilization of the waste heat from a diesel engine with a so-called "cold turbine". The gas is pumped through a heat exchanger, where it is completely vaporized. The heat exchanger is supplied with a coal-hydrogen-containing gas in countercurrent, which condenses in the heat exchanger. The condensate is pumped through several additional heat exchangers, which are connected to other heat exchangers that remove waste heat at various points on the combustion engine. With the diesel engine, a heat exchanger is connected respectively in the exhaust gas flow and/or in the combustion air flow.
Bruken av en dieselmotor på den kjente måte gir imidlertid ingen opplysning om, hvilken teknikk som bør velges ved et lukket gassturbin-kretsløp. Dessuten kan det føre til vanskelig-heter å beherske teknikken med en kuldeturbin. Turbinen skaper tallrike isolasjons- og forstopningsproblemer, særlig på grunn av kondensasjonsprodukter. Derimot blir det ved den foreliggende oppfinnelse valgt et gunstig prinsipp, som i stor utstrekning garanterer forstyrrelsesfri drift. However, the use of a diesel engine in the known manner does not provide any information about which technique should be chosen for a closed gas turbine circuit. Furthermore, mastering the technique with a cold turbine can lead to difficulties. The turbine creates numerous insulation and clogging problems, particularly due to condensation products. In contrast, with the present invention, a favorable principle is chosen, which to a large extent guarantees disturbance-free operation.
Eksempler på utførelsesformer av oppfinnelsen er vist i figurene, hvor Examples of embodiments of the invention are shown in the figures, where
fig. 1 viser en anordning for LNG-fordampning ifølge oppfinnelsen, hvor en varmeveksler overfører avgassenergien fra en dieselmotor til et lukket gassturbinkretsløp, fig. 1 shows a device for LNG evaporation according to the invention, where a heat exchanger transfers the exhaust gas energy from a diesel engine to a closed gas turbine circuit,
fig. 2 viser en anordning ifølge fig. 1, hvor ytterligere varmevekslere overfører energien fra forbrenningsluften, smøreoljen og kjølevannet til gassen, mens fig. 2 shows a device according to fig. 1, where further heat exchangers transfer the energy from the combustion air, the lubricating oil and the cooling water to the gas, while
fig. 3 viser en anordning ifølge fig. 2 med energioverføring til det lukkete gassturbin-kretsløp. fig. 3 shows a device according to fig. 2 with energy transfer to the closed gas turbine circuit.
I fig. 1 er det -vist et første utførelseseksempel på anordningen ifølge oppfinnelsen. Anordningen består hovedsakelig av tre deler: En dieselmotor 1 som drivapparat for en strømgenera-tor 2, en gassturbin 13 med en fortetter 15 og en generator 16, samt en fordamper 3 for flytendegjort jordgass (LNG). In fig. 1 shows a first embodiment of the device according to the invention. The device mainly consists of three parts: A diesel engine 1 as a drive device for a power generator 2, a gas turbine 13 with a condenser 15 and a generator 16, as well as an evaporator 3 for liquefied natural gas (LNG).
Avgassen fra dieselmotoren 2 strømmer med en temperatur T^=420°C inn i en varmeveksler 9, som den forlater med en temperatur T2=125°C. The exhaust gas from the diesel engine 2 flows with a temperature T^=420°C into a heat exchanger 9, which it leaves with a temperature T2=125°C.
Varmeveksleren 9 blir over en'ledning 10 tilført arbeidsmediet til et kretsløpssystem som arbeider i en lukket prosess. Denne har ved inngangen i varmeveksleren 9 temperaturen Tg= 100°C og forlater det med omtrent T.j=400oC. Arbeidsmediet som strømmer gjennom ledningén 11 og som altså består av nitrogen med en lav surstoffandel, når turbinen 13, som over en aksel 14 er koblet sammen med såvel en fortetter 15 som med en generator 16. The heat exchanger 9 is supplied via a line 10 with the working medium to a circuit system which works in a closed process. At the entrance to the heat exchanger 9, this has a temperature Tg= 100°C and leaves it at approximately T.j=400°C. The working medium which flows through the line 11 and which therefore consists of nitrogen with a low oxygen content, reaches the turbine 13, which is connected via a shaft 14 to both a condenser 15 and a generator 16.
Det avspente medium som strømmer ut av turbinen med en temperatur T^=160°G, når over en ledning 17 en rekuperator 18. Etter at det har strømmet gjennom denne, når det med en temperatur T^=30<o>C fordamperen 3. Her skjer en avkjøling til en temperatur Tg=-140°C. Med denne temperatur når mediet for-tetteren 15,hvor det blir komprimert og brakt på en temperatur på T^=-20°C. Denne temperaturn blir etter gjennomstrømmingen av rekuperatoren 18 økt til Tg=100°C.Over ledningen 10 når gassen deretter igjen varmeveksleren 9. Kretsløpet starter forfra. The destressed medium flowing out of the turbine with a temperature T^=160°G reaches a recuperator 18 via a line 17. After it has flowed through this, it reaches the evaporator 3 with a temperature T^=30<o>C Here a cooling takes place to a temperature Tg=-140°C. At this temperature, the medium reaches the densifier 15, where it is compressed and brought to a temperature of T^=-20°C. After passing through the recuperator 18, this temperature is increased to Tg=100°C. The gas then reaches the heat exchanger 9 again via line 10. The circuit starts over.
I fig. 2 er det vist et utførelseseksempel i modifisert form. Avgassen som dannes av en dieselmotor 1 strømmer først gjennom en varmeveksler 9 og deretter gjennom turbinen 5 til en turbolader 6 for avgassen, hvilken i tillegg er forsynt med en kompressor 7 for forbrenningsluften som strømmer inn. Fra kompressoren 7 strømmer forbrenningsluften inn i dieselmotoren 1- In fig. 2 shows an embodiment in modified form. The exhaust gas produced by a diesel engine 1 first flows through a heat exchanger 9 and then through the turbine 5 to a turbocharger 6 for the exhaust gas, which is additionally provided with a compressor 7 for the combustion air that flows in. From the compressor 7, the combustion air flows into the diesel engine 1-
I den utstrekning de ytterligere elementer til den utførelses-form, særlig det lukkete turbinkretsløp, tilsvarer eksempelet foran, er det valgt samme henvisningstall. To the extent that the further elements of the embodiment, in particular the closed turbine circuit, correspond to the previous example, the same reference number has been chosen.
I fig. 2 er det videre antydet med strekete symboler,In fig. 2, it is further indicated by dashed symbols,
at det kan anordnes ytterligere varmevekslere, som er forbundet med tilsvarende stasjoner for varmeavgivelse i gassledningen. Det finnes med henvisningstall 20 en varmeveksler i kretsløpet til den komprimerte forbrenningsluften med tilsvarende stasjon 20' for varmeavgivelse, med henvisningstall 21 en oljekjøler med tilsvarende stasjon 21' for avgivelse, og med henvisningstall 22 en vannkjøler med stasjon 22' for avgivelse. that additional heat exchangers can be arranged, which are connected to corresponding stations for heat release in the gas line. There is a heat exchanger in the circuit of the compressed combustion air with reference number 20 with corresponding station 20' for heat release, with reference number 21 an oil cooler with corresponding station 21' for release, and with reference number 22 a water cooler with station 22' for release.
I fig. 3 er det vist en utførelsesform hvor stasjonene 20", 21" og 22" for varmeavgivelse er plassert i et lukket system med gassturbinen. In fig. 3 shows an embodiment where the stations 20", 21" and 22" for heat release are placed in a closed system with the gas turbine.
Avspenningen av turbinen i den lukkete prosess med gassturbinen 13 kan med fordel skje i flere mellomtrinn med mellom- varming mellom hvert, slik det er kjent fra prosessteknologien. Tilsvarende gjelder for muligheten til å foreta kompressjonen The relaxation of the turbine in the closed process with the gas turbine 13 can advantageously take place in several intermediate stages with intermediate heating between each, as is known from process technology. The same applies to the ability to carry out the compression
i kompressoren med flere mellomkjølinger. Denne muligheten er ikke vist i figurene, da den er kjent for fagfolk. in the compressor with several intercoolers. This possibility is not shown in the figures as it is known to those skilled in the art.
Claims (7)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19772749903 DE2749903A1 (en) | 1977-11-08 | 1977-11-08 | DEVICE FOR EVAPORATION OF LIQUID NATURAL GAS WITH IMPROVED ENERGY BALANCE |
Publications (1)
Publication Number | Publication Date |
---|---|
NO783509L true NO783509L (en) | 1979-05-09 |
Family
ID=6023275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO783509A NO783509L (en) | 1977-11-08 | 1978-10-17 | DEVICE FOR EVAPORATION OF LIQUID NATURAL GAS |
Country Status (13)
Country | Link |
---|---|
JP (1) | JPS5499214A (en) |
AT (1) | AT365301B (en) |
BE (1) | BE871118A (en) |
BR (1) | BR7807313A (en) |
DE (1) | DE2749903A1 (en) |
DK (1) | DK496078A (en) |
ES (1) | ES474902A1 (en) |
FR (1) | FR2408090A1 (en) |
GB (1) | GB2007823A (en) |
IT (1) | IT1100454B (en) |
NL (1) | NL7810358A (en) |
NO (1) | NO783509L (en) |
SE (1) | SE7811425L (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO810967L (en) * | 1980-03-31 | 1981-10-01 | Halliburton Co | NITROGEN HEATING DEVICE. |
CH682761A5 (en) * | 1990-12-03 | 1993-11-15 | Asea Brown Boveri | A process for reducing the pressure of a gas from a primary network. |
EP1667898A4 (en) * | 2003-08-12 | 2010-01-20 | Excelerate Energy Ltd Partners | Shipboard regasification for lng carriers with alternate propulsion plants |
JP5616459B2 (en) * | 2010-10-14 | 2014-10-29 | エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated | Hybrid pumper and cryogenic fluid superheating method |
RU2570952C1 (en) * | 2014-09-09 | 2015-12-20 | Александр Николаевич Лазарев | Method of evaporation and use of liquefied natural gas for systems of autonomous power supply in arctic zone |
-
1977
- 1977-11-08 DE DE19772749903 patent/DE2749903A1/en not_active Withdrawn
-
1978
- 1978-09-13 JP JP11180378A patent/JPS5499214A/en active Pending
- 1978-10-09 BE BE7846633A patent/BE871118A/en unknown
- 1978-10-12 AT AT0736278A patent/AT365301B/en not_active IP Right Cessation
- 1978-10-16 NL NL7810358A patent/NL7810358A/en not_active Application Discontinuation
- 1978-10-17 NO NO783509A patent/NO783509L/en unknown
- 1978-10-31 GB GB7842693A patent/GB2007823A/en not_active Withdrawn
- 1978-10-31 FR FR7830814A patent/FR2408090A1/en active Granted
- 1978-11-06 SE SE7811425A patent/SE7811425L/en unknown
- 1978-11-07 BR BR7807313A patent/BR7807313A/en unknown
- 1978-11-07 ES ES474902A patent/ES474902A1/en not_active Expired
- 1978-11-08 IT IT29541/78A patent/IT1100454B/en active
- 1978-11-08 DK DK496078A patent/DK496078A/en unknown
Also Published As
Publication number | Publication date |
---|---|
ATA736278A (en) | 1981-05-15 |
IT1100454B (en) | 1985-09-28 |
ES474902A1 (en) | 1979-04-01 |
GB2007823A (en) | 1979-05-23 |
SE7811425L (en) | 1979-05-09 |
NL7810358A (en) | 1979-05-10 |
FR2408090A1 (en) | 1979-06-01 |
FR2408090B3 (en) | 1980-08-08 |
BE871118A (en) | 1979-02-01 |
DK496078A (en) | 1979-05-09 |
JPS5499214A (en) | 1979-08-04 |
DE2749903A1 (en) | 1979-05-10 |
IT7829541A0 (en) | 1978-11-08 |
BR7807313A (en) | 1979-06-12 |
AT365301B (en) | 1982-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3757517A (en) | Power-generating plant using a combined gas- and steam-turbine cycle | |
US4037413A (en) | Power plant with a closed cycle comprising a gas turbine and a work gas cooling heat exchanger | |
US5632143A (en) | Gas turbine system and method using temperature control of the exhaust gas entering the heat recovery cycle by mixing with ambient air | |
EP1016775B1 (en) | Waste heat recovery in an organic energy converter using an intermediate liquid cycle | |
Liu et al. | A novel inlet air cooling system based on liquefied natural gas cold energy utilization for improving power plant performance | |
CA1218240A (en) | Regenerative gas turbine cycle | |
US5609029A (en) | Thermal power engine and its operating method | |
NO800484L (en) | PROCEDURE AND APPARATUS FOR RECOVERY OF HEAT ENERGY IN A CHARGED COMBUSTION ENGINE | |
US20020053196A1 (en) | Gas pipeline compressor stations with kalina cycles | |
EA014465B1 (en) | A heat engine system | |
WO2011082949A2 (en) | Combined cycle power plant and method of operating such power plant | |
US20140250905A1 (en) | Method and apparatus for achieving a high efficiency in an open gas-turbine (combi) process | |
Legmann | Recovery of industrial heat in the cement industry by means of the ORC process | |
Angelino et al. | The potential role of organic bottoming Rankine cycles in steam power stations | |
JPH11350920A (en) | Exhaust heat recovery system | |
NO783509L (en) | DEVICE FOR EVAPORATION OF LIQUID NATURAL GAS | |
US7033420B2 (en) | Process and apparatus for the thermal degassing of the working medium of a two-phase process | |
JP3696931B2 (en) | Power generation facility using liquid air | |
JP3697476B2 (en) | Combined power generation system using gas pressure energy | |
CN215633192U (en) | LNG cold energy utilization device | |
CN214660401U (en) | Flexible power station based on combination of supercritical carbon dioxide power cycle and seawater desalination | |
JPS61201831A (en) | Power generation method | |
NO810933L (en) | PROCEDURE AND PLANT FOR RECOVERY OF HEAT FROM SMOKE GAS. | |
CN212563345U (en) | Polyester esterification steam waste heat comprehensive utilization system | |
CN212563346U (en) | Polyester esterification steam waste heat power generation system |