NO770224L - PROCEDURES FOR PRODUCING OBJECTS THAT ARE RESISTANT TO SURGAS - Google Patents

PROCEDURES FOR PRODUCING OBJECTS THAT ARE RESISTANT TO SURGAS

Info

Publication number
NO770224L
NO770224L NO770224A NO770224A NO770224L NO 770224 L NO770224 L NO 770224L NO 770224 A NO770224 A NO 770224A NO 770224 A NO770224 A NO 770224A NO 770224 L NO770224 L NO 770224L
Authority
NO
Norway
Prior art keywords
corrosion
resistant
weight
surgas
procedures
Prior art date
Application number
NO770224A
Other languages
Norwegian (no)
Other versions
NO147217B (en
Inventor
Norbert Niehaus
Guenther Herbsleb
Original Assignee
Mannesmann Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann Ag filed Critical Mannesmann Ag
Publication of NO770224L publication Critical patent/NO770224L/en
Publication of NO147217B publication Critical patent/NO147217B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working

Description

Fremgangsmåte til fremstilling avMethod for the production of

gjenstander som er bestandig overfor surgass. objects that are resistant to acid gas.

Oppfinnelsen vedrører en fremgangsmåte til fremstilling av gjenstander, spesielt apparatdeler, rør og rørfor-bindelser av høylegert stål med minst 12 vekt% Cr, med høy fasthet og en strekkgrense på minst ^ hO N/mm<2>og som er bestandige overfor korrosjonsangrep av surgass. The invention relates to a method for the production of objects, especially apparatus parts, pipes and pipe connections of high-alloyed steel with at least 12% Cr by weight, with high strength and a tensile strength of at least ^ hO N/mm<2> and which are resistant to corrosion attack by acid gas.

Hittil ble det som material for transport, befordring og forarbeidelse av surgass (jordgass med innhold av f^S og/eller CO^) og surgassprodukter, f.eks. svovelforbindelser, anvendt ulegerte og lavtlegerte rørstål med vanlig varmebehandling. Felles for disse materialer er en under de nevnte anvendelsesbe-tingelser •■ U-tilstrekkelig korrosjonsbestandighet, eksempelvis Until now, it has been used as material for the transport, conveyance and processing of sour gas (natural gas containing f^S and/or CO^) and sour gas products, e.g. sulfur compounds, used unalloyed and low-alloyed tubular steel with normal heat treatment. These materials have in common an insufficient corrosion resistance under the aforementioned conditions of use, for example

en ikke tilstrekkelig bestandighet'overfor generelt avtagende korrosjon, tendens mot hullkorrosjon ved elementdannelse og fare for hydrogenindusert spenningsrisskorrosjon. De nevnte korro-sjonstyper kan opptre enkeltvis eller sammen. For å sikre en tilstrekkelig driftssikkerhet er det derfor ved anvendelse av ulegert og lavtlegert stål å treffe forskjellige forholdsregler, f.eks. tørkning av gassene og/eller tilsetning av inhibitorer og/eller heving av pH-verdien. an insufficient resistance to generally diminishing corrosion, a tendency towards pitting corrosion during element formation and the risk of hydrogen-induced stress corrosion cracking. The aforementioned types of corrosion can occur individually or together. In order to ensure sufficient operational safety, different precautions must therefore be taken when using unalloyed and low-alloyed steel, e.g. drying the gases and/or adding inhibitors and/or raising the pH value.

Ved befordring av surgass trues de nevnte materialer fortrinnsvis ved storflatede lokale korrosjoner. Disse korrosjoner iakttas på den ytre overflate av rør og er å se i forbind-else med innføring av midler som oppløser svovel eller hindrer utfelling av svovel i ringspalten mellom rør og hus. Grunnen til disse korrosjonsangrep er sannsynligvis dannelsen av storflatede makroelementer, hvis virkning øker med økende borehulldybde og dermed økende temperatur og under en bestemt, av de lokale om-stendigheter og driftsbetingelser avhengige temperatur resp. ikke mere å iaktta over en bestemt borehulldybde. When acid gas is transported, the aforementioned materials are threatened preferably by large-scale local corrosion. These corrosions are observed on the outer surface of pipes and can be seen in connection with the introduction of agents that dissolve sulfur or prevent the precipitation of sulfur in the annular gap between pipe and housing. The reason for these corrosion attacks is probably the formation of large-surfaced macro-elements, the effect of which increases with increasing borehole depth and thus increasing temperature and under a specific, depending on the local circumstances and operating conditions, temperature resp. no more to observe above a certain borehole depth.

Videre opptrer korrosjonsskader på den indre over flate av transportstrenger som forårsakes ved generelt avtagende korrosjon og erosjonskorrosjon. Den generelt avtagende korrosjon er åpenbart forbundet med syring av borehullet til opprettholdelse av transportytelsen. Ved anvendelsen av inhibitorer kan denne korrosjonstype riktignok nedsettes, men ikke tilstrekkelig sikkert unngås. I tillegg kan det ved forskjeller i strømningsforholdene opptre betingede lokale angrep ved erosjonskorrosjon. Disse er sannsynligvis å tilbakeføre på at dekk-sjikt som under drift oppstår og utøver en viss beskyttelses-funksjon i bestemte områder av røroverflaten ikke danner seg eller ødelegges. Furthermore, corrosion damage occurs on the inner surface of transport strings which is caused by generally decreasing corrosion and erosion corrosion. The generally decreasing corrosion is obviously associated with acidification of the borehole to maintain transport performance. By using inhibitors, this type of corrosion can indeed be reduced, but cannot be avoided with sufficient certainty. In addition, due to differences in the flow conditions, conditional local attacks can occur due to erosion corrosion. These are probably due to the fact that the cover layer which occurs during operation and exerts a certain protective function in certain areas of the pipe surface is not formed or destroyed.

I den øvre, kaldere rørstrengdel består spesielt ved stillstand av befordring faren for en ved hydrogen forår-saket spenningsrisskorrosjon. Opptreden av denne korrosjonstype er å tilbakeføre på at materialoverflaten rekombinerer ved korrosjonsreaksjonen dannet hydrogen ved nærvær av svovelhydro-gen ikke til hydrogenmolekylet, men indiffunderer atomært i strukturen. Dette kan ved belastning langt under strekkgrens en føre til rissdannelse, brudd og dermed til avrivning av rør-strengen. Tendensen av ulegert og lavtlegert stål til hydrogenindusert spenningsrisskorrosjon øker med fallende temperatur og oppnår en maksimal verdi ved omtrent værelsestemperatur. Derved forklares den spesielle truing av de øvre, kaldere og samtidig også høytbelastede deler av strengen under befordringsdriften og den utover dette økede fare i stillstandstider på grunn av den der videre fallende temperatur. Som motforholdsregel er det hittil blitt anvendt høyfaste, lavtlegerte foredlingsstål med sammenlignet til varmvalset eller varmvalset og normalisert stål forbedret bestandighet mot hydrogenindusert spenningsrisskorrosjon uten at imidlertid korrosjonsskader fullstendig kunne unngås . In the upper, colder part of the pipe string, there is a risk of stress corrosion cracking caused by hydrogen, especially when transport is at a standstill. The occurrence of this type of corrosion is due to the fact that the material surface recombines the hydrogen formed by the corrosion reaction in the presence of hydrogen sulphide, not into the hydrogen molecule, but atomically indiffuses in the structure. When the load is far below the tensile limit, this can lead to cracking, breakage and thus tearing of the pipe string. The tendency of unalloyed and low-alloyed steel to hydrogen-induced stress corrosion cracking increases with decreasing temperature and reaches a maximum value at approximately room temperature. This explains the special threat posed by the upper, colder and at the same time highly loaded parts of the string during the transport operation and the increased danger during periods of standstill due to the further falling temperature there. As a countermeasure, high-strength, low-alloy finishing steels have been used until now, with improved resistance to hydrogen-induced stress corrosion cracking compared to hot-rolled or hot-rolled and normalized steel, without, however, corrosion damage being completely avoided.

Rør for transport av surgass, såkalt "flow-lines" er på grunn av den her foreliggende lave temperatur omtrent utelukkende truet av hydrogenindusert spenningsrisskorrosjon, mens generell avtagende korrosjon og andre lokale korrosjonsangrep ikke har noen praktisk betydning ved dette anvendelsestil-fellet. Da den ved hydrogenabsorpsjon forårsakede spenningsriss-korros jon er bundet til en elektrokjemisk korrosjonsreaksjon, som kan forløpe ved lave pH-verdier og bare ved nærvær av fuktighet, ble det hittil for unngåelse av spenningsrisskorrosjon med en gang etter uttreden av gassen fra boringen pH-verdien hevet ved tilsetning av alkali til pH lik eller over 8 og deretter fjernet fuktighet i et tørkeanlegg. Pipes for the transport of sour gas, so-called "flow-lines", are almost exclusively threatened by hydrogen-induced stress corrosion cracking due to the low temperature present here, while general diminishing corrosion and other local corrosion attacks have no practical significance in this application case. As the stress-cracking corrosion caused by hydrogen absorption is linked to an electrochemical corrosion reaction, which can proceed at low pH values and only in the presence of moisture, to avoid stress-cracking corrosion immediately after the exit of the gas from the borehole, the pH value raised by addition of alkali to pH equal to or above 8 and then removed moisture in a drying plant.

De samme korrosjonsproblemer består ved befordring og transport også ved anlegg for oppberedning og videreforarbeidelse av surgass. The same corrosion problems exist during transport and also at facilities for the preparation and further processing of acid gas.

Til grunn for oppfinnelsen ligger den oppgave å muliggjøre fremstilling av gjenstander som er anvendbare for oppslutning, transport og videreforarbeidelse av surgass uten at de angjeldende gjenstander er korrosjonstruet. Por løsning av denne oppgave foreslås ifølge oppfinnelsen at gjenstandene ved deres fremstilling er blitt kaldformet med en formningsgrad på minst 3%. The invention is based on the task of enabling the manufacture of objects that can be used for the digestion, transport and further processing of sour gas without the objects in question being at risk of corrosion. In order to solve this problem, according to the invention, it is proposed that the objects during their manufacture have been cold-formed with a forming degree of at least 3%.

Gjenstanden ifølge oppfinnelsen har på grunn av deres kjemiske sammensetning under betingelsene for oppslutning av surgassboringer, befordring, transport, opparbeidelse og videreforarbeidelse av surgass en høy bestandighet mot generelt avtagende korrosjon, lokale korrosjoner som hullkorrosjon og ved klorider såvel som spesielt mot ved hydrogenabsorpsjon for-årsaket spenningsrisskorrosjon. De er dessuten bestandige overfor korrosjoner frembragt ved elementdannelse. The object according to the invention has, due to its chemical composition, under the conditions for the plugging of acid gas wells, conveyance, transport, processing and further processing of acid gas, a high resistance to generally diminishing corrosion, local corrosion such as pitting corrosion and by chlorides as well as especially against hydrogen absorption caused by stress corrosion cracking. They are also resistant to corrosion caused by element formation.

Ved kaldformningen av- materialene ifølge oppfinnelsen økes de i den oppløsningsglødede tilstand foreliggende'minste-strekkgrenser av det høylegerte stål vesentlig inntil den for rørutlegning ved store dyp nødvendige verdi samtidig tilstrekkelig høye verdier for utvidelse og innsnevring. Det er vesentlig ifølge oppfinnelsen at ved kaldformningen påvirkes ikke bestandigheten mot generelt avtagende korrosjon mot hullkorrosjon ved klorider og inntrengning av atomært hydrogen i strukturen frembragt spenningsrisskorrosjon og bestandigheten mot korrosjon og elementdannelse. Videre kan de hittil anvendte for en sikker beskyttelse av ulegerte og lavtlegerte stål vanligvis imidlertid utilstrekkelig korrosjonsbeskyttelsesforholdsregler bortfalle eller i det minste begrenses, som anvendelse av inhibitorer ved spyling og syring av borehull, alkalisering og tørkning av gassen og derved økes anleggenes driftssikkerhet og det oppnås en økonomisk fordel. During the cold forming of the materials according to the invention, the 'minimum tensile limits' of the high-alloyed steel present in the solution-annealed state are substantially increased up to the value necessary for pipe laying at great depths, at the same time sufficiently high values for expansion and contraction. It is essential according to the invention that during the cold forming, the resistance against generally decreasing corrosion against pitting corrosion caused by chlorides and penetration of atomic hydrogen into the structure is not affected by stress crack corrosion and the resistance against corrosion and element formation. Furthermore, the corrosion protection precautions used until now for safe protection of unalloyed and low-alloyed steels, usually however insufficient, can be dispensed with or at least limited, such as the use of inhibitors when flushing and acidizing boreholes, alkalizing and drying the gas, thereby increasing the plant's operational reliability and achieving a financial benefit.

a a

Claims (2)

1. Fremgangsmåte til fremstilling av gjenstander, spesielt apparatdeler, rør og rørforbindelser av høylegert stål med minst 12 vekt% Cr, med høy fasthet og en strekkgrense på minst 440 N/mm , som er bestandig overfor korrosjonsangrep av surgass, karakterisert ved at gjenstanden ved deres fremstilling underkastes en kaldformning med en formningsgrad på minst 3%■1. Process for the production of objects, especially device parts, pipes and pipe connections of high-alloy steel with at least 12% Cr by weight, with high strength and a tensile strength of at least 440 N/mm, which is resistant to corrosion attack by acid gas, characterized in that the object at their production is subjected to cold forming with a degree of forming of at least 3%■ 2. Fremgangsmåte ifølge krav 1, karakterisert ved at stålet har følgende sammensetning: 0,001 til 0,12 vekt$ karbon, 0,2 til 1,5 vekt% silisium, 0,5 til 8 vekt% mangan, 12 til 30 vekt$ krom, 2 til 16 vektfo nikkel, 0,1 til 5 vekt% molybden, 0,01 til ,1,2 vekt% titan, 0,01 til 1,6 vekt$ niob, 0,01 til 3,5 vekt% kobber, 0,010 til 0,35 vekt$ nitrogen, resten jern og vanlige følgeelementer.2. Method according to claim 1, characterized in that the steel has the following composition: 0.001 to 0.12 wt$ carbon, 0.2 to 1.5 wt% silicon, 0.5 to 8 wt% manganese, 12 to 30 wt$ chrome, 2 to 16 weight fo nickel, 0.1 to 5% by weight molybdenum, 0.01 to .1.2 wt% titanium, 0.01 to 1.6 wt% niobium, 0.01 to 3.5% by weight copper, 0.010 to 0.35 wt% nitrogen, the rest iron and common accompanying elements.
NO770224A 1976-04-13 1977-01-24 APPLICATION OF A HIGH-ALLOY STEEL CONTAINING AT LEAST 12% CHROME FOR THE PREPARATION OF GOODS WHICH ARE RESISTANT TO ACID GAS NO147217B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2616599A DE2616599B2 (en) 1976-04-13 1976-04-13 Use of a high-alloy steel for the manufacture of high-strength objects that are resistant to acid gas corrosion

Publications (2)

Publication Number Publication Date
NO770224L true NO770224L (en) 1977-10-14
NO147217B NO147217B (en) 1982-11-15

Family

ID=5975454

Family Applications (1)

Application Number Title Priority Date Filing Date
NO770224A NO147217B (en) 1976-04-13 1977-01-24 APPLICATION OF A HIGH-ALLOY STEEL CONTAINING AT LEAST 12% CHROME FOR THE PREPARATION OF GOODS WHICH ARE RESISTANT TO ACID GAS

Country Status (14)

Country Link
JP (1) JPS52124411A (en)
AR (1) AR211954A1 (en)
AT (1) ATA903976A (en)
BE (1) BE853481A (en)
BR (1) BR7702279A (en)
CS (1) CS215084B2 (en)
DE (1) DE2616599B2 (en)
FR (1) FR2348275A1 (en)
GB (1) GB1577783A (en)
IT (1) IT1084471B (en)
MX (1) MX149365A (en)
NL (1) NL7613619A (en)
NO (1) NO147217B (en)
SE (1) SE437383B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131397A (en) * 1977-04-22 1978-11-16 Toshiba Corp Nuclear fuel element
AT371840B (en) * 1978-05-31 1983-08-10 Voest Ag METHOD FOR PRODUCING ANCHOR BARS OR ANCHOR WIRE
JPS5681658A (en) 1979-12-05 1981-07-03 Nippon Kokan Kk <Nkk> Austenitic alloy pipe with superior hot steam oxidation resistance
SE436576C (en) * 1980-01-03 1986-12-23 Allegheny Ludlum Steel FERRITIC STAINLESS STEEL AND APPLICATION OF CAP
GB2128632A (en) * 1982-10-23 1984-05-02 Mather & Platt Ltd Stainless steel
JPS6036649A (en) * 1983-08-05 1985-02-25 Nisshin Steel Co Ltd Precipitation hardening martensitic stainless steel with superior toughness
US4816085A (en) * 1987-08-14 1989-03-28 Haynes International, Inc. Tough weldable duplex stainless steel wire
FR2623390B1 (en) * 1987-11-23 1994-03-25 Fabrication Materiel Orthopediqu DEVICE FOR SHRINKAGE OF SPINE VERTEBRA
US4915752A (en) * 1988-09-13 1990-04-10 Carondelet Foundry Company Corrosion resistant alloy
FR2645732B1 (en) * 1989-04-13 1997-01-03 Cotrel Yves VERTEBRAL IMPLANT FOR OSTEOSYNTHESIS DEVICE
JPH0726180B2 (en) * 1990-07-30 1995-03-22 日本鋼管株式会社 Martensitic stainless steel for oil wells with excellent corrosion resistance
JP3543366B2 (en) * 1994-06-28 2004-07-14 住友金属工業株式会社 Austenitic heat-resistant steel with good high-temperature strength
IT1275287B (en) * 1995-05-31 1997-08-05 Dalmine Spa SUPERMARTENSITIC STAINLESS STEEL WITH HIGH MECHANICAL AND CORROSION RESISTANCE AND RELATED MANUFACTURED PRODUCTS
FR2746114B1 (en) * 1996-03-15 1998-04-24 PROCESS FOR PRODUCING FERRITIC STAINLESS STEEL HAVING IMPROVED CORROSION RESISTANCE, IN PARTICULAR INTERGRANULAR AND PITCH CORROSION RESISTANCE
JP2002241900A (en) * 1997-08-13 2002-08-28 Sumitomo Metal Ind Ltd Austenitic stainless steel having excellent sulfuric acid corrosion resistance and workability
JP3294282B2 (en) * 1998-08-10 2002-06-24 住友金属工業株式会社 Austenitic stainless steel with excellent sulfuric acid corrosion resistance and workability
WO2007129703A1 (en) 2006-05-09 2007-11-15 Nippon Steel & Sumikin Stainless Steel Corporation Stainless steel excellent in corrosion resistance, ferritic stainless steel excellent in crevice corrosion resistance and formability, and ferritic stainless steel excellent in crevice corrosion resistance
ES2719774T3 (en) * 2011-09-06 2019-07-16 Nippon Steel Corp Two-phase stainless steel
CN109554633B (en) * 2018-12-25 2020-04-10 成都永益泵业股份有限公司 Corrosion-resistant material and preparation method of phosphoric acid slurry pump

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1171941B (en) * 1956-08-09 1964-06-11 Flexonics Corp Method and device for work hardening circular cylindrical tubes made of a metal that hardens during cold stretching, in particular made of stainless steel
BE671790A (en) * 1963-11-04
FR2045584A1 (en) * 1969-06-03 1971-03-05 Ugine Kuhlmann
AT298379B (en) * 1970-06-22 1972-05-10 Schoeller Bleckmann Stahlwerke Process for the production of seamless tubes
NO131944C (en) * 1970-12-28 1975-08-27 Kobe Steel Ltd
GB1388431A (en) * 1972-03-06 1975-03-26 Jackson R G Process of working a metal tube
FR2194195A5 (en) * 1972-07-28 1974-02-22 Creusot Loire

Also Published As

Publication number Publication date
FR2348275A1 (en) 1977-11-10
CS215084B2 (en) 1982-07-30
DE2616599A1 (en) 1977-10-27
BR7702279A (en) 1977-12-13
NL7613619A (en) 1977-10-17
NO147217B (en) 1982-11-15
DE2616599C3 (en) 1987-01-22
DE2616599B2 (en) 1981-03-26
MX149365A (en) 1983-10-28
IT1084471B (en) 1985-05-25
AR211954A1 (en) 1978-04-14
JPS52124411A (en) 1977-10-19
ATA903976A (en) 1981-01-15
FR2348275B1 (en) 1983-11-18
GB1577783A (en) 1980-10-29
BE853481A (en) 1977-08-01
SE437383B (en) 1985-02-25
SE7701171L (en) 1977-10-14

Similar Documents

Publication Publication Date Title
NO770224L (en) PROCEDURES FOR PRODUCING OBJECTS THAT ARE RESISTANT TO SURGAS
US2982360A (en) Protection of steel oil and/or gas well tubing
Roffey et al. The generation of corrosion under insulation and stress corrosion cracking due to sulphide stress cracking in an austenitic stainless steel hydrocarbon gas pipeline
Kane Roles of H2S in behaviour of engineering alloys
Kentish Gas pipeline failures: Australian experience
Rhodes et al. Pushing the limits of metals in corrosive oil and gas well environments
Tagliari et al. Tensile armor wires submitted to slow strain rate tests in a corrosive environment and cathodic protection: a comparison between two different microstructures
Li et al. Corrosion crack failure analysis of 316L hydraulic control pipeline in high temperature aerobic steam environment of heavy oil thermal recovery well
Watkins et al. Corrosion testing of highly alloyed materials for deep, sour gas well environments
Asphahani Evaluation of highly alloyed stainless materials for CO2/H2S environments
Govender et al. Fatigue crack growth rate parametric study on subsea X65 pipeline steel girth welds in H2S/CO2 environments
Scoppio et al. Corrosion and environmental cracking testing of a high-density brine for HPHT field application
Singh Corrosion behavior of alloy 625
Prabowo et al. Preliminary assessment of 22Cr and 15Cr materials selection for CO2 enhanced oil recovery program
US20070261768A1 (en) Method for designing corrosion resistant alloy tubular strings
Skogsberg et al. Effect of thiocyanate on stress corrosion cracking of corrosion resistant alloys in halide brines
Nasr-El-Din et al. Workovers in sour environments: how do we avoid coiled tubing failures?
Craig On the contradiction of applying rolled threads to bolting exposed to hydrogen-bearing environments
Nasr-El-Din et al. Workovers in sour environments: how do we avoid coiled tubing (CT) failures?
Chkolny et al. Investigating the Interaction of Brine Solutions and Diluted Inhibited HCl Acid on Coiled Tubing Steel Corrosion
Caldwell et al. Development of the NACE MR-01-75 and NACE TM-01-77 Standards: Part I–Field Observations and Metallurgical Factors
Fraser et al. Resistance of Tubular Materials to Sulphide-Corrosion Cracking
Le Manchet et al. Corrosion resistance of the lean duplex material UNS S32202 for oil & gas applications
Kumar et al. Best Practices & Inhibitors Utilization to Prevent Sulfide Stress Cracking During Coiled Tubing Intervention in HPHT Sour Wells-A Case Study from Oman
Esteban et al. Stress Corrosion Cracking of Superduplex Stainless Steels for Use in H2S Containing Environments in Oil and Gas Production