NO780875L - REVERSIBLE DRIVER FOR SUBMARINE VESSELS - Google Patents

REVERSIBLE DRIVER FOR SUBMARINE VESSELS

Info

Publication number
NO780875L
NO780875L NO780875A NO780875A NO780875L NO 780875 L NO780875 L NO 780875L NO 780875 A NO780875 A NO 780875A NO 780875 A NO780875 A NO 780875A NO 780875 L NO780875 L NO 780875L
Authority
NO
Norway
Prior art keywords
motors
motor
current
drive device
series
Prior art date
Application number
NO780875A
Other languages
Norwegian (no)
Inventor
Peter Angermaier
Klaus Kranert
Original Assignee
Licentia Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Licentia Gmbh filed Critical Licentia Gmbh
Publication of NO780875L publication Critical patent/NO780875L/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/68Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more dc dynamo-electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/11Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using DC generators and DC motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Stopping Of Electric Motors (AREA)
  • Vehicle Step Arrangements And Article Storage (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Traffic Control Systems (AREA)

Description

Reversibel drivanordning for undervannsfartøyer Reversible propulsion device for underwater vessels

Oppfinnelsen angår en reversibel drivanordning i samsvar med hovedkravets innledning. The invention relates to a reversible drive device in accordance with the preamble of the main claim.

I DTS 176346 er der beskrevet en likestrøm-drivanordning for vannfartøyer hvor der istedenfor mekaniske brytere som f.eks. be-nyttes ifølge DTAS 1203634, anvendes tyristorer. Dermed blir det mulig å rydde vesentlige ulemper ved kjente anlegg av veien, nemlig sterk koblingstøy og begrenset levetid. Likestrømmotorene i disse drivanlegg mates fra likespenningskilder, f.eks batterier, og ved serie-og/ eller parallellkobling er .det.mulig å innstille flere fartstrinn. In DTS 176346 there is described a direct current drive device for water vessels where instead of mechanical switches such as e.g. is used according to DTAS 1203634, thyristors are used. This makes it possible to eliminate significant disadvantages of known road installations, namely strong coupling noise and limited service life. The direct current motors in these drive systems are fed from direct voltage sources, e.g. batteries, and with series and/or parallel connection it is possible to set several speed steps.

For bremsedrift av en drivanordning ifølge DTAS 1203634 er det for det første mulig å redusere omdreiningstallet ved generatorisk bremsning i fjerde kvadrant, idet retningen av dreiemomentet skiftes. Der kan dermed skje en tilbakematning til batteriet. Ved den genera-toriske bremsning blir strømretningen i likestrømmotorens anker skift-et. Der fås da en nyttebremsning ved tilbakelevering av energi til batteriet så snart et drivende ytre dreiemoment bringer omdreiningstallet til å stige utover tomløpsverdien eller også feltet forsterk-es . For braking operation of a drive device according to DTAS 1203634, it is firstly possible to reduce the number of revolutions by regenerative braking in the fourth quadrant, as the direction of the torque is changed. A feedback to the battery can thus take place. During the generator braking, the current direction in the DC motor's armature is changed. A beneficial braking is then obtained by returning energy to the battery as soon as a driving external torque causes the rpm to rise above the idle value or the field is strengthened.

For det annet kan en minskning av omdreiningstallet oppnås med en motstandsbremsning eller også kortslutningsbremsning i fjerde kvadrant. I dette tilfelle blir motorens ankerkrets skilt fra batteriet og koblet til en belastningsmotstand. Secondly, a reduction in the number of revolutions can be achieved with resistance braking or also short-circuit braking in the fourth quadrant. In this case, the motor's armature circuit is separated from the battery and connected to a load resistor.

Likestrøm-drivanlegg.'med elektroniske brytere tillater på grunn, su disses : ventilvirkning ikke noen generatorisk nyttebremsning, da det ikke lar seg gjøre å vende ankerstrømmen. For slike anlegg kommer derfor bare en motstandsbremsning i betraktning-. Direct current drive systems with electronic switches allow, due to, su disses: valve action, no useful regenerative braking, as it is not possible to reverse the armature current. For such systems, therefore, only resistance braking is taken into account.

Stopp- og omstillingstider er ved de ovennevte anleggsopplegg relativt lange, noe som vil bli vist i det følgende: Stoppage and changeover times are relatively long with the above-mentioned plant layouts, which will be shown in the following:

Ut fra omdreiningstall-ligningen fås for ankerstrømmen IA; Based on the number of revolutions equation, the armature current IA is obtained;

Hvor U = Ankerspenning Where U = Armature voltage

R, = AnkermotstandR, = Armature resistance

A A

n = Omdreiningstalln = Number of revolutions

0 = Fluks0 = Flux

Her tilsvarer motorens omdreiningstall omtrent propellens, så Here, the engine speed roughly corresponds to the propeller, so

n^n . Ligningen viser at strømmen I, forsvinner når den elektro-prop n^n . The equation shows that the current I, disappears when the electro-prop

motoriske kraft c*npr0p-0n^- r strørrelsen av klemmespenningen UAog skifter retning når den elektromotoriske kraft stiger utover klemmespenningen Us motor force c*npr0p-0n^- r the magnitude of the clamp voltage UAand changes direction when the electromotive force rises above the clamp voltage Us

Da imidlertid bremsevirkningen på skipet i begge tilfeller ~ nyttebremsning og motstandsbremsning - i fjerde kvadrant er svak på grunn av det lave propelltrykk og motorens dreiemoment M, likeledes bli mindre med synkende slepe-omdreiningstall for propellen, blir pro-duktet av dreiemoment og omdreiningstall M, .n _ , .... , ._y___ 3 ^ d prop - det vil si størte Isen av den avgitte effekt- likeledes lite,så der bare fås en svak stoppvirkning (jevnfør også Robinsonkurven). Omstyringstidene for slike drivanlegg blir derfor forholdsvis lange, erfaringsmessig 15 til 20 sekunder. Since, however, the braking effect on the ship in both cases ~ useful braking and resistance braking - in the fourth quadrant is weak due to the low propeller pressure and the engine's torque M, likewise becomes smaller with decreasing drag speed of the propeller, the product of torque and speed M, .n _ , .... , ._y___ 3 ^ d prop - that is, Isen fell off the given effect - likewise little, so only a weak stopping effect is obtained (also compare the Robinson curve). The turnaround times for such drive systems are therefore relatively long, based on experience 15 to 20 seconds.

Den oppgave som ligger til grunn for oppfinnelsen, består i å skaffe en reversibel drivanordning hvormed det blir mulig å oppnå korte stopp- og omstillingstider ved direkte reversering av omdreiningstallet. The task underlying the invention consists in providing a reversible drive device with which it becomes possible to achieve short stop and changeover times by directly reversing the number of revolutions.

For løsning av dette problem gir oppfinnelsen anvisning på at der med avgivelse av en stoppkommando fra et høyere fartstrinn etter avmagnetisering av motorene og parallellkobling av likestrømkildene foretas en seriekobling av motorene med deres startmotstander og påtrykkes motorene en negativ magnetisering, hvorunder hver motor og den tilhørende startmotstand er shuntet med en friløpsdiode. To solve this problem, the invention provides instructions that by issuing a stop command from a higher speed step after demagnetizing the motors and paralleling the direct current sources, a series connection of the motors with their starting resistance is made and a negative magnetization is applied to the motors, during which each motor and the associated starting resistance is shunted with a freewheeling diode.

Videre utformninger av oppfinnelsesgjenstanden erkarakterisertFurther designs of the invention are characterized

i underkravene.in the sub-requirements.

Drivanordningen ifølge oppfinnelsen er forbundet med flere for-deler. Således blir en nødstopp av skipet mulig, fordi det blir mulig fra hvert fartstrinn for retning forover å koble tilbake via fartstrinn I og videre til høyere fartstrinn for fart bakover. De mot-stander som behøves for starten, blir samtidig benyttet for stopp og behøver på grunn av de korte omstillingstider ikke å økes vesentlig. Det samme gjelder for frilø<p>sdiodené. En normal stoppmanøver lar seg likeledes utføre fordi der i fartstrinn I kan reguleres tilbake slik at der ved forsterket felt kan kjøres med lavere omdreiningstall i retning bakover. Sluttelig blir de elektroniske brytere ikke høyere belastet ved bremseprosessen, da en del av ankerstrømmen tar veien gjennom friløpsdioden. The drive device according to the invention is associated with several advantages. Thus, an emergency stop of the ship becomes possible, because it becomes possible from each speed step for forward direction to switch back via speed step I and on to higher speed steps for backward speed. The resistors needed for the start are also used for stopping and, due to the short changeover times, do not need to be significantly increased. The same applies to freelø<p>sdiodené. A normal stopping maneuver can also be carried out because in speed step I it can be adjusted back so that in reinforced fields it can be driven at a lower rpm in the backward direction. Finally, the electronic switches are not loaded more during the braking process, as part of the armature current makes its way through the freewheeling diode.

Ytterligere forklaringer vil bli gitt i forbindelse med et utførel-seseksempel som er anskueliggjort ved koblingsskjemaer på tegningen. Further explanations will be given in connection with a design example which is illustrated by connection diagrams in the drawing.

Fig. 1 viser opplegget for et anlegg.Fig. 1 shows the layout of a facility.

Fig. 2 viser et eksempel på den motoriske motstansbremsning.Fig. 2 shows an example of the motorized resistance braking.

Fig. 3 viser en anordning med delt startmotstand.Fig. 3 shows a device with split starting resistance.

Blokken B inneholder likespenningskilden med omkoblingsinnretning-ene for parallell- og seriedrift. Den skal f.eks omfatte fire delbatterier. Blokken B er med sin positive og sin negative pol tilsluttet samle-skinner henholdsvis P og N. Block B contains the DC voltage source with the switching devices for parallel and series operation. It should, for example, include four sub-batteries. Block B is connected with its positive and its negative pole to busbars P and N, respectively.

For . fartstrinn I er alle delspenningskildene parallellkoblet. Den elektroniske bryter Sl,som ved sin anode er tilkoblet den positive samleskinne P, blir tent, og det samme er tilfellet, med den elektroniske bryter S3, som ved sin katode er tilkoblet den negative samleskinne N. Strømmen går da gjennom bryteren Sl, seriemotstanden RVl, motorankeret Ml, dioden D3,motorankeret M2, seriemotstanden RV2 og bryteren S3. For . speed step I, all partial voltage sources are connected in parallel. The electronic switch Sl, whose anode is connected to the positive busbar P, is lit, and the same is the case with the electronic switch S3, whose cathode is connected to the negative busbar N. The current then passes through the switch Sl, the series resistance RVl, the motor armature Ml, the diode D3, the motor armature M2, the series resistor RV2 and the switch S3.

For fartstrinn I er motorankrene koblet i serie. Skal driften fortsette* på dette fartstrinn I etter igangkjøringen, blir så bryternte S2 med anoden tilkoblet P-skinnen} og S4 (med katoden tilkoblet N-skinnen) tent og bryterne Sl og S3 slukket, så motorstrømmen nå går fra den positive samleskinne P over bryteren S2, motorankeret Ml, dioden D3, motorankeret M2 oa brvteren S4 til den neaative samleskinne N. Motstandene er således frakoblet ankerkretsen. For speed stage I, the motor armatures are connected in series. If operation is to continue* at this speed step I after start-up, switches S2 with the anode connected to the P rail} and S4 (with the cathode connected to the N rail) are switched on and switches Sl and S3 are switched off, so that the motor current now flows from the positive busbar P over the switch S2, the motor armature Ml, the diode D3, the motor armature M2 and the switch S4 to the neutral busbar N. The resistors are thus disconnected from the armature circuit.

På fartstrinn II er delspenningskildene fortsatt koblet paralleltfde elektroniske bryterne Sl og S3 tennes, og li keledes tyristorene T2 (med anode tilkoblet P-skinnen ) og Tl (med katode tilkoblet N-skinnenl, Der går da en del-strøm gjennom tyristoren T2, motorankeret M2, seriemotstanden RV2 og bryteren S3. En annen delstrøm går gjennom bryteren Sl, seriemotstanden RV1, motorankeret Ml og tyristoren Tl. Motorankrene er altså koblet parallelt. Skal driften fortsette på fartstrinn II, blir seriemotstandene RV1 og RV2 koblet ut av de to motorankerkretser ved tenning av bryterne henholdsvis S2 dg S4 og slukning av bryterne henholdsvis Sl og S3. At speed stage II, the partial voltage sources are still connected in parallel, the electronic switches Sl and S3 are lit, and likewise the thyristors T2 (with anode connected to the P rail) and Tl (with cathode connected to the N rail, A partial current then passes through the thyristor T2, the motor armature M2, the series resistor RV2 and the switch S3. Another partial current passes through the switch Sl, the series resistor RV1, the motor armature Ml and the thyristor Tl. The motor armatures are thus connected in parallel. If operation is to continue at speed level II, the series resistances RV1 and RV2 are disconnected from the two motor armature circuits at switching on the switches S2 and S4 respectively and switching off the switches Sl and S3 respectively.

For fartstrinn III blir alle delspenningskildene koblet i serieFor speed level III, all partial voltage sources are connected in series

og motorankrene likeledes drevet i serie via sejriemotstandene RVl og RV2. Ved fortsatt drift på fartstrinn III blir seriemotstandene RVl og RV2 frakoblet motorenes ankerkrets t and the motor armatures likewise driven in series via the victory resistors RVl and RV2. During continued operation at speed level III, the series resistors RVl and RV2 are disconnected from the motor's armature circuit t

For fartstrinn IV forblir delspenningskildene seriekoblet,For speed stage IV, the partial voltage sources remain connected in series,

mens motorankrene blir koblet om til parallelldrift via seriemotstandene RVl og RV2. Ved fortsatt drift på fartstrinn IV blir seriemotstandene RVl og RV2 så koblet ut av motorankerkretsene. while the motor armatures are switched to parallel operation via the series resistors RVl and RV2. During continued operation at speed level IV, the series resistances RVl and RV2 are then disconnected from the motor armature circuits.

Endring av omdreiningstallet på de enkelte fartstrinn skjerA change in the number of revolutions at the individual speed steps takes place

ved endring av magnetiseringstrømmen ved hjelp av en magnetiserings-strøm-regulator 10 med tilhørende sammenligningsledd 9. Begge magnetiseringsviklingene El og E2 forsynes parallelt av samme magnetiserings-apparat 12 via en felles vekttall-motstand 8. by changing the magnetizing current with the help of a magnetizing current regulator 10 with associated comparison link 9. Both magnetizing windings El and E2 are supplied in parallel by the same magnetizing device 12 via a common weighting resistor 8.

På vekttall-motstanden 8 blir magnetiseringsstrømmens måleverdi tatt ut for å tilføres måleverdikanalen hos sammenligningsleddet 9. Signaler for ønskeverdien forhåndsleveres til sammenligningsleddet 9. Differan-sen IE mellom ønskeverdi og måleverdi tilføres inngangen til magneti-seringsstrømregulatoren 10, og dennes utgangssignal utgjør innstillings-størrelsen V- pø for endring av fluksen 0 i magnetiseringsviklingene El og E2. Imidlertid blir dette signal UF^først tilført en begrenser 11. Et signal proposjonalt med ankerstrømmen tas ut på seriemotstanden RV2 og blir likeledes tilført begrenseren 11. Når ankerstrømmens tillatelige grenseverdi I , bevirkeU r det med ankerstrømmen proporsjonale siaJnal at innstillingsstørrelsen FØ ikke lenger kan endres til høyere verdier selv om ønskeverdien ved sammenligningsleddet 9 økes. The measured value of the magnetizing current is extracted from the weighting resistor 8 to be supplied to the measured value channel of the comparison link 9. Signals for the desired value are pre-supplied to the comparison link 9. The difference IE between the desired value and the measured value is fed to the input of the magnetizing current regulator 10, and its output signal constitutes the setting variable V - pø for changing the flux 0 in the magnetization windings El and E2. However, this signal UF is first supplied to a limiter 11. A signal proportional to the armature current is taken out on the series resistor RV2 and is likewise supplied to the limiter 11. When the permissible limit value of the armature current I , it causes with the armature current proportional signal that the setting quantity FØ can no longer be changed to higher values even if the desired value at comparison point 9 is increased.

Fra fartstrinn IV - delspenningskilder i serie, motorankre parallellkoblet, seriemotstander RVl og RV2 kortsluttet - altså From speed stage IV - partial voltage sources in series, motor armature connected in parallel, series resistors RVl and RV2 short-circuited - i.e.

fra full fart forover, skal der nå stoppes. Til dette blir der kob~-let tilbake til fartstrinn I, hvilket betyr alle delbatterier parallellkoblet, motorankre i serie med de tilhørende seriemotstander, motorenes EMK negativ. De mulige versjoner av stoppmanøvren vil bli belyst ved regneeksempler. Regnestørrelsene er her normert, altså from full speed ahead, there must now be a stop. For this, it is connected back to speed level I, which means all sub-batteries connected in parallel, motor armatures in series with the associated series resistors, the motors' EMF negative. The possible versions of the stopping maneuver will be illustrated by calculation examples. The rain sizes are standardized here, that is

referert til nominelle verdier. Videre vil beregningen for enkelhetsreferred to nominal values. Furthermore, the calculation will for simplicity

rf» -—-skyld bli anført for en motor (resp.delmotor). rf» -—-must be stated for an engine (or part engine).

Til grunn for første regneeksempel ligger forskriften i krav 2.The basis for the first calculation example is the regulation in requirement 2.

De elektroniske brytere Sl til S4 er beregnet for 1,6, nominellThe electronic switches Sl to S4 are calculated for 1.6, nominal

strøm. Man går ut fra de nominelle regnestørrelser:current. The starting point is the nominal calculation quantities:

Til belysning av stoppmanøvren tjener fig. 2. RVl skal innbe-fatte motorankerets indre motstand så RVl blir lik RVl = RV1+RA =0,24. To illustrate the stopping maneuver, fig. 2. RVl must include the internal resistance of the motor armature so that RVl becomes equal to RVl = RV1+RA =0.24.

Da fire delbatterier er parallellkoblet, utgjør spenningen UAs four sub-batteries are connected in parallel, the voltage is U

f\ G li fjerdedel av den fulle spenning, altså 0,125. I A er ved grenseverdi-dimensjoneringen ved seriemotstanden RVl begrenset til IA = 1,6. f\ G li a quarter of the full tension, i.e. 0.125. In A, the limit value dimensioning at the series resistance RVl is limited to IA = 1.6.

De tillatelige verdier for motor-EMK fås da ut fra grunnligningen. The permissible values for the motor EMF are then obtained from the basic equation.

Etter omkobling til stopp og forhåndslevering av en negativ rnagn-: etisering - ø fås et propell-omdreiningstall på f.eks.n^^p = 0,5. Denne fås fra ligningen (1) for fluksen 0: e = c-n. Ø._e rt 0 , 259 ^'c-0,5 c ? n • og dreiemomentet blir ifølge grunnligningen After switching to stop and prior delivery of a negative rnagn-: etization - ø, a propeller revolution number of e.g. n^^p = 0.5 is obtained. This is obtained from equation (1) for the flux 0: e = c-n. Ø._e rt 0 , 259 ^'c-0.5 c ? n • and the torque becomes according to the basic equation

Synker propellens omdreiningstall videre, kan dreiemomentet økes. Da IA ifølge ligning (1) er begrenset til 1,6 og e = c-n* 0 ved øk-ning av fluksen kan holdes konstant svarende til den benyttede begrens-ningsregulering ifølge fig. 1, øker dreiemomentet Md = c• I- 0 ifølge ligning (3) ved tiltagende fluks 0. If the propeller speed drops further, the torque can be increased. Since IA according to equation (1) is limited to 1.6 and e = c-n* 0 when increasing the flux can be kept constant corresponding to the used limiting regulation according to fig. 1, the torque Md = c• I- 0 increases according to equation (3) with increasing flux 0.

Til grunn for at det annet eksempel ligger versjonen ifølgeThe second example is based on the version according to

krav 3: Hvis der ved knapp dimmensjonering av de elektroniske brytere Sl til S4 ikke kan tillates noen stor overhøyde av strømmen under bremsedrift, kan der treffes forholdsregler til allikevel å skaffe en sterk bremsevirkning. Som fig. 3 viser,setter seriemotstanden RVl seg sammen av delmotstander RVla og RVlb, så der i et delingspunkt P skjer en oppdeling av ankerstrømmen IA i 11+12. Bremseprossessen vil igjen bli belyst ved et regneeksempel. Den sterkeste tillatelige strøm for bryterne utgjør 1,1, skadelighetsgrensen for motoren ligger derimot ved 1,9. Ankerstrømmen IA vil altså kunne utgjøre 1,9, mens strømmen gjennom bryterne S1-S4 ikke må overskride 1,1 (IA = 1/9; UA= 0,125; requirement 3: If, by narrowly dimensioning the electronic switches Sl to S4, no large overhang of the current during braking operation can be allowed, precautions can be taken to still obtain a strong braking effect. As fig. 3 shows, the series resistance RVl is composed of partial resistances RVla and RVlb, so that at a division point P a division of the armature current IA takes place into 11+12. The braking process will again be illustrated by a calculation example. The strongest permissible current for the switches is 1.1, the damage limit for the motor, on the other hand, is 1.9. The armature current IA will therefore be able to amount to 1.9, while the current through switches S1-S4 must not exceed 1.1 (IA = 1/9; UA= 0.125;

RVla+RVlb = 0,24).RVla+RVlb = 0.24).

Dermed er EMK-verdiene:Thus the EMF values are:

for størrelsen av delmotstanden RVlb fås da ifølge ligning (5) ved en grenseverdi 1^= 1,1: for the size of the partial resistance RVlb is then obtained according to equation (5) at a limit value 1^= 1.1:

og RVla må bli and RVla must stay

RVla = RVl - RVlb = 0,24 - 0,114 = 0,126RVla = RVl - RVlb = 0.24 - 0.114 = 0.126

så den elektromotoriske kraft ifølge ligning (4) blir so the electromotive force according to equation (4) becomes

e = c-n-0 = IA . RVla = 1,9- 0,126 = 0,239 e = c-n-0 = IA . RVla = 1.9- 0.126 = 0.239

og fluksenand the flux

Således fås ifølge ligning (3) et dreiemoment Thus, according to equation (3), a torque is obtained

Magnetiseringen må i dette tilfelle svarende til motorgrense-verdien på 1,9 reguleres slik at der over motstanden RVla tas ut en med strømmen proporsjonal signalstørrelse, som så tilføres begrenseren 11. In this case, the magnetization must be adjusted corresponding to the motor limit value of 1.9 so that a signal magnitude proportional to the current is taken out across the resistor RVla, which is then fed to the limiter 11.

Til grunn for tredje regneeksempel ligger versjonen ifølge krav 4. Der henvises i den forbindelse til fig. 2. I dette tilfelle er batteriet skilt fra kjørekretsen. Grenseverdien for I, utgjør 1,9- Seriemotstanden RVl = 0,24- - EMK e = I,. RVl* dermed er The basis for the third calculation example is the version according to claim 4. In this connection, reference is made to fig. 2. In this case the battery is separated from the driving circuit. The limit value for I, amounts to 1.9- The series resistance RVl = 0.24- - EMF e = I,. RVl* thus is

Når en er sunket til 0,5, fås for fluksen 0 When one is reduced to 0.5, 0 is obtained for the flux

prop Prop

og for dreiemomentet and for the torque

Er propellens omdreiningstall sunket videre, f.eks til 0,2, ville fluksen 0 bli: If the propeller speed is further reduced, e.g. to 0.2, the flux 0 would be:

hvis fluksen 0 ikke i dette tilfelle var begrenset til 1 foråt den elektromotoriske kraft ikke skal bli for stor og motstanden RVl ikke må økes. Således kan der ved en magnetiseringsfluks lik 1 bare oppnås en EMK og IA blir begrenset til if the flux 0 was not limited to 1 in this case, then the electromotive force must not become too great and the resistance RVl must not be increased. Thus, with a magnetization flux equal to 1, only one EMF can be obtained and IA is limited to

Ved en lavere ankerstrømgrense på IA = 1,2 ville begrensningsreguler-ingen til og med tillate en fluks 0> 1 selv ved sterkt reduserte pro-pellomdreiningstall uten at det ville bli nødvendig å øke energiopp-taket i seriemotstanden RVl. Ved en grenseverdi IA = 1,2 og konstant motstandsverdi 0,24 ville magnetiseringen ved et propell-omdreiningstall nprop= 0,2 kunne høynes til 1,44> 1: At a lower armature current limit of IA = 1.2, the limiting regulation would even allow a flux 0>1 even at greatly reduced propeller revolutions without it being necessary to increase the energy absorption in the series resistance RVl. With a limit value IA = 1.2 and constant resistance value 0.24, the magnetization at a propeller revolution number nprop= 0.2 could be increased to 1.44> 1:

Dreiemomentet Md ville da bli The torque Md would then be

Claims (4)

1. Reversibel drivanordning for vannfartøyer med likestrøm-motorer som mates fra likespenningskilder, og hvor de enkelte farts-, trinn kan innstilles ved serie- og/eller parallellkobling av like-strømmotorene og likespenningskildene ved hjelp av elektroniske brytere, karakterisert ved at der ved avgivelse av en stoppkommando fra et hø yere fartstrinn etter avmagnetisering av motorene og parallellkobling av likestrømkiIdene foretas en seriekobling av motorene med deres startmotstander og påtrykkes motorene en negativ magnetisering,samtidig som hver motor og den tilhørende startmotstand er shuntet med en friløpsdiode.1. Reversible drive device for watercraft with direct current motors that are fed from direct voltage sources, and where the individual speed steps can be set by series and/or parallel connection of the direct current motors and the direct voltage sources by means of electronic switches, characterized in that when of a stop command from a higher speed step, after demagnetizing the motors and parallel connection of the DC coils, a series connection is made of the motors with their starting resistors and a negative magnetization is applied to the motors, at the same time that each motor and the corresponding starting resistor are shunted with a freewheeling diode. 2. Drivanordning som angitt i krav 1, karakterisert ved en regulering av den negative magnetisering slik at den anker-strøm IA som fremtvinges av likespenningskildene og den negative motor-EMK, forblir under en tillatelig maksimalstrømverdi I (I < I ). max gr max 2. Drive device as stated in claim 1, characterized by a regulation of the negative magnetization so that the armature current IA forced by the direct voltage sources and the negative motor EMF remains below a permissible maximum current value I (I < I ). max gr max 3. Drivanordning som angitt i krav 1, karakterisert ved at friløpsdioden shunter motoren og en del (RVla) av start-motstanden (RVl).3. Drive device as stated in claim 1, characterized in that the free-wheeling diode shunts the motor and part (RVla) of the starting resistance (RVl). 4. Drivanordning som angitt i krav 1, karakterisert ved en motorisk motstandsbremsing i fjerde kvadrant ved fraskillelse av likestrømkildene fra kjørekretsen og magnetisering av motorene i av-hengighet av ankerstrømmens tillatelige grenseverdi ved vending av feltet (-0).4. Drive device as specified in claim 1, characterized by a motor resistance braking in the fourth quadrant by separating the direct current sources from the drive circuit and magnetizing the motors depending on the permissible limit value of the armature current when reversing the field (-0).
NO780875A 1977-03-15 1978-03-13 REVERSIBLE DRIVER FOR SUBMARINE VESSELS NO780875L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2711183A DE2711183C2 (en) 1977-03-15 1977-03-15 Reversing drive for underwater vehicles with separately excited DC motors

Publications (1)

Publication Number Publication Date
NO780875L true NO780875L (en) 1978-09-18

Family

ID=6003664

Family Applications (1)

Application Number Title Priority Date Filing Date
NO780875A NO780875L (en) 1977-03-15 1978-03-13 REVERSIBLE DRIVER FOR SUBMARINE VESSELS

Country Status (2)

Country Link
DE (1) DE2711183C2 (en)
NO (1) NO780875L (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100411904C (en) * 2006-08-24 2008-08-20 上海地铁运营有限公司 Electric soft braking method for underground engines
CN100439146C (en) * 2006-08-24 2008-12-03 上海地铁运营有限公司 Electric soft braking system for underground engines

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE301202C (en) *
DE1413584A1 (en) * 1962-11-07 1969-11-27 Licentia Gmbh Arrangement for starting DC machines
DE1203634B (en) * 1963-08-16 1965-10-21 Licentia Gmbh DC drive for water vehicles, especially submarines
DE1763640B2 (en) * 1968-07-05 1976-07-08 Siemens AG, 1000 Berlin und 8000 München DC DRIVE FOR WATER VEHICLES

Also Published As

Publication number Publication date
DE2711183C2 (en) 1983-10-13
DE2711183A1 (en) 1978-09-21

Similar Documents

Publication Publication Date Title
CN108292848B (en) Automobile dual-voltage battery charging system
JP5127714B2 (en) Device for redundant power supply of at least one load
US4407903A (en) Electric dc source
US9941772B2 (en) Marine propulsion systems
AU2010237187A1 (en) Drive system for a facility having an alternating-current isolated network
US20030090225A1 (en) Controller for two DC traction motors
JP4288516B2 (en) Marine hybrid propulsion system
NO780875L (en) REVERSIBLE DRIVER FOR SUBMARINE VESSELS
US4453111A (en) Electric drive for submarines
US2442021A (en) Sectionalized variable-speed drive
RU2658762C1 (en) Ship&#39;s electric power plant
NO782958L (en) COUPLING DEVICE FOR ELECTRIC OPERATION OF PROPELLES IN SUBMERSHIP VESSELS
JPH04200296A (en) Power supply device for propulsion of ship
SE456707B (en) PROCEDURE AND DEVICE TO OPERATE A SEPARATE MAGNETIZED DIRECT MOTOR WITH SERIES / SHUNT CHARACTERISTICS
US2179319A (en) Electric traction motor control system
US2084177A (en) Electric power system
US2298134A (en) Ship propulsion system
US2383813A (en) Electric motor control system
US943434A (en) Ship&#39;s-screw-driving mechanism for submarine boats.
US2187781A (en) Vehicle drive system
RU2765022C1 (en) Electric propulsion installation with double dc buses
US1860523A (en) Automatic series-parallel control for self-propelled vehicles
JP7572513B1 (en) Energy Management System
US1672112A (en) Means for facilitating starting of automatic generating plants
SU422645A1 (en)