NO772221L - PROCEDURE FOR MAGNESIUM EXTRACTION - Google Patents

PROCEDURE FOR MAGNESIUM EXTRACTION

Info

Publication number
NO772221L
NO772221L NO772221A NO772221A NO772221L NO 772221 L NO772221 L NO 772221L NO 772221 A NO772221 A NO 772221A NO 772221 A NO772221 A NO 772221A NO 772221 L NO772221 L NO 772221L
Authority
NO
Norway
Prior art keywords
magnesium
alloy
gas mixture
weight
temperature
Prior art date
Application number
NO772221A
Other languages
Norwegian (no)
Inventor
Servaas Middelhoek
Original Assignee
Shell Int Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Int Research filed Critical Shell Int Research
Publication of NO772221L publication Critical patent/NO772221L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • C22B26/22Obtaining magnesium

Abstract

"Fremgangsmåte for utvinning av magnesium""Method of recovery of magnesium"

Description

Denne oppfinnelse angår en fremgangsmåte til utvin-This invention relates to a method for extracting

ning av magnesium fra en varm gassblanding av magnesium og karbonmcnoksyd. ning of magnesium from a hot gas mixture of magnesium and carbon monoxide.

En slik varm gassblanding av magnesium og karbonmonoksyd dannes ved reduksjon av magnesiumoksyd med karbon ved meget høye temperaturer, f.eks. over lOOO^C. Under reduksjonen dannes det både magnesium og karbonmonoksyd i gassformig tilstand, og magnesiumet må derfor gjenvinnes ved kondensasjon. Such a hot gas mixture of magnesium and carbon monoxide is formed by reducing magnesium oxide with carbon at very high temperatures, e.g. above lOOO^C. During the reduction, both magnesium and carbon monoxide are formed in a gaseous state, and the magnesium must therefore be recovered by condensation.

Det er imidlertid vanskelig å utvinne magnesiumet fra den varme gassblanding, da magnesium reagerer med karbonmonoksyd under dannelse av magnesiumoksyd og karbon. Mange gjenvinningspro-sesser er allerede blitt foreslått, men en alvorlig ulempe ved disse er at magnesiumet erholdes som et pyrofort fast materiale og kan bare omdannes til det faste metall ved en vanskelig og kostbar behandling. However, it is difficult to extract the magnesium from the hot gas mixture, as magnesium reacts with carbon monoxide to form magnesium oxide and carbon. Many recovery processes have already been proposed, but a serious disadvantage of these is that the magnesium is obtained as a pyrophoric solid material and can only be converted into the solid metal by a difficult and expensive treatment.

I britisk patent nr. 545 435 og US-patent nr. 2 391 713 foreslås derfor en fremgangsmåte til utvinning av magnesium fra en varm gassblanding av magnesium og karbonmonoksyd, hvor gassblandingen hurtig kjøles ved at den bringes i intim kontakt med et smeltet metall i hvilket magnesiumet samtidig absorberes. F. eksble bly og tinn foreslått, fordi disse metaller har et In British patent no. 545 435 and US patent no. 2 391 713, a method is therefore proposed for extracting magnesium from a hot gas mixture of magnesium and carbon monoxide, where the gas mixture is rapidly cooled by bringing it into intimate contact with a molten metal in which the magnesium is simultaneously absorbed. For example, lead and tin were proposed, because these metals have a

lavt smeltepunkt. En ulempe ved bruken av bly er imidlertid at det er relativt flyktig, og det er vanskelig å erholde magnesiumet i ren tilstand fra den bly-magnesium-legering som dannes. Tinn er et kostbart metall å bruke. Dessuten finner magnesiumlege-ringer av bly og tinn liten anvendelse. low melting point. A disadvantage of the use of lead, however, is that it is relatively volatile, and it is difficult to obtain the magnesium in a pure state from the lead-magnesium alloy that is formed. Tin is an expensive metal to use. Furthermore, magnesium alloys of lead and tin find little use.

Søkeren har nå funnet at disse ulemper unngås hvisThe applicant has now found that these disadvantages are avoided if

man bruker en smeltet aluminium-magnesium-legering. Aluminium-magnesium-legeringer finner anvendelse i stor målestokk, og om det ønskes kan magnesiumet, lett utvinnes fra legeringen ved destillasjon. a molten aluminum-magnesium alloy is used. Aluminum-magnesium alloys are used on a large scale, and if desired, the magnesium can be easily extracted from the alloy by distillation.

Oppfinnelsen angår en fremgangsmåte til utvinningThe invention relates to a method for recovery

av magnesium fra en varm gassblanding av magnesium og karbonmonoksyd, hvor gassblandingen hurtig kjøles ved at den bringes i kontakt med et smeltet metall i hvilket magnesiumet samtidig absorberes,karakterisert vedat det smeltede metall er en aluminium-magnesium-legering. Legeringen inneholder fortrinnsvis minst 25 vekt% og spesielt minst 30 vekt% magnesium. Aluminium-magnesium-legeringer med 30-70 vekt% magnesium er best egnet. Alle legeringer med sistnevnte sammensetninger har likvidus-temperaturer (smeltepunkter) som er ca. 200°C lavere enn smelte-punktet for rent aluminium (660°C) og for rent magnesium (649°C), jfr. fasediagrammet for aluminium-magnesium-legeringer på teg-ningsbladet. of magnesium from a hot gas mixture of magnesium and carbon monoxide, where the gas mixture is rapidly cooled by being brought into contact with a molten metal in which the magnesium is simultaneously absorbed, characterized in that the molten metal is an aluminium-magnesium alloy. The alloy preferably contains at least 25% by weight and especially at least 30% by weight of magnesium. Aluminum-magnesium alloys with 30-70% magnesium by weight are most suitable. All alloys with the latter compositions have liquidus temperatures (melting points) of approx. 200°C lower than the melting point for pure aluminum (660°C) and for pure magnesium (649°C), cf. the phase diagram for aluminium-magnesium alloys on the drawing sheet.

På diagrammet er atom-prosenten av magnesium avsatt langs, den horisontale akse og temperaturen i °C langs den verti-kale akse. Vektprosenten av magnesium er avmerket på den øvre horisontale akse. Ytterst til venstre på den horisontale akse er prosenten av Al derfor 100%, og ytterst til høyre er prosenten av Mg således 100%. Den øvre brutte linje, også betegnet likvidus-linjen, som følger temperaturene 660°, 450°, 451,5°, 462°, 437° og 649°C, indikerer likvidustemperaturene for lege-ringene. Fra fasediagrammet kan det utledes at en legering med 35 vekt% magnesium er fullstendig smeltet ved 450°C. Med stigende vekt% magnesium vil likvidustemperaturen fluktuere noe inntil den laveste likvidustemperatur nåes ved et magnesiuminnhold på 67,7 vekt% ved en temperatur på 437°C. Likvidustemperaturen stiger hurtig ved høyere magnesiuminnhold. Aluminium-magnesium-legeringer med ca. 30-70 vekt% magnesium kan derfor anvendes ved en slik relativt lav temperatur ved fremgangsmåten ifølge oppfinnelsen. On the diagram, the atomic percentage of magnesium deposited along the horizontal axis and the temperature in °C along the vertical axis. The weight percentage of magnesium is marked on the upper horizontal axis. At the extreme left on the horizontal axis, the percentage of Al is therefore 100%, and at the extreme right, the percentage of Mg is therefore 100%. The upper broken line, also called the liquidus line, which follows the temperatures 660°, 450°, 451.5°, 462°, 437° and 649°C, indicates the liquidus temperatures for the alloy rings. From the phase diagram it can be deduced that an alloy with 35% by weight magnesium is completely melted at 450°C. With increasing weight% magnesium, the liquidus temperature will fluctuate somewhat until the lowest liquidus temperature is reached at a magnesium content of 67.7% by weight at a temperature of 437°C. The liquid temperature rises rapidly with higher magnesium content. Aluminium-magnesium alloys with approx. 30-70% by weight of magnesium can therefore be used at such a relatively low temperature in the method according to the invention.

Det er enn videre en fordel at aluminium-magnesium-legeringens magnesium-damptrykk er lavere enn det rene magnesiumets damptrykk ved den samme temperatur, hvilket sikrer maksimal ab-sorpsjon av magnesium fra gassfasen i legeringen. Ved den like-vekt som skal innstilles igjen etter kjøling av gassblandingen absorberes magnesiumet i aluminium-magnesium-legeringen. Det er åpenbart at aluminium-magnesium-legeringen ikke må absorbere så meget varme at legeringens magnesium-damptrykk blir like høyt som det partielle damptrykk av magnesiumet i den innkommende gassblanding. En annen fordel er at magnesiumet lett kan for- flyktiges fra den dannede aluminium-magnesium-legering, da alu-miniumets damptrykk er ubetydelig. It is also an advantage that the aluminum-magnesium alloy's magnesium vapor pressure is lower than the pure magnesium's vapor pressure at the same temperature, which ensures maximum absorption of magnesium from the gas phase in the alloy. At the equilibrium which must be re-established after cooling the gas mixture, the magnesium is absorbed in the aluminium-magnesium alloy. It is obvious that the aluminium-magnesium alloy must not absorb so much heat that the magnesium vapor pressure of the alloy becomes as high as the partial vapor pressure of the magnesium in the incoming gas mixture. Another advantage is that the magnesium can easily be volatilized from the aluminum-magnesium alloy formed, as the aluminum's vapor pressure is negligible.

Den gassformige blanding av magnesium og karbonmonoksyd kan bringes i intim kontakt med den smeltede aluminium-magnesium-legering på flere måter, f.eks. ved en fremgangsmåte hvor en stor overflate av den smeltede legering tilveiebringes, hvilket letter absorpsjonen av magnesium. Eksempelvis kan magnesiumdampen The gaseous mixture of magnesium and carbon monoxide can be brought into intimate contact with the molten aluminium-magnesium alloy in several ways, e.g. by a process where a large surface area of the molten alloy is provided, which facilitates the absorption of magnesium. For example, the magnesium vapor can

ledes i motstrøm langs dråper av flytende legering. Fortrinnsvis anvendes en fremgangsmåte hvor legeringen sprøytes som dråper is directed in countercurrent along droplets of liquid alloy. Preferably, a method is used where the alloy is sprayed as droplets

inn i den varme gassblanding av magnesium og karbonmonoksyd.into the hot gas mixture of magnesium and carbon monoxide.

Den smeltede aluminium-magnesium-legering sprøytes fortrinnsvis ovenfra inn i kjølesonen, som eksempelvis har form av et rør, og den nydannede legering oppsamles ved bunnen av kjølesonen og uttas. Pr. vektmengde gassformig magnesium utføres kjølingen fortrinnsvis med en vektmengde flytende aluminium-magnesium-legering som er 10-50 ganger så stor. Dette er nødvendig, da det i alminnelighet er påkrevet med en meget høy grad av kjøling, og det kondenserte magnesium må dessuten absorberes i legeringen. The molten aluminium-magnesium alloy is preferably injected from above into the cooling zone, which for example has the shape of a tube, and the newly formed alloy is collected at the bottom of the cooling zone and taken out. Per weight amount of gaseous magnesium, the cooling is preferably carried out with a weight amount of liquid aluminium-magnesium alloy which is 10-50 times as large. This is necessary, as a very high degree of cooling is generally required, and the condensed magnesium must also be absorbed into the alloy.

Temperaturen av den-aluminium-magnesiumlegering som innføres i kjølesonen, er i alminnelighet legeringens likvidustemperatur eller høyere. Temperaturen bør i alminnelighet ikke overstige 800°C, siden kjølingen da blir uttilstrekkelig og en øket mengde legering blir nødvendig. Temperaturen holdes i alminnelighet så lav som mulig av hensyn til energiforbruket. The temperature of the aluminum-magnesium alloy introduced into the cooling zone is generally the alloy's liquidus temperature or higher. In general, the temperature should not exceed 800°C, since the cooling then becomes insufficient and an increased amount of alloy becomes necessary. The temperature is generally kept as low as possible for reasons of energy consumption.

Temperaturen og trykket til den varme gassblandingThe temperature and pressure of the hot gas mixture

av magnesium og karbonmonoksyd kan variere innen vide grenser. Temperaturen er i alminnelighet mellom 1000 og 2000°C og trykket mellom 1 mm og 760 mm Hg. of magnesium and carbon monoxide can vary within wide limits. The temperature is generally between 1000 and 2000°C and the pressure between 1 mm and 760 mm Hg.

De trykk som tilveiebringes i kondensasjonssonen kan reguleres ved utpumping av en større eller mindre mengde karbonmonoksyd-gass. The pressures provided in the condensation zone can be regulated by pumping out a greater or lesser amount of carbon monoxide gas.

Den magnesiumanrikede aluminium-magnesium-legering kan avtappes, eller legeringen kan resirkuleres, om såønskes, etter at en del av magnesiumet er uttatt, f.eks. ved destillasjon, eller aluminium kan tilsettes til legeringen som skal resirkuleres. Resirkulering og kjøling av legeringen vil i alminnelighet være ønskelig, da en stor mengde varme må fjernes fra systemet. The magnesium-enriched aluminium-magnesium alloy can be decanted, or the alloy can be recycled, if desired, after some of the magnesium has been withdrawn, e.g. by distillation, or aluminum can be added to the alloy to be recycled. Recirculation and cooling of the alloy will generally be desirable, as a large amount of heat must be removed from the system.

EKSEMPELEXAMPLE

En gassblanding bestående av ekvimolare mengder av magnesium og karbonmonoksyd, og som var fremstilt ved omsetning av magnesiumoksyd med karbon ved 1500°C, strømmet ved en gass-hastighet på 50 m/sekund gjennom et vertikalt anordnet, isolert rør med en lengde på 4 m og en diameter på 20 cm. Dråper av en magnesium-aluminium-legering inneholdende 46,8 vekt% magnesium ble sprøytet inn i røret. Dråpenes gjennomsnittlige diameter var 0,3 mm, og temperaturen i utsprøytingsøyeblikke.t var 460°C. Gassblandingens trykk ble holdt ved 25 mm Hg ved hjelp av en pumpe tilknyttet røret. Gasstemperaturen falt skarpt p.g.a. kontakten mellom gassen og de væskeformige dråper, slik at det gassformige magnesium kondenserte og ble absorbert i dråpene. Dråpene ble oppsamlet ved bunnen av røret og avtappet. Temperaturen av den avtappede legering var nå 6 55°C. A gas mixture consisting of equimolar amounts of magnesium and carbon monoxide, and which was prepared by reacting magnesium oxide with carbon at 1500°C, flowed at a gas velocity of 50 m/s through a vertically arranged, insulated pipe with a length of 4 m and a diameter of 20 cm. Drops of a magnesium-aluminum alloy containing 46.8 wt% magnesium were injected into the tube. The average diameter of the drops was 0.3 mm, and the temperature at the time of spraying was 460°C. The pressure of the gas mixture was maintained at 25 mm Hg by means of a pump attached to the tube. The gas temperature dropped sharply due to the contact between the gas and the liquid droplets, so that the gaseous magnesium condensed and was absorbed into the droplets. The drops were collected at the bottom of the tube and drained. The temperature of the tapped alloy was now 655°C.

Pr. 1 kg magnesium tilført røret i gassformig tilstand ble det innsprøytet 30 kg av ovennevnte legering. Den avtappede magnesium-aluminium-legering inneholdt 48,4 vekt% magnesium. Herav følger at 96% av det gassformige magnesium var blitt absorbert i den flytende magnesium-aluminium-legering. For every 1 kg of magnesium supplied to the tube in a gaseous state, 30 kg of the above-mentioned alloy were injected. The drained magnesium-aluminum alloy contained 48.4 wt% magnesium. It follows from this that 96% of the gaseous magnesium had been absorbed in the liquid magnesium-aluminium alloy.

Claims (5)

1. Fremgangsmåte til utvinning av magnesium fra en varm gassblanding av magnesium og karbonmonoksyd, hvor gassblandingen kjøles hurtig ved at den bringes i kontakt med et smeltet metall i hvilket magnesiumet samtidig absorberes, karakterisert ved at det smeltede metall er en aluminium-magnesium-legering.1. Process for extracting magnesium from a hot gas mixture of magnesium and carbon monoxide, where the gas mixture is cooled rapidly by bringing it into contact with a molten metal in which the magnesium is simultaneously absorbed, characterized in that the molten metal is an aluminium-magnesium alloy. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at legeringen inneholder minst 25 vekt% magnesium.2. Method according to claim 1, characterized in that the alloy contains at least 25% by weight of magnesium. 3. Fremgangsmåte ifølge krav 1-2, karakterisert ved at legeringen inneholder minst 30 vekt% magnesium.3. Method according to claims 1-2, characterized in that the alloy contains at least 30% by weight of magnesium. 4. Fremgangsmåte ifølge krav 1-3, karakterisert ved at legeringen inneholder magnesium i en mengde innen området 3 0-7 0 vekt%.4. Method according to claims 1-3, characterized in that the alloy contains magnesium in an amount within the range 30-70% by weight. 5. Fremgangsmåte ifølge krav 1-4, karakterisert ved at legeringen utsprøytes som dråper inn i den varme gassblanding.5. Method according to claims 1-4, characterized in that the alloy is sprayed as droplets into the hot gas mixture.
NO772221A 1976-06-25 1977-06-23 PROCEDURE FOR MAGNESIUM EXTRACTION NO772221L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL7606941A NL7606941A (en) 1976-06-25 1976-06-25 METHOD OF WINNING MAGNESIUM.

Publications (1)

Publication Number Publication Date
NO772221L true NO772221L (en) 1977-12-28

Family

ID=19826450

Family Applications (1)

Application Number Title Priority Date Filing Date
NO772221A NO772221L (en) 1976-06-25 1977-06-23 PROCEDURE FOR MAGNESIUM EXTRACTION

Country Status (9)

Country Link
JP (1) JPS532315A (en)
BE (1) BE855692A (en)
BR (1) BR7704088A (en)
DE (1) DE2728317A1 (en)
ES (1) ES460032A1 (en)
FR (1) FR2355918A1 (en)
IT (1) IT1081272B (en)
NL (1) NL7606941A (en)
NO (1) NO772221L (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4290804A (en) * 1980-02-26 1981-09-22 Avery Julian M Method for producing magnesium
EP0124634B1 (en) * 1983-05-10 1989-08-30 Toyota Jidosha Kabushiki Kaisha Method and apparatus for retrieving metallic vapor in the liquid phase using pool of molten retrieving metal
EP0124635B1 (en) * 1983-05-10 1989-09-06 Toyota Jidosha Kabushiki Kaisha Method and apparatus for liquid metal collection from vapor using molten pool of collecting metal
JP2936750B2 (en) * 1991-03-01 1999-08-23 株式会社日立製作所 Ink jet recording device

Also Published As

Publication number Publication date
NL7606941A (en) 1977-12-28
JPS532315A (en) 1978-01-11
DE2728317A1 (en) 1978-01-05
IT1081272B (en) 1985-05-16
BR7704088A (en) 1978-04-18
FR2355918A1 (en) 1978-01-20
ES460032A1 (en) 1978-05-01
BE855692A (en) 1977-12-15

Similar Documents

Publication Publication Date Title
US2670270A (en) Production of pure dihalides
NO151697B (en) PROOF PREVENTION COATING FOR A LIQUID OR SUBMISSIBLE CONSTRUCTION
JPH01143601A (en) Reduction of steam due to condensation from gas stream
US4456479A (en) Vacuum purification of liquid metals
GB390069A (en) Method for the extraction of those constituents of air which have a higher boiling point than oxygen
US3374637A (en) Recovery of chlorine
NO772221L (en) PROCEDURE FOR MAGNESIUM EXTRACTION
ES8608144A1 (en) Air separation process.
JP2594604B2 (en) Argon recovery method
US3394056A (en) Recovery of anhydrous hci from aqueous azeotropes by plural stage distillation
US4518421A (en) Process for producing solid metal particles from a bath of metal
US4378242A (en) Vacuum purification of liquid metal
EP0063620A1 (en) Process for producing magnesium
GB1304568A (en)
NO130110B (en)
KR890001623A (en) Method for producing ultra high purity oxygen from liquid feed and apparatus therefor
US2513339A (en) Process of purifying aluminum by distillation of mixtures thereof with other metals
US3619173A (en) Method for the controlled addition of volatile treating materials
US4629501A (en) Method for manufacture of antimony of high purity
US4131538A (en) Method of separating a predetermined fraction from petroleum oil using multistage evaporators
GB776154A (en) Improvements in and relating to the fractional distillation of mixtures of liquids
EP0061877A2 (en) Method and apparatus for providing a hop extract
US2860965A (en) Process for producing pure manganese
US2893862A (en) Process for the production of alkalineearth metals
NO133718B (en)